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Putative enhancer sites in the bovine 
genome are enriched with variants affecting 
complex traits
Min Wang1*  , Timothy P. Hancock2, Iona M. MacLeod2, Jennie E. Pryce1,2, Benjamin G. Cocks1,2 
and Benjamin J. Hayes2

Abstract 

Background:  Enhancers are non-coding DNA sequences, which when they are bound by specific proteins increase 
the level of gene transcription. Enhancers activate unique gene expression patterns within cells of different types or 
under different conditions. Enhancers are key contributors to gene regulation, and causative variants that affect quan-
titative traits in humans and mice have been located in enhancer regions. However, in the bovine genome, enhancers 
as well as other regulatory elements are not yet well defined. In this paper, we sought to improve the annotation of 
bovine enhancer regions by using publicly available mammalian enhancer information. To test if the identified puta-
tive bovine enhancer regions are enriched with functional variants that affect milk production traits, we performed 
genome-wide association studies using imputed whole-genome sequence data followed by meta-analysis and 
enrichment analysis.

Results:  We produced a library of candidate bovine enhancer regions by using publicly available bovine ChIP-Seq 
enhancer data in combination with enhancer data that were identified based on sequence homology with human 
and mouse enhancer databases. We found that imputed whole-genome sequence variants associated with milk pro-
duction traits in 16,581 dairy cattle were enriched with enhancer regions that were marked by bovine-liver H3K4me3 
and H3K27ac histone modifications from both permutation tests and gene set enrichment analysis. Enhancer regions 
that were identified based on sequence homology with human and mouse enhancer regions were not as strongly 
enriched with trait-associated sequence variants as the bovine ChIP-Seq candidate enhancer regions. The bovine 
ChIP-Seq enriched enhancer regions were located near genes and quantitative trait loci that are associated with 
pregnancy, growth, disease resistance, meat quality and quantity, and milk quality and quantity traits in dairy and beef 
cattle.

Conclusions:  Our results suggest that sequence variants within enhancer regions that are located in bovine non-
coding genomic regions contribute to the variation in complex traits. The level of enrichment was higher in bovine-
specific enhancer regions that were identified by detecting histone modifications H3K4me3 and H3K27ac in bovine 
liver tissues than in enhancer regions identified by sequence homology with human and mouse data. These results 
highlight the need to use bovine-specific experimental data for the identification of enhancer regions.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic selection is a powerful tool that has rap-
idly accelerated genetic gains in the dairy industry [1]. 

Genomic estimated breeding values (GEBV) for ranking 
selection candidates are calculated as the sum of the indi-
vidual effects of genome-wide single nucleotide polymor-
phisms (SNPs). Genomic prediction for a given trait of 
interest would be most accurate if all causative variants 
that affect a trait were known and used in the prediction. 
For most complex traits, such as milk production in dairy 
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cattle, very few causal variants are known [2] and there-
fore it is unlikely that the full set of causative variants are 
contained within the SNP panels used for routine evalu-
ation. The task of identifying causative variants for com-
plex traits is challenging since it is likely that a very large 
number of causative mutations with small effects con-
tribute to the total genomic variation of the trait [3].

Recent research has indicated that much of the vari-
ation that affects complex traits lies in the non-coding 
genome [2], particularly transcriptional regulatory ele-
ments. Enhancers, which are also called locus control 
regions (LCR) or upstream activating sequences (UAS) 
[4], are non-coding DNA sequences, which when they 
are bound by specific proteins, enhance the transcrip-
tional level of a related gene or set of genes [4]. To date, 
the identification of genomic regulatory elements includ-
ing enhancers has followed two main approaches. Firstly, 
evolutionarily conserved non-coding sequences between 
mammalian species or higher vertebrates [5, 6] have 
been used to identify the more conserved developmen-
tal enhancers [7, 8]. Secondly, a more recent approach 
that uses chromatin immunoprecipitation followed by 
high-throughput sequencing (ChIP-Seq) can detect can-
didate enhancers on a genome-wide scale. This approach 
uses antibodies to snapshot transcriptional proteins that 
are bound to DNA sequences in  vivo, and has revealed 
a much larger number of candidate enhancers [4, 9] 
than the previous approach, the majority of which were 
detected only in a specific physiological context [10]. 
Examples of biological signals that allow the identifica-
tion of enhancers are mono-methylation of lysine 4 on 
histone H3 (H3K4me1) [11–13], p300-CBP coactivator 
protein family [14–16], tri-methylation of lysine 4 on 
histone H3 (H3K4me3) and acetylated lysine 27 on his-
tone H3 (H3K27ac) [17–19]. The histone mark H3K4me3 
displays a bimodal distribution that flanks the transcrip-
tion start sites (TSS) of active or to be expressed genes 
in eukaryotes [20]. It is a prevalent histone mark for pro-
moters [21, 22] and is also found in the coding regions of 
genes [21, 22], and occasionally it marks active enhancers 
[13, 20, 23, 24]. The histone mark H3K27ac distinguishes 
active enhancers from poised enhancers at a tissue-spe-
cific level and in a developmental-specific manner [12, 
25]. It also marks active promoters [12] and displays 
broader profiles than H3K4me3, which is in line with its 
association with open chromatin [12, 13]. The number of 
histone marks and co-occupation of other cellular ele-
ments collaboratively define the transcriptional state of a 
genomic region [20].

The aim of this study was to identify bovine enhancer 
regions in silico based on sequence homology with 
functional annotation data in other species in addition 
to bovine ChIP-Seq data. We evaluated the influence 

of mutations in enhancer regions on complex produc-
tion traits by performing a multi-breed genome-wide 
association study (GWAS) with imputed whole-genome 
sequence data in 16,581 cattle followed by meta-analysis 
and enrichment analysis.

Methods
Mammalian enhancer sets
We used four public mammalian enhancer datasets to 
search for bovine putative enhancers, i.e. VISTA [26], 
FANTOM5 [27], dbSUPER [28] and the Villar et al. [29] 
study. The VISTA enhancer browser [26] selects evolu-
tionarily ultra-conserved sequences between vertebrates 
and validates enhancer activities in transgenic mouse 
reporter assays [6]. The functional annotation of the 
mammalian genome 5 project (FANTOM5) [27] provides 
a repository of active enhancers from various human 
and mouse tissues. FANTOM5 enhancers are defined 
by bidirectional transcription signals at the 5′ end of the 
transcription start site (TSS) using single-molecule Heli-
Scope cap analysis of gene expression (CAGE) [30]. The 
database dbSUPER collects data on super-enhancers 
from various human or mouse tissues across multiple 
studies [28]. A super-enhancer (also known as a stretch 
enhancer) is a group of active enhancers that are densely 
clustered in a 10 to 30-kb region and are highly associ-
ated with cell identity genes and disease-associated 
genomic variations [31]. We combined these sets of 
homologous enhancers with predicted bovine enhancers 
from Villar et al. [29] who used ChIP-Seq to detect, in the 
bovine genome, binding sites to H3K4me3 and H3K27ac 
[17–19] in the liver tissue of four bulls. Finally, the library 
of enhancers that we used to identify bovine putative 
enhancers includes 4481 VISTA (2235 human and 2246 
mouse), 109,882 FANTOM5 (65,423 human and 44,459 
mouse), 1745 dbSUPER (607 human and 1138 mouse), 
13,797 Villar H3K4me3 (13,797 bull) and 45,784 Villar 
H3K27ac (45,784 bull) sequences, which were down-
loaded from their respective host sites on 10 August 
2015, 6 October 2015, 14 September 2015, 4 September 
2015 and 4 September 2015.

Genotypes
Illumina BovineHD BeadChip 800  K SNPs (real or 
imputed) were available for 3311 Holstein bulls, 8478 
Holstein cows, 875 Jersey bulls and 3917 Jersey cows. 
Among these individuals, 145 Holstein bulls and 47 Jer-
sey bulls were from the 1000 Bull Genomes Project [32], 
and most of the cows were from the 10,000 Holstein Cow 
Genomes Project and Jer-nomics Project [33]. Qual-
ity control and imputation were performed as described 
in [34], with an additional filter to retain only the SNPs 
that overlapped with sequence variants discovered in the 
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1000 Bull Genomes Project (run 4). The genotypes of all 
animals were then imputed to whole-genome sequence 
(WGS) using Fimpute [35] with a reference population 
of 1147 individuals with whole-genome sequences from 
the 1000 Bull Genomes Project (run 4). After imputation, 
28,899,038 WGS variants were available. All genomic loci 
were mapped to the bovine genome assembly UMD3.1 
(bostau6) [36].

Phenotypes
Phenotypes for the genotyped animals were available 
for milk production traits including fat yield (FY), milk 
yield (MY) and protein yield (PY) from the national dairy 
database operated by DataGene (Melbourne, Australia). 
The phenotypes used in the analyses were trait devia-
tions (TD) for cows and daughter trait deviations (DTD) 
for bulls. TD were calculated based on cows’ lactation 
records (three lactations on average) and corrected for 
known fixed effects as per DataGene routine evaluations 
from the April 2013 official breeding value run. DTD 
were generated from nationwide progeny test data col-
lected on many bulls’ daughters, and were corrected for 
known fixed effects such as herd, year and season. The 
animals used in our study were the same as or overlapped 
with those in previous publications [34, 37, 38].

Other data
The reference genomes used in this analysis, GRCh38.
p4 (hg38), GRCm38.p4 (mm10) and UMD3.1.1 (bos-
tau8), along with their annotation files, were downloaded 
from the National Centre for Biotechnology Information 
(NCBI) Reference Sequence Database (RefSeq) [39] on 20 
August 2015. Genomic coordinate conversion files (chain 
file format) were downloaded from the UCSC (University 
of California, Santa Cruz) database [40] on 29 February 
2016. Annotations for the sequence variants were col-
lated using NGS-SNP [41]. The bovine quantitative trait 
loci (QTL) annotation file was downloaded from the Ani-
mal QTL database (Animal Qtldb) [42] on 17 May 2016.

Mapping bovine candidate enhancers
The human and mouse enhancer regions from VISTA, 
FANTOM5 and dbSUPER were mapped to the bovine 
reference genome assembly UMD3.1.1 via command 
line applications Nucleotide Basic Local Alignment 
Search Tool (BLASTn) [43] (default settings except for 
the e-value were 4 × 10−17) and UCSC Batch Coordinate 
Conversion (liftOver) [40] (default settings), respectively. 
The BLASTn approach measures local sequence similar-
ity to identify which query segments can be matched to 
different parts of the target genome [43]. The liftOver 
approach measures global sequence similarity where 
the query sequence is optimised to the best matching 

location in the target genome, although the best match-
ing location may be stretched out on a much longer 
region than the query sequence [40]. The BLASTn soft-
ware returned specific genomic coordinates for mapped 
query segments, whereas the liftOver command appli-
cation returned a mapped file for all the genomic coor-
dinates that were found in the target genome, and an 
unmapped file for all the query sequences that were 
partially or fully unmapped. We considered all the 
returned queries with full or partial hits as mapped input 
sequences in BLASTn, and all the queries that were not 
marked as fully unmapped were considered as mapped 
input sequences in liftOver. LiftOver outputs were com-
bined with BLASTn results. All regions from the com-
bined set that overlapped over more than one bp were 
merged into a longer and non-overlapping genomic 
interval. Bovine enhancer data from ChIP-Seq H3K4me3 
and H3K27ac signals [29] were directly merged into the 
non-overlapping set, respectively.

Genome‑wide association study
A multi-breed genome-wide association study (GWAS) 
was performed to detect imputed WGS variants that 
were associated with FY, MY and PY. Following the 
approach described by [37], Holstein and Jersey data 
were combined, but the analyses were separated by gen-
der, because phenotype measurements in bulls and cows 
have different degrees of uncertainty [34]. The efficient 
mixed-model association expedited (EMMAX) analy-
sis software package [44] was used to fit the 28,899,038 
WGS variants one by one in the linear mixed model:

where Y is a vector of phenotypes (DTD for bulls and 
TD for cows); W is the design matrix that allocates phe-
notypes to fixed effects accounting for overall mean and 
breeds; ω is a vector of fixed effect solutions; X is a vector 
of animal genotypes; β is a vector of genotype effects; Z is 
a matrix that allocates phenotypic records to animals and 
µ is a vector of polygenic breeding values fitted as a ran-
dom effect and assumed to follow a normal distribution 
N
(

0,Gσ 2
g

)

, where σ 2
g  is the genetic variance of the trait, 

and G is the genomic relationship matrix calculated from 
the 800 K genotypes as in [45]; and e is a vector of resid-
ual errors distributed N

(

0, Iσ 2
e

)

, where σ 2
e  is the error 

variance. The polygenic breeding values were included in 
the model to avoid false positive SNP effects due to popu-
lation structure and sub-structure [44].

Meta‑analysis
The multi-breed GWAS results from bull and cows were 
combined using an inverse-variance weighting meta-
analysis within a fixed effect model as described by [46]. 

Y = Wω+ Xβ+ Zu + e,
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We did not perform a joint analysis since inclusion of dif-
ferent accuracies for the phenotypes of bulls and cows 
was not possible in EMMAX. For the inverse-variance 
weighted meta-analysis, the following were calculated:

1.	 The standard error of SNP effects is calculated as fol-
lows:

	

where i indicates the SNP at position i, j indicates 
the gender cohort, se is the standard error of the SNP 
effect, β is the SNP effect output from EMMAX, Q 
is the quantile function of the standard normal dis-
tribution and p is the GWAS P value output from 
EMMAX.

2.	 The inverse-variance weight for each SNP is then cal-
culated as:	

where i and j are as defined above, w is the inverse-
variance weight, and se is the standard error of the 
SNP effect calculated from Eq. (1).

3.	 The inverse-variance weighted effect for each SNP is 
then calculated as:	

where i and j are as defined above, β̂ is the weighted 
effect, β is the SNP effect output from EMMAX.

4.	 The SNP effect from the meta-analysis that combines 
gender cohorts is calculated as:	

where i and j are as defined above, β̃ is the SNP effect 
from the meta-analysis, β̂ is the weighted effect calcu-
lated from Eq. (3), and w is the weight calculated from 
Eq. (2).

5.	 The variance of the SNP effect from the meta-analysis 
that combines gender cohorts is calculated as:	

where i is as above, ṽ is the variance of the SNP effect 
from the meta-analysis, n is the number of cohorts 
being combined in the meta-analysis (here, n is equal 
to 2 because the bull and cow cohorts were com-
bined), and w is the weight calculated from Eq. (2).

(1)sei,j =

∣

∣

∣

∣

∣

βi,j

Q
(

pi,j
)

∣

∣

∣

∣

∣

,

(2)wi,j =
1

sei,j
,

(3)β̂i,j = βi,j × wi,j ,

(4)β̃i =

∑

i∈j β̂i,j
∑

i∈j wi,j
,

(5)ṽi =

√

n
∑

i∈j wi,j
,

6.	 The P value from the meta-analysis that combines 
gender cohorts is calculated as:	

where i is as above, p̃ is the P value output from the 
meta-analysis, F  is the quantile function of the stand-
ard normal distribution, β̃ is the SNP effect from the 
meta-analysis calculated from Eq. (4), and ṽ is the var-
iance of the SNP effect from the meta-analysis calcu-
lated from Eq. (5).

Variants with no effect or with a P value of 1 were 
removed from the downstream analysis. Of the 28,899,038 
imputed WGS variants input for FY cohort, after the 
meta-analysis, 23,462,606 variants remained. Of the 
28,899,038 imputed WGS variants input for MY cohort, 
after the meta-analysis 23,462,606 variants remained. Of 
the 28,899,038 imputed WGS variants input for PY cohort, 
after the meta-analysis 23,470,573 variants remained. Sig-
nificant variants from the meta-analysis were selected 
using the same threshold as in the GWAS 

(

P ≤ 10−8
)

.

Enrichment analysis
The bovine candidate enhancers were categorised 
into five enhancer sets based on their input databases: 
VISTA, FANTOM5, dbSUPER, Villar H3K4me3 or Vil-
lar H3K27ac. Two enrichment analyses, i.e. permuta-
tion test and gene set enrichment analysis (GSEA), were 
performed to examine if any of the bovine candidate 
enhancer sets were enriched with variants associated 
with FY, MY or PY. The permutation test compared the 
number of significant SNPs in an enhancer set with the 
null distribution sampled from the rest of the genome. 
However, the need for a predefined threshold for statisti-
cal significance in the permutation tests may result in not 
detecting relevant biological differences that are modest 
relative to the noise that is inherent to the data [47]. This 
insensitivity of the permutation test was partly overcome 
by GSEA, which considered the distribution of all effects 
and tested if SNPs in an enhancer set were responsible 
for the enrichment signal, without applying any signifi-
cant threshold [47].

The permutation test was run for 10,000 random repeats 
to test if the number of significant SNPs in an enhancer 
set was significantly larger than that obtained by random 
chance. The numbers of SNPs and of significant SNPs 
in an enhancer set, and the number of SNPs in a ran-
dom draw are denoted as NE, ns and ms, respectively. In 
each permutation, a significant SNP was determined by a 
global P value cut-off of P ≤ 10−8. The fold change of the 

(6)p̃i = 2×

(

1− F

(∣

∣

∣

∣

∣

β̃i

ṽi

∣

∣

∣

∣

∣

))

,
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enrichment was defined as the ratio of ns to the mean of all 
ms in random samples. The ranking position of ns within 
the distribution of all ms over all random samples, denoted 
as R, was determined, and a P value to test the significance 
of the ranking was computed. For the largest ns among all 
ms , the P value was set to <0.0001 and otherwise it was 
R

10001
. Our permutation tests resulted in 15 independent 

analyses (3 phenotypes × 5 enhancer databases).
The GSEA statistics was the cumulative sum of the 

effects of SNPs in putative enhancers computed from the 
sorted list of all SNP effects. Here, the effect was assessed 
by –log10 (P value). At each point in the GSEA algo-
rithm, the test statistic ES was computed as follows:

where j is the position of the effect of an enhancer SNP 
in the sorted list of all SNP effects, Phit and Pmiss are 
respectively the cumulative probability of observing all 
enhancer SNPs and all non-enhancer SNPs up to position 
j, thus ES denotes the level of enrichment of enhancer 
SNPs up to position j. The position at which ES reaches 
the maximum deviation from 0, ES_max, defines the 
strength of the enrichment signal in the enhancer set. 
All enhancer SNPs that are identified before ES reaches 
ES_max are assigned to the candidate core enhancer set.

The significance of each GSEA was determined in a 
similar way as that for the permutation test described 
above. We randomly shuffled the SNPs within the sorted 
list while retaining the sorted positions of −log10 (P 
value) and recalculated the ES_max value. The shuffle 
was repeated 10,000 times and 10,000 ESNULL values were 
obtained. A GSEA result was considered significant if the 
ES_max value was larger than all ESNULL values. Our 
GSEA resulted in 15 independent analyses (3 phenotypes 
× 5 enhancer databases), but the sets of core enhancer 
SNPs were only those from the significant GSEA cohorts.

Results
Mapping bovine candidate enhancers
Two aligners, BLASTn and liftOver, were used to map 
human and mouse enhancers on the bovine genome 
(Table  1). All sets of bovine putative enhancer regions 
covered bovine chromosome 1 to 30. The bovine 

Phit
(

Ei, j
)

=
∑

vj ∈ Ei
m ≤ j

pm

NR
, where NR =

∑

vj∈Ei

pm,

Pmiss

(

Ei, j
)

=
∑

vj /∈ Ei
m ≤ j

1

(N − NE)
,

ES = Phit
(

Ei, j
)

− Pmiss

(

Ei, j
)

,

reference genome assembly bostau6 and bostau8 do not 
include chromosome Y. The mapping rate was defined 
as the ratio between the number of query sequences 
found in the bovine genome and the number of query 
sequences input for search. Cross-species mapping rates 
were equal to, in decreasing order, 96% for VISTA, 92% 
for dbSUPER and 87% for FANTOM5. The number 
of overlaps between BLASTn and liftOver results was 
small for FANTOM5 (<10%), moderate for dbSUPER 
(16%) and high for VISTA (71%). Over 93 and over 95% 
of the dbSUPER hits were within 10 and 30  kb to each 
other, respectively. As expected, homologous enhancer 
sequences were on average shorter than their respective 
query sequences (Table 1).

A pair-wise comparison was performed to examine 
the degree of overlap between the sets of bovine putative 
enhancer regions (Fig. 1). Villar H3K27ac and dbSUPER 
were the two major enhancer sets, because the Villar 
H3K27ac set covered 82% of the Villar H3K4me3 bovine 
genomic intervals, and the dbSUPER set covered 71% of 
the VISTA and 52% of the FANTOM5 bovine genomic 
intervals (Table  2; Fig.  1). However, the Villar H3K27ac 
and dbSUPER sets differed substantially (less than 5% 
overlaps; Table 2; Fig. 1).

Given that enhancers are highly tissue-specific, we 
compared only liver-specific enhancers from homolo-
gous enhancer sets and Villar ChIP-Seq enhancer set. 
Only eight VISTA enhancers were liver-specific, which 
generated 236 bovine putative liver enhancers. We could 
not determine from which tissue FANTOM5 sequences 
originated. No liver data was available in the dbSUPER 
database. The bovine putative VISTA-liver enhancers 
overlapped very little with the bovine-liver H3K27ac 
(27%) and did not overlap at all with the bovine-liver 
H3K4me3 enhancers (Fig. 2).

Genome‑wide association study
The number of significant variants 

(

P ≤ 10−8
)

 for each 
trait is in Table  3. Bulls and cows demonstrated similar 
GWAS profiles for the respective phenotype cohorts 
(Fig. 3).

Meta‑analysis
The meta-analysis recovered 92% of the significant vari-
ants from GWAS, and revealed additional variants that 
were not significant in the separate bull and cow GWAS 
(Table 3) and [see Additional file 1: Figure S1]. Significant 
variants were clustered on chromosomes 5, 14 and 27 for 
FY, chromosomes 5, 6, 14, 15, 20 for MY and chromo-
somes 5, 6, 11, 12, 14 and 16 for PY (Fig.  3). The Villar 
H3K27ac enhancer set had the largest number of signifi-
cant variants (FY: 419, MY: 538, and PY: 289 variants) 
that spread across chromosomes 5, 6, 14, 15, 16, 20 and 



Page 6 of 16Wang et al. Genet Sel Evol  (2017) 49:56 

27, followed by the Villar H3K4me3 set (FY: 260, MY: 
273, and PY: 191 variants) that spread across chromo-
somes 5 and 14, dbSUPER (FY: 19, MY: 43, and PY: 19 
variants) that spread across chromosomes 5, 6, 14, 15 and 
20, VISTA (FY: 4, and MY: 12 variants) that spread across 
chromosomes 5 and 14, and FANTOM5 (FY: 3, MY: 9, 
and PY: 1 variants) that spread across chromosomes 14 
and 15. Villar H3K27ac and dbSUPER were the two major 
enhancer sets that captured significant variants, with the 
Villar H3K27ac set covering 78% of the Villar H3K4me3 
significant variants, and dbSUPER covering 50% of the 
VISTA and 38% of the FANTOM5 significant variants 
(Table 4; Fig. 4). However, the significant variants in the 
Villar H3K27ac and dbSUPER enhancer sets differed 
significantly, with less than 2% of the dbSUPER and less 
than 0.1% of the H3K27ac significant variants being iden-
tical (Table 4; Fig. 4).

Enrichment analysis
A permutation test with 10,000 repeats was performed 
to examine the enhancer sets for their global sequence 
wide significance. Only the Villar H3K4me3 and 
H3K27ac enhancers demonstrated genome-wide sig-
nificance across all phenotypes 

(

P ≤ 10−8
)

, whereas the 

homology-based enhancers did not show such a high 
level of enrichment in significant variants associated with 
milk production traits (Table  5; Fig.  5). Since dbSUPER 
comprised clusters of enhancers, we expanded the length 
of dbSUPER putative bovine enhancers, such that any 
sequences that were within less than 30 kb to each other 
were merged into a single longer enhancer sequence. 
The permutation test was then applied to the expanded 
dbSUPER enhancer sequences but the enrichment signal 
remained low.

Only the bovine-specific Villar H3K4me3 and H3K27ac 
enhancer sets demonstrated high levels of enrichment 
whereas homology-based enhancer sets all showed low 
levels of enrichment in GSEA. Around 29% of the SNPs 
in the Villar H3K4me3 enhancer set and 35% of the SNPs 
in the H3K27ac enhancer set accounted for the enrich-
ment signals in milk production traits [see Additional 
file  4: Table S1]. These GSEA core enhancer SNPs were 
located across all the chromosomes regardless of the 
phenotype cohorts or histone modification signals. The 
number of core H3K4me3 SNPs were, in decreasing 
order, within intronic, upstream, intergenic, 5′-UTR, 
downstream, 3′-UTR, splicing, non-coding exonic and 
stop regions (Figs. 6, 7), whereas the core H3K27ac SNPs 

Table 1  Mapping of bovine candidate enhancers

a  Database from which input query sequences were obtained
b  Query sequence downloaded from respective host sites (may include overlapping regions)
c  Number of input enhancer query sequences
d  Mean length of input enhancer query sequences (measured in bp)
e  Standard deviation length of input enhancer query sequences (measured in bp)
f  Method that returned values in column m%; COM: a set of non-overlapping regions from the combined results of liftOver and BLASTn; LO: liftOver; BN: BLASTn
g  Number of mapped query sequences (ratio of mapped query sequences); NA not applicable
h  Hit is a non-overlapping genomic interval in the bovine genome that matches with at least one query sequence from the respective input database
i  Number of non-overlapping candidate bovine enhancer genomic intervals; all hits, i.e. output from the respective software were merged into non-overlapping 
genomic intervals; some OSeq values were larger than corresponding ISeq values because one query sequence was found at multiple locations in the bovine genome
j  Mean length of bovine putative enhancer sequences (measured in bp)
k  Standard deviation length of bovine putative enhancer sequences (measured in bp)
l  Number of imputed whole-genome sequence variants in OSeq genomic intervals

dba Queryb Metf m%g Hitsh eSNPl

ISeqc u (bp)d σ (bp)e OSeqi µ (bp)j σ (bp)k

VISTA 4481 1959 1395 COM 4285 (96%) 9945 896 710 82,865

LO 3808 (85%) 964 1399 883

BN 3627 (81%) 9945 896 710

FANTOM5 109,882 277 158 COM 95,123 (87%) 30,371 231 115 50,447

LO 94,302 (86%) 6061 245 503

BN 10,054 (9%) 30,389 231 115

dbSUPER 1745 45,750 56,541 COM 1605 (92%) 50,938 739 763 282,285

LO 1549 (88%) 32 1916 2447

BN 1113 (64%) 50,938 739 763

H3K4me3 13,797 2393 879 NA 13,797 (100%) 13,660 2394 879 302,659

H3K27ac 45,784 2304 1910 NA 45,784 (100%) 42,963 2305 1910 965,716
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Fig. 1  Degree of overlap between bovine enhancer sets (measured by total base pairs)

Table 2  Degree of overlap between the sets of bovine enhancers analysed

Each value in the table represents the ratio, expressed as a percentage, of the total overlapping base pairs between the two enhancer sets listed in a row and column, 
relative to the total number of base pairs in the enhancer set listed in the corresponding row
a  VISTA is a database for evolutionarily ultra-conserved sequences between vertebrates
b  FANTOM5 is a database for active enhancers from various human and mouse tissue
c  dDbSUPER is a database for super-enhancers from various human or mouse tissues across multiple studies
d  H3K27ac represents the dataset from the Villar et al. [29] study, which used ChIP-Seq profiling to detect the regions of the bovine genome that contained the 
histone modification signal H3K27ac from four bulls’ liver tissues
e  H3K4me3 represents the dataset from the Villar et al. [29] study which used ChIP-Seq profiling to detect the regions of the bovine genome that contained the 
histone modification signal H3K4me3 from four bull’s liver tissues

VISTAa (%) FANTOM5b (%) dbSUPERc (%) H3K27acd (%) H3K4me3e (%)

VISTA 100 19.63 71.29 1.89 0.26

FANTOM5 24.92 100 52.18 9.86 3.74

dbSUPER 16.88 9.73 100 4.30 1.43

H3K27ac 0.17 0.70 1.63 100 26.97

H3K4me3 0.07 0.80 1.65 81.66 100
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followed a slightly different order, i.e. within intergenic, 
intronic, upstream, downstream, 5′-UTR, 3′-UTR, splic-
ing, non-coding exonic and stop regions (Figs. 6, 7).

To demonstrate the power of GSEA over the permuta-
tion test, we examined the relationship between P value 
threshold and SNP location. We found that the SNPs 
located close to a gene tended to be more significant than 
their counterparts in intergenic regions. Most H3K27ac-
specific SNPs were intergenic and H3K4me3-specific 
SNPs were located in the vicinity of transcription start 
sites (TSS) [see Additional file  2: Figure S2 and Addi-
tional file  3: Figure S3]. As a result, the H3K4me3-spe-
cific SNPs tended to show a higher level of enrichment 
in the permutation test [see Additional file 4: Table S1]. 
However, the GSEA analysis revealed that more than 82% 
of the core SNPs responsible for the GSEA signal in the 
H3K4me3 set were also in the H3K27ac set, but more 
than 74% of the core SNPs in the H3K27ac set were not 
in the H3K4me3 set [see Additional file 5: Table S2]. This 
means that the H3K27ac-specific SNPs contributed some 

additional enrichment signal although their P values did 
not pass the P ≤ 10−8 threshold.

Discussion
The first goal of this study was to identify and improve 
the annotation of enhancer regions in the bovine genome. 
To create a library of bovine enhancers, we used publicly 
available human and mouse enhancer databases from 
VISTA, FANTOM5 and dbSUPER, along with the bovine 
enhancer data that were detected by ChIP-Seq from the 
Villar D et  al. (2015) study. VISTA contains ultra-con-
served developmental enhancer sequences with more 
than 96% of these being mapped to the bovine genome 
(Table 1). DbSUPER included more than 92% sequences 
that were mapped to the bovine genome (Table 1) prob-
ably because it contains long genomic sequences from 
clusters of enhancers that are closely located, which 
increases their chances of being mapped. The FANTOM5 
data comprises very short sequences that were mapped 
very sparsely to the bovine genome when searched by 

Fig. 2  Degree of overlap between enhancer sets from liver (measured by total base pairs)

Table 3  Number of imputed whole-genome sequence variants and of significant variants 
(

P ≤ 10
−8

)

Phenotype GWAS Meta-analysis

Gender Variants tested Significant variants Filtered variants tested Significant variants

FY Bulls 28,899,038 3720 (0.013%) 23,462,193 6967 (0.030%)

Cows 3474 (0.012%)

MY Bulls 4408 (0.015%) 23,455,977 10,071 (0.043%)

Cows 6801 (0.024%)

PY Bulls 1786 (0.006%) 23,470,099 4804 (0.020%)

Cows 2981 (0.010%)
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sequence similarity in BLASTn (9.15%; Table 1) but were 
well recovered by liftOver which uses information from 
whole-genome comparisons to tolerate more frequent 
changes between query and target sequences (88.77%; 

Table 1). We exploited homologous mammalian enhancer 
data to identify bovine enhancers and the results are in 
agreement with previous findings [25, 29, 48–50] that 
showed that enhancer sequences, particularly the short 
and function-specific enhancers, are poorly conserved 
across species.

The second goal of this study was to validate our can-
didate bovine enhancer sites. We used a multi-breed 
GWAS followed by meta-analysis and enrichment anal-
ysis approach to examine if significant variants associ-
ated with milk production traits from meta-analyses are 
enriched in bovine putative enhancer sets. The genome-
wide significant variants that were detected by this pro-
cedure are located in genes that affect milk production 
traits in cattle, in novel candidate genes, and in our can-
didate bovine enhancer sets. Both the permutation test 
and GSEA showed that only the Villar H3K4me3 and 
Villar H3K27ac predicted enhancer regions were sig-
nificantly enriched with SNPs that are associated with 

Fig. 3  Manhattan plots: all GWAS and meta-analysis cohorts

Table 4  Degree of  overlap between  significant variants 
(

P ≤ 10
−8

)

 in the sets of bovine enhancers analysed

a  Each value in the table represents the ratio, expressed as a percentage, of the 
total overlapping variants 

(

P ≤ 10
−8

)

 between the two enhancer sets listed 
in a row and column, relative to the total number of significant variants in the 
enhancer set listed in the corresponding row

VISTA 
(%)

FANTOM5 
(%)

dbSUPER 
(%)

H3K4me3 
(%)

H3K27Ac 
(%)

VISTA 100 31.25 50 0 0

FANTOM5 38.46a 100 38.46 0 0

dbSUPER 9.88 6.17 100 0 1.23

H3K4me3 0 0 0 100 77.90

H3K27Ac 0 0 0.08 46.04 100
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the complex traits analysed here. The Villar H3K4me3 
and H3K27ac enhancer sets were respectively 2.0 to 3.0-
fold and 1.3 to 1.5-fold more enriched with variants that 
affect milk production traits than the rest of the genome 
(Table  5). Furthermore, the results of the permutation 
test and GSEA showed that the enriched H3K4me3 SNPs 
had significant effects within narrow genomic intervals 
close to genes. In addition, we observed that, in gen-
eral, the H3K27ac enhancer regions encompassed the 
H3K4me3 enhancer regions but that most of the signals 
in the H3K27ac enhancer regions were located far from 
genes, and had small but significant effects. This find-
ing is in line with existing literature that reports that 
the H3K4me3 enhancer regions display sharper peaks 
around TSS [51], the H3K27ac enhancer regions cover 

broader domains that are roughly equally distributed 
between intergenic and intronic regions [12], and that the 
proportion of SNPs at TSS reaching a significance level of 
−log10 (P value) higher than 10 is 50 to 100 times greater 
than that of SNPs in intergenic regions [52].

Our analysis did not show enrichment with enhancer 
regions for any production trait in any homology-based 
enhancer sets from VISTA, FANTOM5 and dbSUPER. 
There are two possible reasons for this finding. First, 
none of the VISTA, FANTOM5 and dbSUPER enhancer 
sets were sampled from a tissue that is directly linked 
to milk production (an example of tissue that is directly 
linked to milk production is the lactating mammary 
gland tissue). Therefore, the homology-based enhancers 
that are relevant to milk production may not be present 

Fig. 4  Degree of overlap between significant imputed WGS SNPs 
(

P ≤ 10
−8

)

 in bovine enhancer sets
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in our downloaded databases and therefore cannot be 
considered in this study. Second, although VISTA, FAN-
TOM5 and dbSUPER may contain sets from tissues that 
are involved in the physiological processes that are fun-
damental for the regulation of milk production, the pro-
cedure to map these sequences to the bovine genome is 
based on the identification of conserved sequences with 
human and mouse sequences, and as a result, the bovine-
specific mutations within the homology-based enhancers 
cannot be captured [53]. Our results support the hypoth-
esis of a rapid evolution of the enhancer sequences since 
the bovine-specific liver enhancer regions differed sub-
stantially from all homology-based liver enhancer regions 
(Fig.  2), which suggests that bovine-specific enhancers 
are more likely to be enriched with causative mutations 
that affect complex traits, in this case milk production. 
Our results, combined with the above reasons, high-
light the complexity of the genomic regulatory machin-
ery and the importance of analysing enhancers specific 
to the species under investigation [4]. The success of this 

study based on regulatory landscape data from one tissue 
type (liver) using two epigenetic marks (H3K4me3 and 
H3K27ac) indicates that our results might be even more 
convincing if we had data from more tissue types.

On chromosome 14, the observed enrichment sig-
nal in enhancer regions could be due to SNPs in link-
age disequilibrium (LD) with the well-known mutation 
in the DGAT1 gene [54]. To account for LD confound-
ing around the DGAT1 mutation, we re-ran our GWAS 
on chromosome 14 by correcting for the effect of the 
DGAT1 gene by including the causative mutation in 
the model as a fixed effect. The correlations of the SNP 
effects (P values) between before and after the correc-
tion were 85% (59%), which showed that there were 
other significant SNPs on chromosome 14 apart from 
the DGAT1 mutation. After correction, no significant 
SNPs remained in the VISTA and FANTOM5 enhancer 
sets for all milk production traits, but 34  to  67% sig-
nificant SNPs remained in the Villar H3K4me3, Villar 
H3K27ac and dbSUPER enhancer sets [see Additional 

Table 5  Enrichment of significant enhancer SNPs 
(

P ≤ 10
−8

)

 for milk production traits in the permutation tests

a  Fold change is the ratio between the actual number of significant SNPs in an enhancer set and the mean number of all significant SNPs in the 10,000 random 
samples
b  Ranking position of the actual number of significant SNPs in an enhancer set within the distribution of all the numbers of significant SNPs for the 10,000 random 
samples; if the actual number of significant SNPs was the largest among all the numbers of the 10,000 random significant SNPs, the rank was set to <0.0001; otherwise 
it was denoted as the ranking position of the actual number of significant SNPs among the number of random significant SNPs

Phenotype Database All SNPs/a subset of SNPs Fold changea Rankb

FY VISTA All 0.16235 0.0001

MY 0.336793 0.0001

PY 0 0.0001

FY FANTOM5 0.200888 0.0001

MY 0.414773 0.0018

PY 0.096781 0.0001

FY dbSUPER 0.226716 0.0001

MY 0.354855 0.0001

PY 0.329258 0.0001

FY Villar (H3K4me3) 2.892337 <0.0001

MY 2.100798 <0.0001

PY 3.081699 <0.0001

FY Villar (H3K27ac) 1.459357 <0.0001

MY 1.29579 <0.0001

PY 1.458739 <0.0001

FY Villar:H3K4me3 H3K4me3-specific only 3.358042 <0.0001

MY 2.440737 <0.0001

PY 4.414017 <0.0001

FY Villar:H3K27ac H3K27ac-sepcific only 0.967677 0.3063

MY 1.023431 0.647

PY 0.953471 0.2794

FY Villar:H3K4me3 and H3K27ac Overlaps: H3K4me3 and H3K27ac 2.795722 <0.0001

MY 2.025759 <0.0001

PY 2.801491 <0.0001
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file  6: Table S3]. The SNPs that remained significant 
after the correction in the putative enhancer sets were 
located in regions up to 10 Mb around the DGAT1 gene. 
In addition, while the Villar H3K4me3 and dbSUPER 
enhancer sets had no corrected significant variants 
within the DGAT1 gene, the Villar H3K27ac enhancer 
set include one such significant variant (Chr14: 1797137 
in FY and MY cohorts) in the first intron of the DGAT1 
gene.

Several candidate regulatory variants that affect the 
expression of MGST1 have been reported to be respon-
sible for the QTL effect on chromosome 5 for milk pro-
duction traits [38, 55]. We found that they were within 
or close to the Villar H3K4me3 and H3K27ac enhancer 
regions, which provided evidence that the causal muta-
tion is in fact a regulatory variant [see Additional file 7: 
Table S4 and Additional file 8: Figure S4].

Several studies have reported that the variant 
Chr6:88741762 is significantly associated with milk pro-
duction traits [38]. This variant was significant in both 
our MY and PY cohorts, within the H3K27ac set, and is 
located 2470 bp upstream of the GC gene. An RNA-Seq 
analysis [56] showed that GC was most highly expressed 

in the liver and over-expressed in the mammary gland, 
and that there was a strong allele-specific expression in 
liver compared to 17 other bovine tissues [see Additional 
file 8: Figure S4].

Conclusions
This study used mammalian enhancer prediction data 
and bovine trait association to provide a functional 
variance analysis of candidate bovine enhancer regions. 
Overall, our findings agree with previous research that 
enhancer sequences are species-specific and rarely con-
served across species. We conclude that bovine-specific 
histone data such as H3K4me3 and H3K27ac are essen-
tial for the successful functional annotation of bovine 
enhancer regions. Although the amount of bovine 
enhancer information is limited, we have successfully 
identified many genomic regions as potential enhancers 
and demonstrated that variation in these regions is asso-
ciated with variation in animal production traits. Future 
studies will benefit from the combination of information 
from topological domain association, expression quan-
titative trait loci and bovine ChIP-Seq data, such as that 
generated from the Functional Annotation of Animal 

Fig. 6  Functional class of enhancer SNPs. Each pie chart demonstrates the proportion of the total number of SNPs in the putative enhancer regions 
in the functional classes. The grey area represents variants without functional class annotation

(See figure on previous page.) 
Fig. 5  Enrichment of significant SNPs 

(

P ≤ 10
−8

)

 in all enhancer sets. The vertical line indicates the number of significant variants in the original 
analysis. The histograms represent the number of significant variants in random samplings. If an analysis was significant, the vertical line would be on 
the right to the histogram and clearly separated from the histogram
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Genomes (FAANG) consortium [57], to accelerate the 
identification of mutations that affect complex traits.

Fig. 7  Functional class of core enhancer SNPs. Each pie chart demonstrates the proportion of the total number of SNPs in the Villar identified 
regions in the functional classes. The grey area represents variants without functional class annotation

Additional files

Additional file 1: Figure S1. Comparison of the similarity between 
GWAS significant SNPs and meta-analysis significant SNPs (P ≤ 10−8). A 
meta-analysis significant variant was counted twice, one for the bull and 
one for the cow to account for the identity of a GWAS significant variant.

Additional file 2: Figure S2. Comparison of the significant SNPs 
(P ≤ 10−8) between the Villar2015 H3K27ac and H3K4me3 enhancer sets.

Additional file 3: Figure S3. Comparison of the functional class of sig-
nificant SNPs (P ≤ 10−8) between the bovine liver H3K4me3 and H3K27ac 
enhancer sets.

Additional file 4: Table S1. Properties of GSEA core SNPs in the Villar 
(H3K4me3 and H3K27ac) enhancer sets. The proportion of significant 

GSEA core SNPs in the H3K27ac set doubled when the P value threshold 
decreased from 10−8 to 10−5 whereas the proportion of GSEA core SNPs 
in the H3K4me3 set did not increase as much.

Additional file 5: Table S2. Proportion of GSEA core SNPs in the 
H3K4me3 set that are also in the H3K27ac set, and proportion of the GSEA 
core SNPs in the H3K27ac set that are also in the H3K4me3 set.

Additional file 6: Table S3. Number of significant enhancer SNPs 
(P ≤ 10−8) that remained on chromosome 14 after correcting for the 
effect of the well-known DGAT1 mutation.

Additional file 7: Table S4. SNPs highlighted in previous studies [38, 55] 
that were also our GSEA core SNPs in the Villar (H3K4me3 and H3K7ac) 
sets.

Additional file 8: Figure S4. Manhattan plot showing the enhancer 
signals around the MGST1 and GC genes.
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