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Abstract 

Objective: The present study estimates pedestrians’ risk of death according to the impact speed when hit by a 

passenger car in a frontal collision.  

Methods: Data were coded for all fatal crashes in France in 2011 and for a random sample of 1/20th of all 

road injuries for the same year, and weighted to take account of police under-reporting of mild injury. A cloglog 

model was used to optimize risk adjustment for high collision speeds. The fit of the model on the data was also 

improved by using the square of the impact speed, which best matches the energy dissipated in the collision. 

Results: Modeling clearly demonstrated that the risk of death was very close to 1 when impact speeds 

exceeded 80 km/h. For speeds less than 40 km/h, as data representative of all crashes resulting in injury were 

used, the estimated risk of death was fairly low. However, although the curve seemed deceptively flat below 

50 km/h, the risk of death in fact rose 2-fold between 30 and 40 km/h and 6-fold between 30 and 50 km/h. For 

any given speed, the risk of death was much higher for more elderly subjects, especially over 75 years of age. 

These results concern frontal crashes involving a passenger car. Collisions involving trucks are far less frequent, 

but half result in the pedestrian being run over, incurring greater mortality.  

Conclusions: For impact speeds below 60 km/h, the shape of the curve relating probability of death to 

impact speed was very similar to those reported in recent rigorous studies. For higher impact speeds, the present 

model allows the curve to rise ever more steeply, giving a much better fit to observed data. The present results 

confirm that, when a pedestrian is struck by a car, impact speed is a major risk factor, thus providing a 

supplementary argument for strict speed limits in areas where pedestrians are highly exposed. 

Key-words: crash; pedestrian; impact speed; fatality; statistical modeling 
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INTRODUCTION 

According to the most recent WHO report (WHO 2015), 22% of road traffic deaths concern pedestrians, but 

the percentage varies greatly between continents: 39% in Africa, 26% in Europe, 22% in the Americas, but 13% 

in South-East Asia. This considerable difference corresponds to differences in exposure, travel often being on 

foot in certain countries. It also corresponds to differences in road-user behavior regarding safety, and especially 

motorists’ consideration for pedestrians (or cyclists) with whom they need to share the road. In all countries, 

pedestrians injured in road crashes are mainly hit by motor vehicles, and most often by passenger cars 

(Alhajyaseen et al. 2013; Pulugurtha and Sambhara 2011; Richmond et al. 2014a; Richmond et al. 2014b). The 

interest of developing active and passive safety devices in cars is clear (Zegeer and Bushell 2012). In France in 

2011, some 13% of road crash fatalities concerned pedestrians (ONISR 2014), whereas pedestrians made up about 

7% of road injuries as a whole.  

Whatever the country and circumstances, the severity of pedestrian injury depends on 5 factors: (1) the 

energy dissipated in the collision, which is related to the speed of the vehicle at the moment of impact; (2) the 

shape and stiffness of the vehicle surfaces striking the impacted body areas; (3) the post-impact kinematics of the 

pedestrian’s body; (4) possible impact against the ground or a secondary obstacle; and (5) the pedestrian’s 

individual capacity to withstand the impact or impacts. 

Several recent articles assessed the relation between pedestrians’ risk of death and impact speed (Davis 2001; 

Hannawald and Kauer 2004; Rosen and Sander 2009; Tefft 2013).  

Rosen (Rosen et al. 2011a) published a very interesting review of the literature on the importance of impact 

speed, selecting recent articles that were the most rigorous in terms of sampling and statistical methods, and 

based on real-world crashes. Regarding factor 2, studies of the influence of vehicle type (Ballesteros et al. 2004; 

Roudsari et al. 2004) or shape on resulting lesions were likewise based on real-world crash data (Crandall et al. 

2002; Henary et al. 2003; Mallory et al. 2012; Martin et al. 2011; Otte 1999); there have also been studies using 

simulations, which have the advantage of being able to take body kinematics after impact into account (Crocetta 

et al. 2015; Gupta and Yang 2013; Han et al. 2012; Okamoto et al. 2003). Impact against the ground or 

secondary obstacles has been less studied, mainly due to lack of precise observations and the wide variety of 

possible obstacles (Badea-Romero and Lenard 2013). Finally, injury severity has often been studied as a function 

of age and gender, (Demetriades et al. 2004; Henary et al. 2006; Kim et al. 2008; Richards and Carroll 2012), but 

less often as a function of anthropometric data such as height (Watanabe et al. 2012) or body mass index (Tefft 

2013). 

The various published correlations between risk of death and impact speed all applied logistic curve 

modeling, which automatically applies symmetry around the inflection point with probability of 0.5, whereas 

there is in fact no reason why the curve slope should diminish after this point. Obviously, the probability of death 

must always lie between 0 and 1, but there are other modeling techniques which can also satisfy this condition. 

Furthermore, since the energy dissipated during the impact correlates with the kinetic energy of the vehicle just 

prior to impact, fitting the relationship in terms of the square of the impact speed seems most relevant. The 

present data are the first in France to provide an estimate of impact speed in a representative distribution of 

pedestrian crashes. 

http://dx.doi.org/10.1080/15389588.2017.1332408
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After describing risk factors for fatality in crashes involving pedestrians and vehicles, the main objective of 

the study was to determine a fatality risk curve for pedestrians struck by a passenger car, drawing on 

representative data for road injury as a whole in France. Particular attention was paid to modeling and optimal 

data adjustment, including high vehicle speeds. The role of other factors for fatal outcome, such as pedestrian 

age and gender or the part of the vehicle involved, were also explored. 

METHODS 

The study database included crashes reported by the police, occurring on a highway or street open to the 

public, involving one or more vehicles, resulting in either one or more pedestrian deaths within 30 days of the 

crash (fatal crashes) or else no deaths within 30 days (non-fatal crashes involving injury). All such fatal crashes 

occurring in France in 2011 were included, plus a random sample of 1/20th of non-fatal crashes for the same 

year. 

Data comprised: general crash characteristics, based on complete reading of the police report and associated 

documents describing the configuration of the crash (photographs, diagrams); the situation in which the crash 

occurred; human factors; road-user maneuvers in the moments leading up to the crash; and points of impact. 

Data Weighting and Underestimation in Police Data 

All fatal crashes in 2011 were included in the database. As the non-fatal crash data-set was a random 1/20th 

sample, a first weighting of 20 had to be applied. Secondly, the police are not in fact aware of all injuries and so 

cannot report them all systematically. These issues of underestimation and bias have been found in several 

countries (Elvik and Mysen 1999), and have been the subject of several studies by our team (Amoros et al. 2007; 

Amoros et al. 2006). Police underestimation depends particularly on the severity of the crash, presence of third 

parties, and type of road-user involved. To take it into account, correction coefficients were estimated following 

a method described elsewhere (Amoros et al. 2008), based on comparison, which is possible in the Rhône 

administrative Département, between the police data and those of the Rhône Road-Crash Registry, which 

inventories all road crash victims treated in all the health-care facilities within the area.  

Correction coefficients were calculated using a capture-recapture method, then a projection method. These 

two steps have been validated assuming certain conditions (Hook and Regal 1995).  

More specifically, the correction coefficients took account of crash severity (fatal or non-fatal), type of 

police authority (there being three different law enforcement authorities in France), type of road, presence of a 

third party, type of user involved (car user, motorized two-wheeler, cyclist, pedestrian, other), and injury severity 

(hospital admission or not).  

Non-fatal injuries were thus weighted by multiplying these two weighting factors together: sample fraction, 

and correction coefficient for police underestimation bias. Using these weightings improved estimation of the 

probability of death, which would otherwise have been overestimated due to under-recording of non-fatal 

crashes by the police. 

The estimators then took account of these weightings to obtain valid variances. In practice, calculation took 

account of weightings, using either SAS software version 9.4 (surveymeans, surveyfreq and surveylogistic 

procedures) or R (survey package).  

http://dx.doi.org/10.1080/15389588.2017.1332408
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Selection Process 

Crashes involving one vehicle and one pedestrian accounted for 91% of injuries to pedestrians. Other 

configurations were excluded from analysis, as lesion mechanisms are too complex to identify when several 

pedestrians or vehicles are involved. Cases with too much missing data, or in which the pedestrian was 

unharmed, as well as a few other marginal cases were also excluded. 

Hence, with these exclusion criteria, the first study sample comprised 428 fatal and 460 non-fatal crashes 

(888 observed, 22,375 after weighting). A first analysis was conducted in order to describe the factors associated 

with fatality for pedestrians hit by any type of vehicle. 

A second sample was then selected focusing on crashes involving one pedestrian hit by the front of a 

passenger car, and comprised 205 fatal and 227 non-fatal crashes (Nobs=432, Nweighted=11,366). This selection 

was made because it corresponds to the most frequent crash configuration and because all recent papers dealing 

with the relationship between pedestrian fatality and impact speed used the same selection.  

Speed Assessment 

In a large number of cases, the present data allowed estimation of initial speed (before any crash-related 

event) and impact speed (defined as a modulus of the vehicle impact speed: i.e., the horizontal component of the 

speed vector). 

Speed estimation was possible in cases where police reports included the following: 

– scale drawing of the crash, showing final positions of vehicle and pedestrian, impact points, any traces 

left by the vehicle, and vehicle direction before the crash; 

– description of road conditions, and especially the road surface; 

– photographs of the crash scene allowing estimation of impact severity; 

– witness statements specifying the sequence of events. 

Impact speed was derived from pedestrian throw-distance using various formulae. In the following, D is the 

distance (in meters) from the point of impact to the final rest location.  

– The first formula comes from Toor and Araszewski (Toor and Araszewski 2003): D = 9.84 D0.57 (V in 

km/h, D in meters), corresponding to the wrap trajectory model used for car impact. 15th and 85th 

percentiles can be obtained by applying ±6.5 km/h. 

– The second formula is the positive solution of an equation explained in Depriester (Depriester et al. 

2005) and published by Rau: D= 0.0052 V2 + 0.0783 V, ±5 km/h. 

– A third model applicable for wrap trajectories (Fugger et al. 2000) is defined as: V = 8.3604 D0.6046. 

For each crash, all three calculations were made and their results compared. The resulting estimates were 

usually very close and the average value was adopted. When available, other information, such as skid marks, 

was used to determine vehicle speed with a different method. In the few cases where a pedestrian was overrun by 

a car, speed was evaluated from skid marks only. 

http://dx.doi.org/10.1080/15389588.2017.1332408
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Imputation of Impact Speed When Unknown for Selected Crashes (Involving One Pedestrian Hit by the Front 

of a Passenger Car) 

Estimation could be made directly in 43.1% of crashes but in only 18.1% of non-fatal crashes (as the 

information required for estimation was more often missing). When impact speed was unknown, it was imputed 

from other available information. Multiple imputation was used with a Fully Conditionally Specification (FCS) 

method (Van Buuren 2007). Missing values were imputed separately for fatal crashes and non-fatal crashes. The 

imputation models for impact speed included all variables of interest: injury severity, pedestrian age, gender, 

vehicle mass (19% unknown), running-over (3% unknown) and main location of impact on the vehicle (24% 

unknown). Some auxiliary variables associated with missing factors or correlated with impact speed were also 

used: initial speed (40% unknown), local speed limit, witness testimony regarding speed, type of road, 

intersection, crash situation, change of direction, time of day, driver's age, driver's alcohol level (12% unknown), 

and driver's responsibility. Sixty imputed data sets were thus created, using SAS software version 9.4 (mi 

procedure). In subsequent analyses, estimates were calculated for each imputed data set, and then combined to 

assess final estimates and variance matrix (mianalyze procedure). The final variances took account of the 

average within-imputation and the between-imputation variances, using Rubin’s formula (Rubin 1987). Model 

selection was based on averaged AIC (Akaike Information Criterion), which is the average of AICs for each 

imputed data set (Consentino and Claeskens 2010).  

Choice of Model for the Fatality/Impact-Speed Relation 

All data in the international literature have so far been modeled using a logistic curve, for good theoretical 

reasons. A logistic curve is symmetrical around point 0.5 on the y-axis: i.e., risk is presumed to rise up to a 

probability of 0.5, then decrease toward the asymptote at 1. However, the energy dissipated at impact is 

correlated to the square of the speed, suggesting an accelerating risk of death with increasing speed. We 

therefore implemented a complementary log-log or Gompertz regression. This model is one of the generalized 

linear model (GLM) family (McCullagh and Nelder 1989) and is similar to a logit model, but with the advantage 

of not being symmetrical around the inflection point (y-axis 1-1/e). The "complementary log-log" function 

g(p)=log(-log(1-p)) is the inverse of the cumulative extreme-value function F(x)=1-exp(-exp(x)), also called 

Gompertz distribution. 

Concerning vehicle characteristics, bodywork stiffness and height were unknown, and so only the location of 

the main impact and the vehicle mass were considered. Pedestrians were characterized by age and gender, as 

morphology was unknown. 

Analysis was performed firstly on all vehicles (first sample, above), in order to describe the general context 

of crashes involving pedestrians, and was secondarily restricted to crashes involving frontal impact (second, 

selected sample). For the purposes of comparison with other reports, the first model used was logistic regression. 

The less classical Gompertz regression was then used to plot curves according to speed considered as a 

continuous variable. The parameters of this model were less easily interpretable than those of the logistic 

regression, and results were expressed as probability of death, from which relative risks (RR) were derived 

(Greenland 2004) 

 

http://dx.doi.org/10.1080/15389588.2017.1332408
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RESULTS 

Factors Associated with Fatality for Pedestrians Hit by Any Type of Vehicle 

Table 1 shows the distribution of pedestrian characteristics (gender, age, alcohol level), crash circumstances 

(day/night, road category), pedestrian location, type of vehicle, type of impact and running-over, on univariate 

analysis. 

Table 1: Factors associated with fatality for pedestrians hit by any type of vehicle. Proportions, crude odds-ratios 
and corresponding 95% C.I. (Nobs=888, Nweighted=22,375) 

 Factors Col % % 
fatalities 

Crude 
OR  [95%C.I.] P value 

Pedestrian gender 
Female 50.8 1.5 1  

0.0010 
Male 49.2 2.3 1.62 [1.22;2.15] 

Pedestrian age 
(years) 

0-14 20.5 0.6 0.44 [0.26;0.73] 
<0.0001 

 
15-59 52.1 1.3 1  
60-74 17.2 2.1 1.61 [1.07;2.41] 
>=75 10.3 7.4 6.09 [4.15;8.94] 

Pedestrian alcohol 
concentration (g/l) 

Negative (<0.5) 38.6 2.5 1  

<0.0001 
0.5-1.2 0.6 6.1 2.51 [0.52;12.1] 
1.2-2 0.9 10.5 4.49 [1.86;10.8] 
>=2 1.1 16.0 7.34 [2.19;24.6] 
None available 58.8 1.0 0.4 [0.29;0.54] 

Day/night 
Day 76.7 1.6 1  

<0.0001 
Night 23.3 3.0 1.98 [1.44;2.72] 

Type of road 

Highway 0.9 10.3 10.1 [2.54;39.9] 

<0.0001 
Major road 2.8 5.5 5.07 [2.57;9.99] 
Minor road 15.4 4.6 4.25 [3.02;5.99] 
Street 77.0 1.1 1  
Other 4.0 1.9 1.69 [0.77;3.71] 

Pedestrian location 

On pedestrian crossing  45.0 1.2 1  

<0.0001 Outside pedestrian crossing 45.2 2.6 2.13 [1.57;2.90] 

Off-road 9.7 1.6 1.3 [0.77;2.18] 

Type of vehicle 

Bicycle 2.4 0.4 0.23 [0.05;1.06] 

<0.0001 

Moped 6.5 0.4 0.25 [0.1;0.61] 
Motorcycle 9.4 1.0 0.63 [0.36;1.1] 
Passenger car 70.4 1.6 1  
Van / utility vehicle 6.0 3.6 2.21 [1.32;3.71] 
Truck 1.4 18.7 13.8 [5.03;37.8] 
Bus / coach 2.5 2.8 1.75 [0.81;3.81] 
Off -road vehicle 1.4 3.6 2.26 [0.83;6.17] 

Type of impact 

Frontal 71.0 2.1 1  

0.0729 

 

Side 8.6 1.1 0.55 [0.31;0.97] 
Rear 5.2 2.3 1.12 [0.62;2.02] 
Side-swipe 4.5 1.1 0.52 [0.24;1.11] 
Other/Unknown 10.7 1.5 0.7 [0.44;1.12] 

Run-over 
No 91.1 1.5 1  

<0.0001 Yes 5.0 8.0 5.73 [3.53;9.31] 
Unknown 3.9 3.4 2.34 [1.26;4.34] 

 

Pedestrian fatality was significantly higher for males, and also for the elderly, especially those aged 75 and 

over. Fatality risk appeared to be greater for pedestrians with positive alcohol test (≥ 0.5g/l). However, alcohol 

level was seldom tested (almost 60% missing data), despite being mandatory in case of injury, and was not 

included in the following analyses because of too much missing data, and also to avoid bias as it was probably 

performed by the police only in specific cases. 

http://dx.doi.org/10.1080/15389588.2017.1332408
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Pedestrian fatality risk was higher at night, on minor roads, major roads and highways (compared to urban 

streets), and when crossing the road outside of marked “zebra” crossings. 

Fatality was almost 14-fold higher in crashes with trucks, compared to passenger cars, and 2-fold higher 

with van/utility vehicles or buses/coaches. Running over multiplied the risk of death by 5, and occurred very 

often with trucks (48.7%), quite often with van/utility vehicles (15.5%) and rarely with cars (4.7%).  

15.9% of injured pedestrians were hit by a moped or motorcycle, and 2.4% by a bicycle, associated with the 

lowest fatality rates. 

Table 1 clearly shows that most crashes involved frontal impact by a passenger car. These crashes are in fact 

already the object of almost all regulations aiming to reduce crash severity for pedestrians. They are also the 

crashes for which impact speed can most often be estimated. The following analysis is therefore restricted to 

one-car/one-pedestrian crashes. The following analysis is therefore restricted to one-car/one-pedestrian crashes 

in which the pedestrian was hit by the front of a passenger car with impact speed known or imputed by the 

method described above (Nobs=432, Nweighted=11,366). 

Risk of Being Killed for a Pedestrian Hit by a Passenger Car According to Impact Speed 

Three models were fitted to estimate the risk of death (logistic against speed, logistic against speed-squared, 

and cloglog against speed-squared), giving the following estimates for probability of death:  
𝑃𝑃1� (𝑣𝑣) = 1/(1 + exp (7.7265− 0.0988 𝑣𝑣) )    (1) 

𝑃𝑃2�(𝑣𝑣) = 1/(1 + exp (5.8129− 0.0011 𝑣𝑣2) )     (2) 

𝑃𝑃3�(𝑣𝑣) = 1− exp(− exp(−5.7389 + 0.001096 𝑣𝑣2))   (3) 

Figure 1 plots probability of death according to impact speed for the 3 models. 

 

Figure 1: Risk of death associated with impact speed for a pedestrian hit by a passenger car, according to the 
three models (Nobs=432, Nweighted=11,366) 

 
 

Risk of death according to impact speed was very similar on all 3 models up to 60 km/h, but then 

differentiated: respectively, 31%, 44% and 49% at 70 km/h, and 54%, 81% and 97% at 80 km/h. Model 3 was 

the best in terms of minimizing information loss (AIC=1560.5 for model 3, 1571.1 for model 2, and 1606.3 for 

model 1), and was considered the best both statistically and physically (energy striking the pedestrian related to 

the square of the impact speed).  

http://dx.doi.org/10.1080/15389588.2017.1332408
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To approximate impact energy more closely by taking account of vehicle mass, models 2 and 3 were also 

tested using m.v2, but no significant improvement was seen in terms of AIC. Introducing both speed and speed-

squared in the cloglog model likewise gave no significant improvement in terms of AIC; the corresponding 

results are not shown. 

Figure 2 shows the curve and confidence interval, calculated following Kutner (Kutner et al. 2004), taking 

account of weighting. 

 

Figure 2: Probability of death according to impact speed, with 95% CI (Nobs=432, Nweighted=11,366) 

 
 

From equation (3), it can be seen that risk of death was low (~1%) for 30 km/h impacts but, with 30 km/h as 

reference, rose 2-fold at 40 km/h, 6-fold at 50 km/h, 18-fold at 60 km/h and 59-fold at 70 km/h. 

A multivariate cloglog model was then fitted, testing the effect of the following factors: pedestrian gender, 

pedestrian age, vehicle mass, running-over, and main location of impact on the vehicle. When the square of the 

speed was used, only pedestrian age emerged as a significant co-factor. Equation 4 shows the bivariate cloglog 

model, taking account of speed and age-group (with 15-59 years of age as reference group): 
𝑃𝑃(𝑣𝑣) = 1 − exp(− exp(−6.4305 + 0.00117 𝑣𝑣2 − 0.835 𝑎𝑎𝑎𝑎𝑎𝑎0−14 + 0.600 𝑎𝑎𝑎𝑎𝑎𝑎60−74 + 2.091 𝑎𝑎𝑎𝑎𝑎𝑎≥75))  (4) 

A possible interaction between age and speed-squared was tested for, but proved non-significant: curves 

showed increasing values corresponding simply to age-group. Figure 3 plots probability of death against impact 

speed in the 4 age-groups. 

http://dx.doi.org/10.1080/15389588.2017.1332408
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Figure 3: Probability of death according to impact speed. Model for 4 age categories (Nobs=432, Nweighted=11,366) 

 
 

The multivariate model highlighted the frailty of the elderly: 60-74 years, and especially above 75 years. 

This fragility could be seen as of 30 km/h impact speed and up to 50 km/h, with risk of death increased 2-fold for 

60-74 year-olds and 7-fold for over-75 year-olds as compared to 15-59 year-olds. Above 80 km/h, speed alone 

was the overwhelming risk factor. 

 

DISCUSSION 

Table 2 compares the present results with those of four recent studies (Davis 2001; Richards 2010; Rosen and 

Sander 2009; Tefft 2013), all focusing on risk of death in a one-car/one-pedestrian crash in which the pedestrian 

was injured. 

 

http://dx.doi.org/10.1080/15389588.2017.1332408
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Table 2: Impact speed (km/h) at which estimated risk of death reaches 10%, 25%, 50%, 75% and 90%: previous 
studies and current study (with three models) 

    Risk of death 

    10% 25% 50% 75% 90% 

Study Data Confounders 
adjusted Model Impact speed estimate (km/h) 

Davis  
(2001) 

United Kingdom, 1966–1969 and 
1973–1979, data from Ashton (N=358, 
81 fatalities) 

None 
Logistic regression, 
impact speed 53 61 69 79 87 

Rosen  
(2009) 

Germany, 1999–2007, pedestrians 
aged 15 years and over, frontal impact 
by passenger car (N=490, 36 fatalities) 

Age 
Logistic regression, 
impact speed 53 66 77 88 100 

Richards 
(2010) 

United Kingdom, 2000–2009, 
pedestrians, frontal impact by 
passenger car (N=197, 66 fatalities) 

None 
Logistic regression, 
impact speed 53 61 72 82 100 

Tefft  
(2013) 

United States, 1994–1998, pedestrians 
aged 15 years and over, frontal impact 
by passenger car or light truck (N=422, 
46 fatalities) 

Age, height, 
weight, body 
mass index, 
vehicle type 

Logistic regression, 
impact speed 43 56 68 79 88 

Current 
study 
(2014) 

France 2011, pedestrians, frontal 
impact by passenger car, (N=432,205  
fatalities) 

None 

Logistic regression, 
impact speed 56 67 78 89 100 

Logistic regression, 
impact speed-squared 56 65 72 78 84 

Cloglog regression, 
impact speed-squared 57 64 70 75 78 

 
 

Using the same model, the estimated impact speeds associated with a probability of being killed (Table 3) 

are very close. The main difference emerges with speed-squared and cloglog modeling, in which the curve can 

rise more steeply for high impact speeds. This corresponds much more closely to physical reality, and also gives 

a better fit between observation and estimation.  

The cloglog model does not require the curve to be symmetrical around p=0.5, as the logistic model does; 

this brings the inflection point closer to 1, thus fitting much better with the use of the square of impact speed. 

Other models may also position the inflection point in line with the actual data (Goshu and Koya 2013), but we 

preferred the cloglog model, as it has the advantage of being one of the GLMs with well-known asymptotic 

properties.  

This modeling procedure clearly showed that risk of death approximates 1 for impact speeds above 80 km/h, 

which corresponds both to observation and to kinematics. For speeds less than 40 km/h, as data representative of 

all crashes resulting in injury were used, the estimated risk of death was fairly low. However, although the curve 

seems deceptively flat below 50 km/h, the risk of death in fact doubled when speed rose from 30 to 40 km/h, and 

was multiplied by 6 between 30 and 50 km/h; speed/risk curves are therefore to be interpreted with the greatest 

caution (Kröyer et al. 2014). 

Risk of death was also greater for males on univariate analysis, but not when speed was taken into account. 

This finding suggests that the elevated risk of death for males, already reported elsewhere (Zhu et al. 2013), is 

actually due to higher impact speeds due to different crash circumstances. We had expected a negative influence 

of female gender when speed was taken into account, as other studies suggested that females are less resilient 

after being hit (Martin and Lenguerrand 2008).  
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Coming back to factors associated with fatality for pedestrians hit by any type of vehicle, risk of death was 

found to be strongly dependent on the type of vehicle hitting the pedestrian. Two-wheel vehicles were involved 

in a non-negligible number (16%) of collisions with pedestrians, doubtless due to their particular traffic 

characteristics (driving between lanes, lower visibility, vehicle dynamics), but with low associated mortality. 

Vans and other utility vehicles on the other hand were associated with higher mortality than passenger cars. Most 

belonged to the light truck vehicle (LTV) category, which has been widely studied in relation to injury severity 

in pedestrian crashes. Desapriya, in a recent meta-analysis (Desapriya et al. 2010), found a 1.54-fold higher risk 

of pedestrian death (95% CI, 1.15;1.93) associated with LTVs than passenger cars, comparable to the present 

finding of 2.21 (1.32;3.71). 

Crashes in which a pedestrian is hit by a truck have been less widely studied, doubtless due to their relative 

rarity (1.4% in the present data-set). However, they are associated with high fatality rates (18%), for several 

reasons, which also concern LTVs, although to a much lesser degree: mainly, their vertical front face and high 

ground clearance, resulting in almost half of cases in running-over, which is always associated with elevated 

fatality (even when the vehicle is reversing or turning). These findings support the need to improve the front face 

of trucks, as well as for equipment to improve drivers’ detection of pedestrians (Hamacher et al. 2009), so as to 

reduce the incidence of running-over by modifying pedestrian body kinematics after impact. The same is also 

true for buses, especially as they are mainly used in urban areas where most pedestrian crashes occur. Running-

over is much less frequent with passenger cars.  

According to the latest WHO report (WHO 2015), 92 countries (including half of high-income countries) 

have policies to promote walking and cycling; but, if these policies are not accompanied by other strategies, such 

as effective speed management and measures to improve pedestrian and cycling safety, they risk actually 

increasing road traffic injuries. The WHO recently published a road safety manual for decision makers and 

practitioners (World Health Organization, 2013) which promotes intervention at all levels, such as reducing 

vehicle speed, separating pedestrians from other road users, increasing pedestrians' conspicuousness, changing 

pedestrians' and motorists' behavior through education and law enforcement, and improving vehicle design. 

 

Study Limitations 

The study was subject to several limitations. The number of non-fatal injuries included was relatively small. 

The weighting method used, and validated elsewhere, provided good numbers of estimates, but with 

consequently wide variance (and thus wide confidence intervals), since based on observed data.  

Another limitation comes from the large number of missing values for impact speed, especially for non-fatal 

crashes. A multiple imputation technique was used, taking account of all available factors associated with the 

mechanism for which data were missing, including local speed limit and initial speed. This technique generally 

provides more accurate estimates than a complete-case analysis (Rubin 1987), but can generate larger confidence 

intervals. This might explain why some variables, such as the specific location of the first impact against the car, 

were not found to be significant. 

Many factors other than impact speed which play a role in the risk of being injured or killed, such as vehicle 

characteristics, pedestrian anthropometry or second impact consequences, were not considered in this study: 

http://dx.doi.org/10.1080/15389588.2017.1332408
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- Many articles (experimental or real-world crash studies) have been published which show that the risk of 

severe injury depends on the geometry of the car and on the height of the pedestrian, which determine the 

wrap-around distance (WAD) and contact points with variable stiffness (del Fueyo et al.). In the present 

study, pedestrian height was unknown. The main location of the first impact on the vehicle was considered, 

but found not to be significant when impact speed was taken into account. Regarding car dimensions, many 

studies have shown that LTVs are associated with greater risk of pedestrian injury or fatality than passenger 

cars (Desapriya et al. 2010; Roudsari et al. 2005). This result is in concordance with the higher risk 

associated with vans than passenger cars in the present study (see Table 1). In a previous study (Martin et al. 

2011), we reported estimates of the risk of being killed according to four types of car and four types of front 

profile. Risk of death was shown to be slightly higher for Multi Purpose Vehicles (MPVs) with sloping 

hoods, although the difference was tiny compared to the impact speed effect. 

- Pedestrian weight was unknown, and not considered in the present study. However, mass and speed are 

considerably greater for the vehicle than the pedestrian: the energy underlying pedestrian speed is 

overwhelmingly provided by the vehicle and pedestrian mass (and associated factors such as air resistance) 

can be neglected in the impact speed assessment. 

- The distinction in terms of injury between first impact (against the vehicle) and any second impact (against 

the ground or any other obstacle: e.g., head striking the curb) was impossible to draw from the present data 

set. However, although in pedestrian crashes the final impact is almost always against the ground, many 

authors consider that most pedestrian injuries implicate the impact against the vehicle (Crandall et al. 2002; 

Helmer et al. 2010), as kinetic energy is greatest in the first impact. 

Beyond these limitations, collision speed is considered the most important factor by many authors 

(Hannawald and Kauer 2004; Rosen et al. 2011b). Helmer, in his very comprehensive study (Helmer et al. 

2010), fitted a multivariate model to explain the risk of fatality by impact speed, and found that, whether as scale 

variable, squared or as a part of kinetic energy, impact speed was the strongest single predictive factor. Further 

research is needed, with more comprehensive data, to estimate the effect of impact speed, adjusted for other 

important factors such as car front-end characteristics (shape and stiffness of potential contact areas) and 

pedestrian anthropometry. 

 

CONCLUSION 

For impact speeds less than 60 km/h, the shape of the curve relating probability of death and impact speed 

was very similar to those reported in recent rigorous studies. For higher impact speeds, the present model 

allowed the curve to rise ever more steeply, giving a much better fit with observed data, and a correspondingly 

better fit with the energy dissipated at impact, which is proportional to the square of the speed. 

The present results confirm that, when a pedestrian is struck by a car, impact speed is a major risk factor, 

thus providing a supplementary argument for strict speed limitation in areas where pedestrians are highly 

exposed. 
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