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ESTIMATING A DENSITY, A HAZARD RATE, AND A TRANSITION

INTENSITY VIA THE ρ-ESTIMATION METHOD

MATHIEU SART

Abstract. We propose a unified study of three statistical settings by widening the ρ-estimation
method developed in [BBS17]. More specifically, we aim at estimating a density, a hazard rate
(from censored data), and a transition intensity of a time inhomogeneous Markov process. We
relate the performance of ρ-estimators to deviations of an empirical process. We deduce non-
asymptotic risk bounds for an Hellinger-type loss when the models consist, for instance, of piecewise
polynomial functions, multimodal functions, or piecewise convex-concave functions. Under convex-
type assumptions on the models, maximum likelihood estimators may coincide with ρ-estimators,
and satisfy therefore our risk bounds. However, our results also apply to some models where the
maximum likelihood method does not work. Besides, the robustness properties of ρ-estimators are
not, in general, shared by maximum likelihood estimators. Subsequently, we present an alternative
way, based on estimator selection, to define a piecewise polynomial estimator. We control the risk
of the estimator and carry out some numerical simulations to compare our approach with a more
classical one based on maximum likelihood only.

1. Introduction

1.1. Statistical settings. In the present paper, we are interesting in estimating a unknown func-
tion s that appears in one of the following frameworks.

Framework 1 (Density Estimation). Let X be a real-valued random variable with density function s
with respect to the Lebesgue measure µ. Our aim is to estimate the density s from the observation
of n independent copies X1, . . . ,Xn of X.

Framework 2 (Hazard rate estimation for right censored data). Let (T1, C1), . . . , (Tn, Cn) be n
independent copies of a pair (T,C) of non-negative random variables. The variable C may take the
value +∞. We suppose that T is independent of C and that T admits a density f with respect to
the Lebesgue measure µ. The target function is the hazard rate s defined for t ≥ 0 by

s(t) =
f(t)

P (T ≥ t)
.

The observations are (Xi,Di)1≤i≤n where Xi = min{Ti, Ci} and Di =

{
1 if Ti ≤ Ci,
0 otherwise.

Framework 3 (Estimation of the transition intensity of a Markov process). We consider a (possibly
inhomogeneous) Markov process {Xt, t ≥ 0} with the following properties:
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• The process is cadlag with finite state space, says {0, 1, . . . ,m}.
• The state 0 is absorbing.
• Let, for each interval I ⊂ [0,+∞), AI be the event: “the process jumps at least two times
on I”. Then, P (AI) = o(µ(I)) when the length µ(I) of I tends to 0.

• The transition time

T1,0 = inf {t > 0, Xt− = 1, Xt = 0} ,
which has values in [0,+∞], is absolutely continuous with respect to the Lebesgue measure µ
on R and satisfies therefore for all Borel set A of R,

P (T1,0 ∈ A) =

∫

A
f(u) du,

for a suitable non-negative measurable function f .

We consider an observation interval Iobs ⊂ [0,+∞) either of the form Iobs = [0, T ] with T ∈ (0,+∞)
or Iobs = [0,+∞). Our aim is to estimate the transition rate s from state 1 to 0 defined for t > 0
by

s(t) =
f(t)

P (Xt− = 1)
,

from the observation of n independent copies {X(i)
t , t ∈ Iobs} of {Xt, t ∈ Iobs}.

In all these frameworks, we will always suppose that n ≥ 3. Although numerous estimation
strategies can be considered, we will rather focus in this paper on a particular method developed
in [BBS17] and named “ρ-estimation”.

1.2. On ρ-estimation in framework 1. We begin by outlining some of the underlying ideas of
this estimation procedure. First, the method fits into the scheme of a series of papers using tests to
construct estimators. Given two densities f and g, a test is, intuitively, a decision rule that decides
which one is the best for estimating s. In order to measure the quality of estimation, we consider
the Hellinger distance h, which is defined for two non-negative integrable functions f and g by

h2(f, g) =
1

2

∫

R

(√
f(t)−

√
g(t)

)2
dt.

We try, in ρ-estimation, to estimate h2(s, f) − h2(s, g). The smaller this difference, the better f .
Conversely, the larger this difference, the better g. Unfortunately, it seems difficult to build consis-
tent estimators of h2(s, f) − h2(s, g) with good properties (without additional assumptions on s).
A way to circumvent the issue, and which follows from [Bar11], is to estimate a good approxima-
tion TE(f, g) of h

2(s, f)− h2(s, g). We will denote such estimators by T (f, g).

We then consider models S, that is collections of densities, which translate, in mathematical
terms, the knowledge we have on the target s. A model may correspond to different assumptions
on s, such as parametric, regularity, or qualitative ones. When S only consists of two densities, S =
{f, g}, an estimator ŝ on S may be deduced from the test: we may set ŝ = g when T (f, g) > 0 and
ŝ = f when T (f, g) < 0. When the model S is more general, several methods exist in the literature
to define an estimator. A key theoretical reference is [Bir06]. In ρ-estimation, T (f, g) is viewed as
an approximate value of h2(s, f)− h2(s, g). We may then form the criterion γ(f) = supg∈S T (f, g)
and interpret it as an approximation of h2(s, f)− infg∈S h2(s, g). It then remains to minimize γ to
define the ρ-estimator ŝ (if such a minimizer does not exist, take an approximate minimizer).
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Before going any further, we need to mention that we may construct several variants of the ρ-
estimation procedure that may lead to similar theoretical results, at least in density estimation. For
instance, there exist several ways to define the estimator T (f, g) as explained in [BB17]. It turns
out that ρ-estimators (including some variants) satisfy interesting statistical properties. We briefly
present below four of them: generality, optimality, robustness, and superminimaxity.

First of all, ρ-estimators exist on some models S for which the maximum likelihood method does
not work. Several examples are known in the literature. A very simple one is

S = {f1I , I is a closed interval of R and f a non-increasing density on I} ,(1)

where 1I denotes the indicator function of I. In this model, the log likelihood can be made arbitrarily
large, and the maximum likelihood estimator does not exist. By contrast, we may define, and study,
ρ-estimators on S.

The quality of a ρ-estimator ŝ relies on the behaviour of the error T (f, g) − TE(f, g). This
error can be controlled according to different notions that aim at measuring the “complexity”, or
“massiveness” of the model S (entropy with bracketing, metric dimension, covering numbers. . . ).
We may deduce an upper-bound RS(n) of the maximal risk sups∈S E[h2(s, ŝ)]. This result can
then be compared to the minimax bound inf s̃ sups∈S E[h2(s, s̃)], where the infimum is taken over all
estimators s̃ with values in S. The rate of convergence of inf s̃ sups∈S E[h

2(s, s̃)] to 0 is usually called
the optimal minimax rate of convergence. Yet, RS(n) achieves this rate, up to possible logarithmic
factors, in all cases we know.

This minimax point of view supposes that s does belong to S. Such an assumption corresponds
to a perfect modelling of the statistical problem, which is scarcely the case in practice. It makes
therefore more sense to study the risk of the estimator ŝ not only when s lies in S but more generally
when s is close to the model S. It turns out that the Hellinger quadratic risk of a ρ-estimator ŝ can
be bounded above by

E[h2(s, ŝ)] ≤ C inf
f∈S

h2(s, f) +RS(n) whatever the density s,

where C is a universal constant (that is a number). This inequality asserts that a small error in the
choice of the model S induces a small error in the estimation of s. This is a robustness property.
Such a property is not shared in general by the maximum likelihood estimator. It may indeed
perform very poorly when s 6∈ S but is close to S (when this closeness is measured by the Hellinger
distance, see Section 2.3 of [Bir06] for an example).

The rate given by RS(n) stands for the worst-case rate over all densities s of S. This rate
may therefore be very pessimistic in the sense that the estimation may be much faster for some
densities s ∈ S. One may actually refine the preceding risk bound to take into account this
phenomenon (named superminimaxity in [BB16]). More precisely, it is shown in [BB16] a non-
asymptotic risk bound of the form

E[h2(s, ŝ)] ≤ C ′ inf
f∈S̄

{
h2(s, f) +RS(f, n)

}
whatever the density s,(2)

where C ′ is a universal constant, S̄ a suitable subset of S, and where RS(f, n) tends to 0 at a
(usually) faster rate than RS(n). For illustration purposes, consider the model S defined by (1).
Then, S̄ consists of piecewise constant densities belonging to S,

RS(f, n) =
d(f)

n
log3+

(
n

d(f)

)
,
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d(f) is the number of pieces of f , and log+ x = max{log x, 1}. In particular, when the support of s
is an interval on which s is non-increasing and piecewise constant, that is when s ∈ S̄, the rate of
estimation is parametric (up to some power of log+(n/d(f))). If we now suppose that s belongs

to S \ S̄, some computations allows to bound (2) from above by Cs(log
2 n)n−2/3, where Cs only

depends on s. This corresponds, up to a logarithmic factor, to the expected rate of convergence.
The previous reasoning is not only valid for this particular model S but is more general and holds
true for other models S corresponding to qualitative assumptions on the density (for instance, s
may be piecewise monotone or

√
s may be piecewise convex-concave).

There are moreover two additional properties of ρ-estimators we now briefly mention. First, ρ-
estimators can be related to maximum likelihood ones. Second, it is possible to introduce penalties
into the criterion γ, leading to penalized ρ-estimators and allowing to cope with model selection.

1.3. On hazard rate and transition intensity estimation. In this paper, we propose to extend
the scope of ρ-estimation to these two statistical settings. The first one, namely hazard rate esti-
mation, frequently appears in different domains such as reliability or survival analysis. Typically,
in medical studies, T may represent the lifetime of a patient, and the hazard rate s at time t,

s(t) =
f(t)

P (T ≥ t)
,

= lim
h→0

P (t ≤ T ≤ t+ h | T ≥ t)

h
,

measures the tendency of dying just after t, given survival to time t. In practice, some patients may
leave the study before dying, which makes the data censored. The random variable C then gives
the time of leaving and D = 1T≤C indicates whether the patient dies (D = 1) or leaves the study
(D = 0).

The problem of transition intensity estimation of a Markov process may also be encountered in
various domains. For example, in medical trials, a Markov process {Xt, t > 0} may be used to
model the evolution of a disease, the state 0 representing (for instance) the death of the patient.
The transition rate s at time t,

s(t) =
f(t)

P (Xt− = 1)
,

= lim
h→0

P (Xt+h = 0 | Xt− = 1)

h
,

has similar interpretation than the hazard rate: it measures the risk of dying just after t, given the
disease is in state 1 at time t−. This framework is actually more general than the one of hazard
rate estimation (when the data are uncensored) as s coincides with the hazard rate of T when the
Markov process is defined by Xt = 1T≥t.

In the literature, numerous estimators have been proposed to deal with (at least) one of these two
frameworks. We may cite wavelet estimators, Kernel estimators, maximum likelihood estimators,
procedures based on L2 contrasts. . . However, non-asymptotic studies seem be rather scarce. We
refer to [BC05, RB06, BC08, Pla09, AD10] for results concerning procedures based on (penalized) L2

contrasts. We may cite [vdG95, DR02] for a study of non-asymptotic properties of maximum
likelihood estimators. We refer to [BB09] for results concerning a selection rule based on pairwise
comparisons of histogram type estimators.
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1.4. A generalized procedure. As in [BB09, AD10, Bar11], we consider a more general statistical
setting, namely the problem of estimating the intensity of a random measure, in order to define the
estimators. This statistical setting will be very convenient to present our results in a concise way.

We measure the risks of our estimators by means of a (possibly random) Hellinger-type distance h
adapted to the framework. In framework 1, h is the usual Hellinger distance, in framework 2,

h2(f, g) =
1

2

∫ ∞

0

(√
f(t)−

√
g(t)

)2
(
1

n

n∑

i=1

1Xi≥t

)
dt,

and in framework 3,

h2(f, g) =
1

2

∫

Iobs

(√
f(t)−

√
g(t)

)2
(
1

n

n∑

i=1

1

X
(i)
t−=1

)
dt.

The quality of an estimator ŝ is therefore assessed by h2(s, ŝ): the smaller h2(s, ŝ), the better the
estimator.

We define an approximation TE(f, g) of h
2(s, f) − h2(s, g) and an estimator T (f, g) of TE(f, g).

Given a model S, that is a collection of possible candidates for estimating s, we define our estimator ŝ
on S as a minimizer, or more precisely as an approximate minimizer of γ(f) = supg∈S T (f, g).
Similarly to framework 1, bounding above the Hellinger-type risk h(s, ŝ) of a ρ-estimator ŝ requires
to control the deviations of the error T (f, g) − TE(f, g). We carry out a uniform exponential
inequality to control these deviations. We deduce risk bounds for ρ-estimators over a particular class
of models S. This class includes, for instance, models consisting of piecewise polynomial functions,
multimodal functions, piecewise convex-concave functions or piecewise log-concave functions. We
establish in the three frameworks a risk bound akin to the one obtained in density estimation
by [BB16]. Actually, in density estimation, the control of the empirical process is a bit more accurate
than in this last paper, leading to a slightly sharper estimation term RS(f, n) (although probably
not optimal). Moreover, the closeness of the results in the three frameworks allows to transfer
the rates of convergence obtained in [BB16] in framework 1 when s is multimodal or when

√
s is

piecewise convex-concave to frameworks 2 and 3 (with a minor improvement).

1.5. On maximum likelihood estimation. The ρ-estimation procedure differs from that of max-
imum likelihood. Nevertheless, the two approaches are very close in some situations.

This phenomenon may be understood by looking at the local behaviour of the estimator T (f, g).
Indeed, under some assumptions, T (f, g) roughly behaves as the difference of log likelihoods L(g)−
L(f) when f and g are very close densities in framework 1. If we could replace T (f, g) by L(g)−L(f),
γ(f) = supg∈S T (f, g) would become supg∈S L(g) − L(f), and a minimizer of γ(·) would be a
maximum likelihood estimator.

We show that ρ-estimation may coincide with maximum likelihood estimation when the model
is either convex or of the form S =

{
f2, f ∈ F

}
where F is convex and consists of non-negative

functions. In particular, a maximum likelihood estimator on such a model S is a ρ-estimator. A
similar result for convex sets of densities was obtained by Su Weijie in the context of framework 1
and was recently included in [BB17]. Consequently, our theoretical risk bounds, which apply to ρ-
estimators, may also apply to maximum likelihood ones for these models (in the three frameworks).
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1.6. Estimator selection. The practical computation of ρ-estimators seems unfortunately to be
numerically out of reach in numerous models. In some cases, a model S may be written as a union
S =

⋃
m∈M Sm of models Sm satisfying the convex-type assumptions described in the preceding

section. Thereby, one may maximize the likelihood to define a ρ-estimator ŝm on Sm. All that
remains then is to select an estimator among {ŝm, m ∈ M}. This solution may be more numerically
friendly (when M is not too large), but the quality of selected estimator needs to be shown.

In the present paper, we will apply this idea to cope with a particular model S = Sℓ,r. This
model consists of non-negative piecewise polynomial functions of degree at most r and based on
at most ℓ consecutive intervals. Although maximum likelihood estimators do not exist on Sℓ,r,
ρ-estimators do exist, and we may even control their Hellinger-type risks. Unfortunately, we do
not know how to build these ρ-estimators in practice. Alternatively, we may consider collections m
of intervals, and define models Sℓ,r,m ⊂ Sℓ,r consisting of functions which are polynomial on each
interval I of m. Then, Sℓ,r =

⋃
m∈Mℓ

Sℓ,r,m where the union is taken over a suitable (infinite)
family Mℓ of collections m. For each m ∈ Mℓ, we may define a ρ-estimator ŝm on the convex
model Sℓ,r,m by maximizing the likelihood. Selecting among all the estimators ŝm is theoretically
feasible but does not yield a practical procedure as Mℓ is infinite. This is the reason why we will

replace Mℓ by a finite, but usually very large, family M̂ℓ ⊂ Mℓ. We will carry out a new procedure,

inspired from [Sar14], to select among the estimators ŝm, m ∈ M̂ℓ. Although the large cardinal

of M̂ℓ, dynamic programming allows to reduce the numerical complexity, and makes it possible
the practical implementation of the procedure in some favourable situations. We prove an oracle
inequality for the selected estimator from which, we deduce, when r = 0, a risk bound very similar
to the one we would obtain for the ρ-estimator. Besides, we carry out a numerical study in which
we compare, in the context of density estimation, our procedure with a selection rule based on
maximum likelihood only.

We finally explain how we can modify this procedure to select adaptively the number ℓ of pieces
from the data. In particular, we show that we can build an estimator that performs well when s
belongs, or is close to, the model Sr = ∪∞

ℓ=1 Sℓ,r. We get a risk bound that almost corresponds to
the one we would obtain for the best estimator of the family {ŝℓ,r, ℓ ≥ 1} where ŝℓ,r denotes the
ρ-estimator defined on Sℓ,r.

1.7. Organization of the paper. We carry out in Section 2 the general statistical setting that
encompasses the three frameworks. We then explain the estimation procedure and relate it to the
maximum likelihood one. In Section 3, we present the probabilistic tool that enables us to control
the risk of ρ-estimators. We then present the required assumptions on the models as well as our
main result on the theoretical performances of ρ-estimators. In Section 4, we deal with estimator
selection to define a piecewise polynomial estimator as explained in Section 1.6. Section 5 is devoted
to numerical simulations. The proofs are deferred to Section 6.

2. The ρ-estimation method

2.1. Statistical setting and notations. We consider an abstract probability space (Ω, E ,P ) on
which are defined the random variables appearing in the different frameworks. We associate to each
framework, and each borel set A ∈ B(R) two random variables N(A) and M(A). More precisely,
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we set in density estimation,

N(A) =
1

n

n∑

i=1

1A(Xi), M(A) = µ(A),

and in hazard rate estimation,

N(A) =
1

n

n∑

i=1

1A(Xi)1Di=1, M(A) =
1

n

n∑

i=1

∫

A
1Xi≥t1[0,+∞)(t) dt.

In framework 3, we define the jump time of the ith process

T
(i)
1,0 = inf

{
t > 0, X

(i)
t− = 1, X

(i)
t = 0

}
,

and consider

N(A) =
1

n

n∑

i=1

1

T
(i)
1,0∈A

1Iobs(T
(i)
1,0), M(A) =

1

n

n∑

i=1

∫

A
1

X
(i)
t−=1

1Iobs(t) dt.

These formulas define two random measures N and M on (R,B(R)) such that

E[N(A)] = E

[∫

A
s(t) dM(t)

]
for all A ∈ B(R).

In each of the frameworks, the statistical problem may be reduced to that of estimating s from the
observation of the random measures N and M .

As explained in the introduction, we will evaluate the quality of the estimators by using an
Hellinger-type loss. This Hellinger-type distance h can be written simultaneously in the three
statistical settings as

h2(f, g) =
1

2

∫

R

(√
f(t)−

√
g(t)

)2
dM(t),

for all non-negative measurable functions f , and g which are integrable with respect to the mea-
sure M .

We now introduce some notations that will be used all along the paper. We define R+ = [0,+∞),
and set for x, y ∈ R, x ∧ y = min(x, y), x ∨ y = max(x, y). The positive part of a real valued
function f is denoted by f+ and its negative part by f−. The distance between a point x and a
set A in a metric space (E, d) is denoted by d(x,A) = infy∈A d(x, y). We denote the cardinal of a
set A by |A|, and its complement by Ac. We set log+ x = max{log x, 1} for all x > 0. The notations
c, c′, C,C ′, . . . are for the constants. These constants may change from line to line.

2.2. Heuristics. Let S = L1
+(R, µ) be the cone of non-negative Lebesgue integrable functions in

frameworks 1 and 3, and S be the cone of measurable non-negative functions which are locally
integrable with respect to µ in framework 2. Let now S be a subset of S. Such set will be named
model. Our aim is to define an estimator ŝ with values in S such that h(s, ŝ) is as small as possible.

Consider two arbitrary functions f, g of S. As explained in the introduction, we begin by defining
an approximation TE(f, g) of h

2(s, f)− h2(s, g).
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Let ψ be the real-valued function defined for x ≥ 0 by ψ(x) =
√
x−1√
x+1

, and ψ(+∞) = 1. For

f, g ∈ S, we set

TE(f, g) =

∫

R

ψ (g/f) s dM − 1

4

∫

R

(g − f) dM.

In this definition, and throughout the paper, we use the conventions 0/0 = 1 and x/0 = +∞ for all
x > 0. Some computations show:

Lemma 1. For all f, g ∈ S,
1

3
h2(s, f)− 3h2(s, g) ≤ TE(f, g) ≤ 3h2(s, f)− 1

3
h2(s, g).(3)

In particular, if TE(f, g) is non-negative, then h2(s, g) ≤ 9h2(s, f). Conversely, if TE(f, g) is
non-positive, then h2(s, f) ≤ 9h2(s, g). In other words, the sign of TE(f, g) allows us to know which
function among f, g is the closest of s (up to a multiplicative constant).

Let S be a model and f ∈ S. We are interested in evaluating h2(s, f) − h2(s, S). The smaller
this number, the better f . As TE(f, g) is roughly of the order of h2(s, f) − h2(s, g), it is natural
to approximate h2(s, f) − h2(s, S) by γE(f) = supg∈S TE(f, g) and to study the properties of the
minimizers of γE .

We deduce from the above lemma that for all f ∈ S,

1

3
h2(s, f)− 3h2(s, S) ≤ γE(f) ≤ 3h2(s, f)− 1

3
h2(s, S).

Minimizing γE over S yields a function f̄ ∈ S (assuming such a function exists) such that,

1

3
h2(s, f̄)− 3h2(s, S) ≤ γE(f̄) ≤ inf

f∈S
γE(f) ≤ 3 inf

f∈S
h2(s, f)− 1

3
h2(s, S) =

8

3
h2(s, S).

Therefore, h2(s, f̄) ≤ 17h2(s, S), which means that f̄ is, up to a multiplicative constant, the closest
function of s among the ones of S.

The approximation TE(f, g) is certainly unknown in practice as it involves s. It can however be
suitably estimated by

T (f, g) =

∫

R

ψ (g/f) dN − 1

4

∫

R

(g − f) dM.(4)

Similarly, γE(f) is unknown but can be estimated by γ(f) = supg∈S T (f, g). It then remains to
minimize this criterion to define the estimator as described below.

2.3. The procedure. Let for f, g ∈ S, T (f, g) be given by (4). Let S be a model and γ(f) =
supg∈S T (f, g). Any estimator ŝ ∈ S satisfying

γ(ŝ) ≤ inf
f∈S

γ(f) + 1/n(5)

is called ρ-estimator.

Remark 1. We do not assume that S consists of densities in framework 1 for more flexibility
in the choice of models. Likewise, the functions of S may not be hazard rates in framework 2, or
transition intensities in framework 3.
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The procedure may also be used to estimate the restriction of s to an interval I. Indeed, let N ′

be defined by N ′(A) = N(A ∩ I) for all A ∈ B(R). Then, E[N ′(A)] = E[
∫
A s1I dM ] and the

target function becomes s1I . Let now F be a collection of functions and S be a model of the form
S = {f1I , f ∈ F}. Since the functions of S vanish outside I, we may replace N in the procedure
by N ′ without changing the estimator. Thereby, when all functions of S vanish outside I, the
estimator ŝ actually estimates s1I .

Although the frameworks are different, the procedures in frameworks 2 and 3 may be related to
that of framework 1 (when the data are not censored in framework 2). Consider for instance frame-
work 2 and suppose that C = +∞. Let S be a model and define Gn(t) = n−1

∑n
i=1 1Xi≥t1[0,+∞)(t).

The collection S′ = {fGn, f ∈ S} is random and does not consist of densities. However, Gn(t)
estimates the probability P (X ≥ t) when t ≥ 0. It may then be natural to use the proce-
dure in framework 1 with S′ to estimate the density of X. In that case, an estimator is a ρ-
estimator on S′ in density estimation if and only if it is of the form ŝGn where ŝ is a ρ-estimator
on S in hazard rate estimation. A similar reasoning applies to framework 3 (replace Gn(t) by
Gn(t) = n−1

∑n
i=1 1X

(i)
t−=t

1Iobs(t)).

Remark 2. Two ingredients are required to define the procedure. First, we need to approximate
h2(s, f) − h2(s, g) by a quantity TE(f, g) that satisfies an inequality akin to (3). Second, we need
a random variable T (f, g) that can be computed in practice and that is close enough to TE(f, g)
(for more details about the meaning of “close enough”, we refer to Section 3.1). When f and g
are supposed to be densities in framework 1, TE(f, g) becomes

∫
R
ψ(g/f)s dµ. We then recover an

approximation of h2(s, f)− h2(s, g) that appears in [BB17].

2.4. Connection with maximum likelihood estimation. The ρ-estimation method may be
related to that of maximum likelihood. Since a model S may not only consist of densities in
framework 1, a traditional solution to define the maximum likelihood estimator is to add a Lagrange
term in the log likelihood. More precisely, we define in the three frameworks

L(f) =

∫

R

log f dN −
∫

R

f dM for all f ∈ S,(6)

and call maximum likelihood estimator any estimator maximizing L(·) on S. In the above formula,
and throughout the paper, the convention log 0 = −∞ is used. In framework 2, L(f) may also
be interpreted as a log likelihood (it is equal to the usual log likelihood when f is a hazard rate,
up to some terms constant in f). The same is true for framework 3, see the literature of counting
processes e.g. equation (3.2) of [Ant89] (using that s is an Aalen’s multiplicative intensity).

We may write

T (f, g) =

∫

R

tanh

(
log g − log f

4

)
dN − 1

4

∫

R

(g − f) dM for all f, g ∈ S.

As tanh(x) ≃ x when x ≃ 0, we deduce that if s̃ maximizes L and g ≃ s̃,

T (s̃, g) ≃ 1

4

(∫

R

log g dN −
∫

R

log s̃ dN

)
− 1

4

(∫

R

g dM −
∫

R

s̃dM

)

≃ 1

4
(L(g) − L(s̃)) .
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Thereby, T (s̃, g) is likely non-positive. Under suitable properties of S, this result does not only occur
when g ≃ s̃, but also for all g ∈ S, which implies that γ(s̃) = 0. In particular, s̃ is a ρ-estimator.

Theorem 1. Suppose that S is a convex subset of S. Let X be a subset of R such that {x ∈
R, f(x) 6= 0} ⊂ X for all f ∈ S. Define

LX (f) =
∫

X
log f dN −

∫

X
f dM for all f ∈ S,

and suppose that supg∈S LX (g) 6∈ {−∞,+∞}.
If there exists an estimator s̃ ∈ S such that LX (g) ≤ LX (s̃) for all g ∈ S, then γ(s̃) = 0 and s̃ is

a ρ-estimator. Conversely, assume that there exists a ρ-estimator ŝ ∈ S such that γ(ŝ) = 0. Then,
for all g ∈ S, LX (g) ≤ LX (ŝ), and ŝ maximizes LX (·) over S.

When X = R, LX = L, which means that results on maximum likelihood estimators may be
derived from that of ρ-estimators and vice versa. We recover the result of Su Weijie when S consists
of densities in framework 1. Using sets X not equal to R may be of interest to remove some
observations that would make the log likelihood identically equal to −∞. In that case, we rather
estimate the restriction of s to X as illustrated in the example below.

We consider the convex model S in framework 1 defined by

S =
{
f1(0,+∞), f is a non-increasing function of S on R

}
.(7)

When the random variables Xi are positive, which in particular holds true almost surely if s does
belong to S, the maximum likelihood estimator exists on S and is known as the Grenander estimator,
see [Gre56]. We deduce from the above theorem with X = R that this estimator is, in this case, a
ρ-estimator. When some of the random variables Xi are non-positive, L(g) = −∞ for all g ∈ S,
and we cannot maximize L(·) over S to design an estimator. However, the ρ-estimation approach
works and still coincides with the maximum likelihood one, up to minor modifications. Indeed, in
this case, the preceding theorem can be used with X = (0,+∞). Then, LX (f) takes the form

LX (f) =
1

n

∑

i∈{1,...,n}
Xi>0

log f(Xi)−
∫ ∞

0
f(t) dt for all f ∈ S.

Let s̃ be the Grenander estimator based on the random variables X1, . . . ,Xn that are positive. This
estimator is a density and maximizes the map

f 7→ 1

n0

∑

i∈{1,...,n}
Xi>0

log f(Xi)

over the densities f of S, where n0 is the number of positive random variables among X1, . . . ,Xn.
One can verify that the estimator that maximizes LX (·) over S, and which is thus the ρ-estimator
on S, is ŝ = (n0/n)s̃. Note that

∫
R
ŝ dµ = n0/n, which means that the ρ-estimator is not a density

unless all the observations Xi are positive. This is due to the fact that ŝ estimates in this case the
restriction of s to (0,+∞) (which is not a density when some observations Xi are negative).

It is sometimes convenient to consider models S of the form S =
{
f2, f ∈ F

}
where F consists of

non-negative functions. The set F can then be interpreted as a translation of the knowledge one has
on

√
s. For instance, if F denotes the set of non-negative concave functions on [0,+∞) vanishing

on (−∞, 0), the assumption s ∈ S means that
√
s is concave on [0,+∞) with support in [0,+∞).
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It turns out that the connection between ρ- and maximum likelihood estimators established by
Theorem 1 remains valid when the convexity assumption is put on F instead of S.

Theorem 2. Let F be a convex set of non-negative functions such that S =
{
f2, f ∈ F

}
is in-

cluded in S. Let X be a subset of R such that {x ∈ R, f(x) 6= 0} ⊂ X for all f ∈ F . Then,
if supg∈S LX (g) 6∈ {−∞,+∞}, the conclusions of Theorem 1 apply to S: any maximizer s̃ ∈ S
of LX (·) on S vanishes γ(·), and any ŝ ∈ S vanishing γ(·) maximizes LX (·) over S.

3. Risk bounds of ρ-estimators

3.1. A uniform exponential inequality. We recall that the definition of ρ-estimators is based on
the minimization of a criterion γ on S. This criterion γ uses the approximation T (f, g) ≃ TE(f, g)
where f, g ∈ S as explained in Section 2.2. Bounding above the risk of the ρ-estimator requires to
bound above the error due to the approximation of TE by T .

We introduce for any bounded function ϕ ∈ S, the random variable

Z(ϕ) =

∫

R

ϕdN −
∫

R

ϕs dM.

This variable is centered in each of the statistical settings. Note that Z(ϕ) measures the approx-
imation error of TE(f, g) by T (f, g) when ϕ = ψ(g/f). The theorem below allows to control the
deviations of Z(ϕ) under suitable assumptions on F .

Theorem 3. Let F ⊂ S be a set of functions ϕ such that |ϕ(x)| ≤ 1 for all ϕ ∈ F , x ∈ R. Let A
be the collection of sets defined by

A = {{x ∈ R, ϕ+(x) > t} , ϕ ∈ F , t ∈ (0, 1)} ∪ {{x ∈ R, ϕ−(x) > t} , ϕ ∈ F , t ∈ (0, 1)} .
Suppose:

• in frameworks 1 and 2 that A is a Vapnik-Chervonenkis class of dimension at most 2d.
Moreover, there exists an at most countable set A′ ⊂ A satisfying the following assertion:
for all A ∈ A, there exists a sequence (Am)m≥0 ∈ A′N such that limm→+∞ 1Am(x) = 1A(x)
for every x ∈ R.

• in framework 3, that each set A ∈ A is a union of at most d intervals.

Let, for ϕ ∈ F ,

υ(ϕ) =

∫

R

ϕ2s dM.

Then, there exists for all ξ > 0 an event which holds true with probability larger than 1− e−nξ and
on which: for all ϕ ∈ F , and ε > 0,

|Z(ϕ)| ≤ ευ(ϕ) +Cε

{
d log2+(n/d)

n
+ ξ log+(1/ξ)

}
.(8)

In the above inequality, Cε only depends on ε.

A class consisting of unions of at most d intervals is Vapnik-Chervonenkis with dimension at
most 2d. Therefore, the condition in framework 3 is stronger than in the two first frameworks. It
remains however general enough to control the risks of ρ-estimators in several models S of interest
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(see the next section). As a by-product of the proof of the theorem, we get the following proposition
which may be of independent interest:

Proposition 4. Consider framework 1 and an at most countable set F ⊂ S of functions ϕ such
that |ϕ(x)| ≤ 1 for all x ∈ R, ϕ ∈ F . Let for t ∈ (0, 1), At be the collection of sets defined by

At = {{x ∈ R, ϕ+(x) > t} , ϕ ∈ F} ∪ {{x ∈ R, ϕ−(x) > t} , ϕ ∈ F} ,
and SAt(2n) be the Vapnik-Chervonenkis shatter coefficient

SAt(2n) = max
x1,...,x2n∈R

|{{x1, . . . , x2n} ∩A,A ∈ At}| .

Let σ2 = supϕ∈F E[ϕ2(X)], pt = supϕ∈F P (|ϕ(X)| > t), and rn = supt∈(0,1) log+ |SAt(2n)|. Then,

there exist universal constants C,C ′ such that

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ C inf

η∈(0,1)

{
σ
√

log(1/η) +

∫ η

0

√
pt dt

}√
rn
n

+ C
rn
n

≤ C ′
[
σ

√
rn log+(1/σ)

n
+
rn
n

]
.(9)

This proposition gives a bound on E
[
supϕ∈F |Z(ϕ)|

]
that involves the Vapnik-Chervonenkis shat-

ter coefficients SAt(2n) of At. This result may not be as sharp as the bounds based on covering
numbers (see Theorem 3.1 of [GK06]). It is, however, rather convenient in the situations where the
shatter coefficients are easier to control than the covering numbers.

Our proposition is similar to a result of [Bar16] when the random variables Xi are identically
distributed. Actually, our inequality (9) is a bit sharper when At is Vapnik-Chervonenkis with
dimension d (apart from constants). Such an assumption corresponds to a notion of (weak) VC-
major class (see [Bar16]). In that case, Sauer’s lemma [Sau72] implies

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ C ′′

[
σ

√
d log+(n/d) log+(1/σ)

n
+
d log+(n/d)

n

]
,(10)

where C ′′ is a number. If we put aside the constant C ′′, the main difference between this bound and
Inequality (2.8) of [Bar16] lies in the position of the logarithmic term log+(1/σ): it is here involved
inside the square root while it is outside in [Bar16].

Theorem 3 is well tailored for bounding the risk of a ρ-estimator. Indeed, when ϕ = ψ(g/f), the
random variable υ(ϕ) can be bounded above as follows.

Lemma 2. For all f, g ∈ S,
∫

R

ψ2(g/f)s dM ≤ 4
(
h2(s, f) + h2(s, g)

)
.

Now, under suitable assumptions on the collection F = {ψ(g/f), f, g ∈ S}, Inequality (8) roughly
says that with high probability (and ε = 1/24):

|T (f, g)− TE(f, g)| ≤
1

6

(
h2(s, f) + h2(s, g)

)
+DS(n) for all f, g ∈ S.(11)
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The termDS(n) depends on the probability of the event on which (11) holds true and the complexity
of S. The approximation T (f, g) ≃ TE(f, g) is then accurate enough to control the risk of a ρ-
estimator ŝ. We may do as in Section 2.2: we deduce from (3), that for all f, g ∈ S,

1

6
h2(s, f)− 19

6
h2(s, g)−DS(n) ≤ T (f, g) ≤ 19

6
h2(s, f)− 1

6
h2(s, g) +DS(n).

Therefore,

1

6
h2(s, f)− 19

6
h2(s, S)−DS(n) ≤ γ(f) ≤ 19

6
h2(s, f)− 1

6
h2(s, S) +DS(n),

and hence,

1

6
h2(s, ŝ)− 19

6
h2(s, S)−DS(n) ≤ γ(ŝ)

≤ inf
f∈S

γ(f) + 1/n

≤ 18

6
h2(s, S) +DS(n) + 1/n.

Finally, the risk of a ρ-estimator ŝ is bounded above by

h2(s, ŝ) ≤ 37h2(s, S) + 12DS(n) + 6/n.

It remains to explain the assumptions to put on the model S to make inequality (11) more precise
and rigorous.

3.2. Assumptions on models. We consider a non-decreasing collection (Id)d≥1 of Borel sets. In
framework 3, Id is the collection of unions of at most d intervals. In frameworks 1 and 2, Id may
be more general. More precisely:

Assumption 1. We suppose:

• in frameworks 1 and 2, that the collection Id is Vapnik-Chervonenkis with dimension at
most 2d. Besides, the following technical condition holds: there exists an at most countable
set I ′

d ⊂ Id such that for all I ∈ Id, there exists a sequence (Im)m≥1 ∈ I ′N
d satisfying

lim
m→+∞

1Im(x) = 1I(x)

for every x ∈ R.
• in framework 3, that the sets I ∈ Id are unions of at most d intervals.

We then consider models S satisfying the following assumption.

Assumption 2. There exist S̄ ⊂ S and a map dS(·) on S̄ such that: for all f ∈ S̄, g ∈ S, t > 0,
the set {x ∈ R, g(x) > tf(x)} belongs to IdS(f).

This assumption applies for several models of interest, including some which are well suited for
estimating functions under smooth or shape constraints. We carry out below some examples.
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Let Pℓ,r be the model defined for ℓ ≥ 1, r ≥ 0 by

Pℓ,r =

{
ℓ∑

j=1

Pj1Kj , Pj is a polynomial function of degree at most r, which is(12)

non-negative on an interval Kj of R of finite length

}
.

Proposition 5. Let for d ≥ 1, Id be the collection of unions of at most d intervals. Then, Assump-
tion 2 is fulfilled with S = Pℓ,r, S̄ ⊂ Pℓ,r and for all f ∈ S̄, dS(f) = (r + 2)(2ℓ + 1).

We may also consider the model consisting of piecewise monotone functions defined for k ≥ 1 by

Fk = S ∩





k∑

j=1

fj1Kj ,Kj is an interval, and fj is monotone on Kj



 .(13)

Note that multimodal functions with k − 1 modes belong to Fk.

We introduce for all interval K the set

G(K) = {f, f is either convex or concave on the interior of K} ,
and define

Gk = S ∩





k∑

j=1

fj1Kj ,Kj is an interval, and fj ∈ G(Kj)



 ,

G′
k = S ∩





k∑

j=1

efj1Kj ,Kj is an interval, and fj ∈ G(Kj)



 .

The proposition below ensues from [BB16]:

Proposition 6. Let for d ≥ 1, Id be the collection of unions of at most d intervals. Let P ′
ℓ,1 ={

f, f ∈ S, ef ∈ Pℓ,1

}
. Assumption 2 is fulfilled with:

• S = Fk, S̄ ⊂ ∪∞
ℓ=1Pℓ,0 and for all f ∈ Pℓ,0, dS(f) = 2(k + ℓ+ 1).

• S = Gk, S̄ ⊂ ∪∞
ℓ=1Pℓ,1 and for all f ∈ Pℓ,1, dS(f) = 4(k + ℓ+ 1).

• S = G′
k, S̄ ⊂ ∪∞

ℓ=1P ′
ℓ,1 and for all f ∈ P ′

ℓ,1, dS(f) = 4(k + ℓ+ 1).

3.3. A uniform risk bound.

Theorem 7. Let (Id)d≥1 be a non-decreasing collection of Borel sets that fulfils Assumption 1. For

all ξ > 0, there exists an event which holds true with probability larger than 1− e−nξ and on which:
for all model S satisfying Assumption 2 and all ρ-estimator ŝ on S,

h2(s, ŝ) ≤ inf
f∈S̄

{
c1h

2(s, f) + c2
dS(f)

n
log2+

(
n

dS(f)

)
+ c3ξ log+(1/ξ)

}
.(14)

In particular,

E
[
h2(s, ŝ)

]
≤ inf

f∈S̄

{
c1E

[
h2(s, f)

]
+ c′2

dS(f)

n
log2+

(
n

dS(f)

)}
.(15)
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In the above inequalities, c1, c2, c
′
2, c3 are universal positive constants.

Remark 1. When s ∈ S̄, the risk of a ρ-estimator on S is bounded by

E
[
h2(s, ŝ)

]
≤ C

dS(s)

n
log2+

(
n

dS(s)

)
.

The rate of estimation of s then becomes parametric (up to the logarithmic term log2+(n/dS(s))).
When s 6∈ S̄, the estimator automatically achieves the best trade-off between the bias (approxima-
tion) term h2(s, f) and the variance (complexity) term (dS(f)/n) log

2
+ (n/dS(f)):

E
[
h2(s, ŝ)

]
≤ CR(s) with R(s) = inf

f∈S̄

{
E
[
h2(s, f)

]
+
dS(f)

n
log2+

(
n

dS(f)

)}
.(16)

It remains to compute R(s) to deduce (an upper bound of) the rate of convergence of the ρ-estimator
when s ∈ S. This rate may be much slower than the rate we would obtain if s does belong to S̄
(see Section 3.5 for an example).

This phenomenon (faster rate of convergence when s ∈ S̄) has been put forward in [BB16] for
ρ-estimators in density estimation and has been named superminimaxity. We show here that this
phenomenon also occurs for ρ-estimators in frameworks 2 and 3. If we now restrict to density
estimation, we observe that our risk bound slightly improves the one of [BB16] in the sense that
our approximation term involves a smaller exponent on the logarithm. Moreover, the risk of a
ρ-estimator is controlled on an event that does not depend on the model but rather on the class of
models for which Assumption 2 is met. This result is useful to perform (piecewise) polynomial esti-
mator selection, see Section 4. However, our Assumption 2 is more stringent than the assumptions
on models in [BB16].

Remark 2. When the framework varies, the Hellinger loss h in (15) changes, but the variance
term remains the same. Moreover, the bias term in (15) in frameworks 2 and 3 is not larger than
the bias term in density estimation (when one extends the definition of s in frameworks 2 and 3 to
(−∞, 0) by setting s(x) = 0 when x < 0). We may therefore only focus on density estimation to
bound above R(s) in (16). The risk of the ρ-estimator is then bounded by this upper bound in the
three frameworks (up to a multiplicative constant).

Remark 3. It follows from a crude application of the triangular inequality and from (15) that

E
[
h2(s, ŝ)

]
≤ C inf

g∈S

{
E
[
h2(s, g)

]
+R(g)

}
.

If we know how to bound R(g) for g ∈ S, this inequality says that the risk of the ρ-estimator is not
only controlled when s does belong to S but also when there exists g ∈ S such that s ≃ g, that is
when s is close to S. In other words, the Hellinger risk of ŝ cannot substantially increase when s
does not belong to S but is close to S. Such a result may be interpreted as a robustness property.

In particular, this robustness property applies to maximum likelihood estimators when assump-
tions of Theorem 1 or 2 are met with X = R. It is worth mentioning that this result is not true
in general for maximum likelihood estimators. We refer to Section 2.3 of [Bir06] for an exam-
ple in density estimation. We carry out below another example in framework 2. Let α > 0 and
sα(t) = t−1

1t≥α be the hazard rate of a Pareto distribution. Suppose that the density f of T is a
mixture of two Pareto distributions,

f(t) = ε
η

t2
1t≥η + (1− ε)

1

t2
1t≥1,
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where ε = 1/n and where η ∈ (0, 1/2). Suppose moreover that the data are not censored: C = +∞
almost surely. The survival function G and the hazard rate s of T are given by the formulas

G(t) =
(
1− ε+ ε

η

t

)
1t∈[η,1) +

1− ε+ εη

t
1t≥1

s(t) =
εη

(1− ε)t+ εη

1t∈[η,1)
t

+
1t≥1

t
.

The maximum likelihood estimator on S = {sα, α > 0} is s̃ = sα̃ where α̃ = min1≤i≤nXi. We are
now interested in its risk. Let An be the event on which there exists at least one observation Xi

smaller than 2η and Bn be the event on which n/2 observations are larger than t0 where G(t0) = 3/4.

Then, P (An) = 1− (1− ε/2)n = 1− (1− 1/(2n))n > 1− e−1/2 and P (Bn) = P (Y ≥ n/2) where Y
is binomially distributed with parameters (n, 3/4). Therefore, for all c ∈ (0, 1), and n large enough,
P (Bn) ≥ c. Since G(1) ≥ 1− 1/n ≥ 3/4 when n ≥ 4, t0 ≥ 1 and we deduce that on An ∩ Bn,

h2(s, s̃) ≥ 1

4

∫ 1

2η

(√
1/t−

√
s(t)

)2
dt ≥ 1

4

∫ 1

2η

1

t

(
1−

√
εη

(1− ε)t+ εη

)2

dt.

Some elementary computations show (using that ε ≤ 1/2),

inf
t∈[2η,1]

(
1−

√
εη

(1− ε)t+ εη

)2

≥
(
1−

√
εη

2(1 − ε)η + εη

)2

> 0.17.

Therefore, h2(s, s̃) > 0.04 log(1/(2η)) and E[h2(s, s̃)] > 0.04 log(1/(2η))P (An ∩ Bn). Finally, there
exist universal constants c′, n0 such that for all n ≥ n0:

E[h2(s, s̃)] > c′ log(1/(2η)).

In particular, the risk of a maximum likelihood estimator s̃ can be made arbitrarily large by playing
with η. We now turn to ρ-estimation. The model S fulfils Assumption 2 with dS(f) = 1, S̄ = S
and where I1 is the collection of intervals. A ρ-estimator ŝ on S satisfies therefore E[h2(s, ŝ)] ≤
C(E[h2(s, S)]+ log2 n/n). The variance term log2 n/n is likely not optimal. However, the bias term
can be bounded above by E[h2(s, S)] ≤ E[h2(s, s1)] ≤ P (T ∈ [η, 1]) = ε(1−η) ≤ 1/n. Consequently,

sup
η∈(0,1/2)

E[h2(s, ŝ)] ≤ C ′ log
2 n

n
,

where C ′ is universal. This example illustrates the lack of robustness of the maximum likelihood
estimator in this model.

When a ρ-estimator ŝ vanishes the criterion γ, which typically happens when ŝ maximizes LX
on some models, the constant c1 appearing in front of the bias term h2(s, f) in Theorem 7 can be
improved:

Proposition 8. Let (Id)d≥1 be a non-decreasing collection of Borel sets that fulfils Assumption 1.

For all ξ > 0, there exists an event which holds true with probability larger than 1 − e−nξ and on
which: for all model S satisfying Assumption 2 and all ρ-estimator ŝ on S such that γ(ŝ) = 0, the
risk bound (14) holds true for all ε > 0 with c1 = c1,ε, c2 = c2,ε, c3 = c3,ε, such that c1,ε ≥ 9 and
limε→0 c1,ε = 9.

The constant c1 = c1,ε may therefore be made as close as 9 as wished. We do not know to what
extent this result can be improved for estimators ŝ maximizing LX under convex type assumptions
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on the models. However, c1 = c1,ε cannot be smaller than 2 in general as shown by the following
elementary example.

Consider framework 1, a finite collection of disjoint intervals m, and the model S consisting of
piecewise constant densities based on m. Since S is convex, the usual histogram estimator ŝ is a ρ-
estimator that vanishes γ. Moreover, it is known that this estimator may not converge to the closest
function of s in the model (for the Hellinger distance), see [BR06]. In particular, let p ∈ (0, 1) to be
specified later, s = 1[0,p]+(1− p)1(1,2] and S be the model of piecewise constant densities based on

the partition {[0, 1], (1, 2]}. Then, E[h2(s, ŝ)] converges to h2(s, s̄1) where s̄1 = p1[0,1]+(1−p)1(1,2].
Define

s̄2 =
p2

p2 + 1− p
1[0,1] +

1− p

p2 + 1− p
1(1,2] ∈ S.

The fraction

h2(s, s̄1)

h2(s, s̄2)
=

p(1−√
p)

1−
√

1− p(1− p)

can be made arbitrarily close to 2 by choosing p small enough. Therefore, for all η ∈ (1, 2), and p
small enough,

lim
n→+∞

E[h2(s, ŝ)] ≥ ηh2(s, s̄2) ≥ ηh2(s, S),

and thus c1 ≥ η.

3.4. Risks of ρ-estimators for models consisting of step functions. For illustration purposes,
consider the collection Pℓ,0 of step functions defined by (12). Then, any ρ-estimator ŝ on Pℓ,0 satisfies

E
[
h2(s, ŝ)

]
≤ C

{
E
[
h2(s,Pℓ,0)

]
+
ℓ log2+ (n/ℓ)

n

}
.(17)

The first term E
[
h2(s,Pℓ,0)

]
can be interpreted as an approximation term that is small if s is close

to a step function. When s does belong to Pℓ,0, the bound becomes

E
[
h2(s, ŝ)

]
≤ C

ℓ log2+ (n/ℓ)

n
.

This result is, in general, slightly suboptimal as it is possible to do better in density estimation.
Indeed, we may relate in framework 1 the performance of a ρ-estimator to the Vapnik-Chervonenkis
dimension of the subgraphs of the model. Yet, this dimension is of the order of ℓ for Pℓ,0 (see [BB17]).
We then derive from the proof of Theorem 12 of [BBS17],

E
[
h2(s, ŝ)

]
≤ C ′

{
h2(s,Pℓ,0) +

ℓ log+ (n/ℓ)

n

}
,

where C ′ is universal. This last inequality is also shown and discussed in Section 7.4 of [BB17]. In
particular, the logarithm in this inequality cannot be avoided since the variance term corresponds
to the optimal minimax rate of convergence on Pℓ,0 (Proposition 2 of [BM98]).
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3.5. Risks of ρ-estimators for models consisting of piecewise monotone functions. Let
(L2(R,ME), d2) be the metric space of square integrable functions on R with respect to the mea-
sure ME defined by ME(A) = E[M(A)] for all A ∈ B(R). Let S be a model satisfying the assump-
tions of Theorem 7. We know from (16) that a ρ-estimator ŝ satisfies

E
[
h2(s, ŝ)

]
≤ CR(s) with R(s) = inf

f∈S̄

{
1

2
d22(

√
s, f) +

dS(f)

n
log2+

(
n

dS(f)

)}
,(18)

where C is universal. It then remains to bound R(s) to control the risk of ŝ.

Two bounds on R(s) in density estimation can be deduced from the results of [BB16]: when s is
piecewise monotone and when

√
s is piecewise convex-concave. Dealing with the two other statistical

settings requires little supplementary work (see Remark 2 in Section 3.3). We obtain bounds that

are roughly of the order of (log2 n/n)2/3 when s is piecewise monotone, and (log2 n/n)4/5 when
√
s

is piecewise convex-concave. In the sequel, we propose to make explicit the first bound only.

We define for K ⊂ R and f ∈ S, VK(f) = supx∈K f(x) − infx∈K f(x). Let Mk be the family
gathering all the collections m of at most k disjoint intervals of R, and for m ∈ Mk,

F(m) =

{∑

K∈m
fK1K , where fK ∈ S is monotone on K

}
.

We define for m ∈ Mk and f ∈ F(m) of the form f =
∑

K∈m fK1K ,

Lm(f) =
∑

K∈m

[
ME(K)V 2

K (fK)
]1/3

.

In this equality, we use the convention +∞× 0 = 0 when ME(K) = +∞. For f ∈ Fk, we set

L(f) = inf
m∈Mk

Lm(f).

The result is the following.

Corollary 1. Any ρ-estimator ŝ on Fk (k ≥ 1) satisfies

E
[
h2(s, ŝ)

]
≤ C inf

f∈Fk

{
d22
(√
s, f
)
+ L(f)

(
log2 n

n

)2/3

+
k log2 n

n

}
.(19)

In particular, if s does belong to Fk, then f =
√
s also belongs to Fk and hence,

E
[
h2(s, ŝ)

]
≤ C

[
L
(√
s
)( log2 n

n

)2/3

+
k log2 n

n

]
.(20)

In the preceding inequalities, C is a universal constant.

We may also make inequality (20) more explicit when k = 2 and s is unimodal by bounding L(
√
s)

from above. We distinguish the cases according to the different frameworks.

Consider framework 1. Then, ME(K) = µ(K). Therefore, if the support of s is of finite
length Lsupp,

L(
√
s) ≤ 2L1/3

supp(sup
x∈R

s(x))1/3.



ESTIMATING A DENSITY, A HAZARD RATE, AND A TRANSITION INTENSITY 19

Consider now framework 2 and suppose that X has finite expectation. Then, for all interval K ⊂
[0,+∞), ME(K) is not larger than E(X) and hence

L(
√
s) ≤ 2 (E(X))1/3

(
sup
x≥0

s(x)
)1/3

.

As to framework 3, define the time T1 =
∫
Iobs

1Xt−=1 dt during which the (left limit) of the observed

Markov process is in state 1 and suppose that E(T1) <∞. Then, ME(K) ≤ E(T1) and thus

L(
√
s) ≤ 2 (E(T1))

1/3 ( sup
x∈Iobs

s(x)
)1/3

.

4. Selecting among estimators

It is often difficult in practice to find a global minimum of γ and thus to build ρ-estimators. In
particular, we do not know how to construct a ρ-estimator on the model S = Pℓ,r. In this section,
we propose an alternative way, more numerically friendly, to define a piecewise polynomial estimator
and study its properties.

4.1. Piecewise polynomial estimator selection. The quality of a ρ-estimator is, in the present
paper, assessed by means of Theorem 7. The event on which (14) is valid depends on the collections
(Id)d≥1 but not on the model S. In particular, the risk bound remains true when the model S vary
randomly among the class of models for which Assumption 2 is fulfilled.

An application of this result is (piecewise) polynomial estimator selection. Consider ℓ ≥ 1,
r ≥ 0 and an at most countable collection {ŝλ, λ ∈ Λ} ⊂ Pℓ,r of non-negative piecewise polynomial
estimators of degree at most r based on at most ℓ pieces. We deduce from Proposition 5 that the
(random) model S = {ŝλ, λ ∈ Λ} fulfils Assumption 2 with S̄ = S, dS(ŝλ) = (r + 2)(2ℓ+ 1) and Id
the class of unions of at most d intervals. Building a ρ-estimator on S amounts to selecting an
estimator among {ŝλ, λ ∈ Λ}: this estimator ŝ is of the form ŝ = ŝλ̂ and satisfies

E
[
h2(s, ŝλ̂)

]
≤ C

{
inf
λ∈Λ

E
[
h2(s, ŝλ)

]
+

(r + 1)ℓ log2+ (n/(ℓ(r + 1)))

n

}
,(21)

where C is a universal constant.

This risk bound is always worse than the one we would obtain for a ρ-estimator ŝ on S = Pℓ,r:

E
[
h2(s, ŝ)

]
≤ C ′

{
E
[
h2(s,Pℓ,r)

]
+

(r + 1)ℓ log2+ (n/(ℓ(r + 1)))

n

}
,(22)

where C ′ is universal. The interest of ŝλ̂ is practical: the construction of ŝ seems to be numerically
difficult whereas the selected estimator ŝλ̂ can be computed in a reasonable amount of time as soon
as Λ is finite and not too large (and when the computation of the estimators ŝλ is fast enough).

4.2. Selecting among a special collection of piecewise polynomial estimators. As we see
in (21), we should take Λ as large as possible to improve on the theoretical performances of the
selected estimator. However, the numerical complexity of the procedure depends heavily on the
number of estimators. In this section, we propose another way, inspired from [Sar14], to deal with
a special, but possibly very large, collection of piecewise polynomial ρ-estimators.
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LetM be the class of finite (non-empty) collections m of disjoint intervals K that are right-closed,
not reduced to a singleton, and of finite length. Let r ≥ 0, m ∈ M and

Pr(m) =

{∑

K∈m
fK1K , for all K ∈ m, fK is a polynomial function of degree at most r,

non-negative on K} .
We may compute a piecewise polynomial ρ-estimator ŝm on the convex model Pr(m):

Lemma 3. Let m ∈ M and for K ∈ m,

Pr(K) = {f1K, f is a polynomial function of degree at most r and non-negative on K} .
Then, supf∈Pr(K) LK(f) is finite and achieved at a point ŝK . Moreover, ŝm =

∑
K∈m ŝK max-

imizes LX over Pr(m) where X =
⋃

K∈mK. It is a ρ-estimator on the model S = Pr(m) that
vanishes γ.

We now consider some (possibly random) collection of distinct random variables {Yi, i ∈ Î}
where Î is a (possibly random) set such that n̂ = |Î| ≥ 2. Since the random variables (Yi)i∈Î are

distinct almost surely, we may order them: Y(1) < Y(2) < · · · < Y(n̂). We define the collection M̂
that gathers all the partitions m of [Y(1), Y(n̂)] of the form

m =
{
[Y(1), Y(n1)], (Y(n1), Y(n2)], (Y(n2), Y(n3)], . . . , (Y(nk), Y(n̂)]

}
,

where k ≥ 0 and 1 < n1 < n2 · · · < nk < n̂ with the convention that m = {[Y(1), Y(n̂)]} when k = 0.
We set for ℓ ∈ {1, . . . , n̂− 1},

M̂ℓ =
{
m ∈ M̂, |m| = ℓ

}
.

We consider a random variable ℓ̂ with values in {1, . . . , n̂ − 1}. For each m ∈ M̂ℓ̂, we define the
ρ-estimator ŝm on the model Pr(m) as in Lemma 3. The aim of this section is to explain how we

can select an estimator among the family {ŝm, m ∈ M̂ℓ̂}.

We define for m ∈ M̂, K ∈ m and mK ∈ M̂, the partition mK ∨K of K by

mK ∨K =
{
K ′ ∩K, K ′ ∈ mK , K

′ ∩K 6= ∅
}
.(23)

We now consider a positive number L and define the criterion γ2 for m ∈ M̂ℓ̂ by

γ2(ŝm) =
∑

K∈m
sup

m′∈M̂
ℓ̂

{
T (ŝm1K , ŝm′

1K)− L(r + 1)
|m′ ∨K| log2+ (n/(r + 1))

n

}
.(24)

The selected estimator is then any estimator ŝm̂ of the collection {ŝm, m ∈ M̂ℓ̂} minimizing γ2:

γ2(ŝm̂) = min
m∈M̂

ℓ̂

γ2(ŝm).(25)

Note that the above minimum is achieved since M̂ℓ̂ is finite.

Theorem 9. There exists a universal constant L0 such that if L ≥ L0, any estimator ŝm̂ minimiz-
ing (25) satisfies for all ξ > 0, and probability larger than 1− e−nξ,

h2(s, ŝm̂) ≤ C

{
inf

m∈M̂
ℓ̂

h2(s,Pr(m)) + L
(r + 1)ℓ̂ log2+(n/(r + 1))

n
+ ξ log+(1/ξ)

}
.(26)
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In particular,

E
[
h2(s, ŝm̂)

]
≤ C ′E

[
inf

m∈M̂
ℓ̂

h2(s,Pr(m)) + L
(r + 1)ℓ̂ log2+(n/(r + 1))

n

]
.(27)

In the above inequalities, C and C ′ are universal constants. Moreover, the event of probability larger
than 1 − e−nξ on which (26) holds may be chosen independently of (Yi)i∈Î , ℓ̂, n̂, r and the value
of L (when L ≥ L0).

This last inequality also says

E
[
h2(s, ŝm̂)

]
≤ C ′E

[
inf

m∈M̂
ℓ̂

h2(s, ŝm) + L
(r + 1)ℓ̂ log2+(n/(r + 1))

n

]
.

This risk bound is very similar to the one (21) obtained for the first selection rule (we only slightly
loose on the variance term).

The numerical complexity of this procedure may be significantly reduced by using an algorithm
of dynamic programming. The estimator ŝm̂ may then be computed in practice when the ŝK can
be constructed sufficiently fast and when n, n̂, ℓ̂ are small enough (we need to compute O(n̂2)
T (ŝK1K∩K ′, ŝK ′

1K∩K ′), and then use an algorithm whose numerical complexity is of the order

of O(n̂4ℓ̂2)). Unfortunately, the practical computation of the estimator may take too long in other
situations. For more informations on this algorithm, we refer to [Kan92] and Section 4.2 of [CR04].

We now consider framework 1. When Y(1) ≤ min1≤i≤nXi ≤ max1≤i≤nXi ≤ Y(n̂), ŝm maxi-
mizes L(·) and is therefore a maximum likelihood estimator. It is then natural to compare our

estimator ŝm̂ to the one ŝm̃ that maximizes the log likelihood L(ŝm) over m ∈ M̂ℓ̂. We refer to Sec-

tion 5 for numerical simulations when {Yi, i ∈ Î} = {Xi, i ∈ {1, . . . , n}} and r = 0 (and when the
parameter L is chosen as in the next section). We do not know theoretical results for ŝm̃. However,

when {Yi, i ∈ Î} is not random, then results concerning the maximizer of m 7→ L(ŝm) over m ∈ M̂ℓ̂
may be found in the literature. We refer to Theorem 3.2 of [Cas99] (when r = 0) and Theorem 2
of [BBM99] (when r ≥ 0) for upper-bounds of the Hellinger risk in density estimation. Note that
they put restrictions either on s, or on the minimal length of the intervals K of the partitions

m ∈ M̂ℓ̂. Besides, contrary to ours, their upper-bounds involve the Kullback Leibler divergence.

The bias term in (26) depends on the collection M̂ℓ̂ and thus on the choice of {Yi, i ∈ Î}. In
general, this bias term may be larger than the one we would obtain for a ρ-estimator on Pℓ̂,r.

Nevertheless, it may be controlled in favourable situations as explained below.

Suppose that {Yi, i ∈ Î} is rich enough to satisfy

N(A) = N({Yi, i ∈ Î} ∩A) for all A ∈ B(R).(28)

For instance, we may define {Yi, i ∈ Î} as follows:

• in framework 1, we may set Î = {1, . . . , n}, and for all i ∈ Î , Yi = Xi,

• in framework 2, we may consider a set Î ⊂ {1, . . . , n}, such that |Î| ≥ 2 and Î ⊃ {i ∈
{1, . . . , n}, Di = 1} and define for all i ∈ Î, Yi = Xi,

• in framework 3, we may consider a set Î ⊂ {1, . . . , n}, such that |Î| ≥ 2 and Î ⊃ {i ∈
{1, . . . , n}, T (i)

1,0 ∈ Iobs}, and define for all i ∈ Î, Yi = T
(i)
1,0.
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The lemma below allows to bound the bias term when r = 0.

Lemma 4. Suppose that condition (28) is met. Let r = 0, and for ℓ ≥ 1, M′
ℓ be the family that

gathers all the collections m of disjoint intervals of the form

m = {[x1, x2], (x2, x3], (x3, x4], . . . , (xℓ, xℓ+1]} ,(29)

where x1 < x2 < · · · < xℓ+1 (with the convention that m = {[x1, x2]} when ℓ = 1). Then, for all
ξ > 0, the following holds with probability larger than 1− e−nξ: for all ℓ ∈ {1, . . . , n̂ − 1}, m ∈ M′

ℓ

written as in (29) and such that Y(1) and Y(n̂) belong to [x1, xℓ+1], there exists m′ ∈ M̂ℓ such that
the ρ-estimator ŝm′ satisfies

h2(s, ŝm′) ≤ C

{
h2(s,P0(m)) +

ℓ log2+ (n/ℓ)

n
+ ξ log+(1/ξ)

}
.(30)

In particular, suppose that s vanishes outside [0, 1], and r = 0. Let P ′
ℓ̂,0

be the collection of

step functions based on partitions m of [0, 1] belonging to M′
ℓ̂
. Then, we deduce from (27) and the

preceding lemma when (28) holds, {Yi, i ∈ Î} ⊂ [0, 1] and L ≥ max{L0, 1},

E
[
h2(s, ŝm̂)

]
≤ C ′′E

[
h2(s,P ′

ℓ̂,0
) + L

ℓ̂ log2 n

n

]
,

where C ′′ is a universal constant. This risk bound, corresponds, up to slight modifications (in the
constant and the variance term), to the one we would obtain for the ρ-estimator on P ′

ℓ̂,0
.

4.3. About L. The preceding procedure suffers from a major drawback: the choice of L. This
parameter, is, indeed, involved in the construction of the estimator ŝm̂ and must be chosen by the
statistician. Unfortunately, Theorem 9 only applies when L ≥ L0, and its proof gives a value of L0

that is too large to be used in practice.

A simple solution to overcome this difficulty is to proceed as follows. We consider a (non-empty,
but at most countable) collection L of positive numbers. For each L ∈ L, we may use the procedure
described in the preceding section with the parameter L in (24) to select an estimator among the

collection {ŝm, m ∈ M̂ℓ̂}. The selected estimator is written ŝm̂L
to emphasize that it depends on L.

We then select an estimator among {ŝm̂L
, L ∈ L} as explained in Section 4.1.

A ρ-estimator on the (random) model {ŝm̂L
, L ∈ L} is of the form ŝ = ŝm̂

L̂
and satisfies for all

ξ > 0 and probability larger than 1− e−nξ,

h2(s, ŝ) ≤ C

[
inf
L∈L

{
h2(s, ŝm̂L

)
}
+

(r + 1)ℓ̂ log2+ (n/(r + 1))

n
+ ξ log+ (1/ξ)

]
,

where C is a universal constant. If L contains at least one number L larger than L0, we derive
from (26),

h2(s, ŝ) ≤ C ′


 inf
m∈M̂

ℓ̂

{
h2(s,Pr(m))

}
+max


1, inf

L∈L,
L≥L0

L


 ℓ̂(r + 1) log2+ (n/(r + 1))

n
+ ξ log+(1/ξ)


 ,

where C ′ is a universal constant.
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This estimator ŝ does not depend on the particular choice of a calibration parameter L but rather
on a collection L. The larger L, the better the risk bound. However, the numerical complexity of
the whole procedure increases with the size of L, and the constant C ′ above may be larger than
in (26).

4.4. Adaptive piecewise polynomial estimation. In this section, we modify the previous pro-
cedure in order to choose the number ℓ̂ of pieces from the data.

We define for k ∈ {1, . . . , n̂ − 1} the collection M̂k,lower of partitions m ∈ M̂ whose cardinal is
at most k,

M̂k,lower =
{
m ∈ M̂, |m| ≤ k

}
=

k⋃

ℓ=1

M̂ℓ.

We consider a random variable k̂ with values in {1, . . . , n̂ − 1} and aim at selecting an estimator

among {ŝm, m ∈ M̂k̂,lower}.

We consider some L > 0 and set for m ∈ M̂k̂,lower,

γ3(ŝm) =
∑

K∈m
sup

m′∈M̂
k̂,lower

{
T (ŝm1K , ŝm′

1K)− L(r + 1)
|m′ ∨K| log2+ (n/(r + 1))

n

}
.

The selected estimator ŝm̂ is any estimator of the family satisfying

γ3(ŝm̂) + 2L(r + 1)
|m̂| log2+ (n/(r + 1))

n
(31)

= inf
m∈M̂

k̂,lower

{
γ3(ŝm) + 2L(r + 1)

|m| log2+ (n/(r + 1))

n

}
.

Theorem 10. There exists a universal constant L0 such that if L ≥ L0, any estimator ŝm̂ satisfy-
ing (31) satisfies for all ξ > 0, and probability larger than 1− e−nξ,

h2(s, ŝm̂) ≤ C inf
m∈M̂

k̂,lower

{
h2(s,Pr(m)) + L

(r + 1)|m| log2+(n/(r + 1))

n
+ ξ log+(1/ξ)

}
.(32)

In particular,

E
[
h2(s, ŝm̂)

]
≤ C ′E

[
inf

m∈M̂
k̂,lower

{
h2(s,Pr(m)) + L

(r + 1)|m| log2+ (n/(r + 1))

n

}]
.(33)

In the above inequalities, C and C ′ are universal constants. Moreover, the event of probability larger
than 1 − e−nξ on which (32) holds may be chosen independently of (Yi)i∈Î , k̂, n̂, r and the value
of L (when L ≥ L0).

This risk bound improves when k̂ grows up. Moreover, (33) implies

E
[
h2(s, ŝm̂)

]
≤ C ′E

[
inf

1≤ℓ̂≤k̂

{
inf

m∈M̂
ℓ̂

{
h2(s,Pr(m))

}
+ L

(r + 1)ℓ̂ log2+(n/(r + 1))

n

}]
.
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The right-hand side of this inequality corresponds to the bound (27) achieved by the estimator of

Section 4.2 when the choice of ℓ̂ is the best possible among {1, . . . , k̂}.
The quality and the construction of the estimator ŝm̂ still depends on {Yi, i ∈ Î}. However, when

k̂ = n̂, and when {Yi, i ∈ Î} is rich enough, the infimum in (33) can be taken over the infinite
collection M (up to a modification of C ′), as shown below.

Lemma 5. Suppose that {Yi, i ∈ Î} is chosen in such a way that N satisfies (28). There exists a
universal constant C such that for all ξ > 0 and probability larger than 1 − e−nξ: for all m ∈ M,

there exists m′ ∈ M̂ such that

h2(s, ŝm′) ≤ C

{
h2(s,Pr(m)) +

(r + 1)|m| log2+ (n/(|m|(r + 1)))

n
+ ξ log+(1/ξ)

}
.

Moreover, |m′| ≤ 2|m|+ 3.

Therefore, when k̂ = n̂, when (28) is satisfied, and when L ≥ max{1, L0}, we deduce from (33)
that ŝm̂ satisfies

E
[
h2(s, ŝm̂)

]
≤ C ′′E

[
inf

m∈M

{
h2(s,Pr(m)) + L

|m|(r + 1) log2+(n/(r + 1))

n

}]
,

where C ′′ is a universal constant. Now, ∪m∈M,
|m|=ℓ

Pr(m) is dense in Pℓ,r in the metric space (S, h),
and hence

E
[
h2(s, ŝm̂)

]
≤ C ′′E

[
inf
ℓ≥1

{
h2(s,Pℓ,r) + L

ℓ(r + 1) log2+(n/(r + 1))

n

}]
,

≤ C ′′ inf
ℓ≥1

R(ℓ),

where

R(ℓ) = E
[
h2(s,Pℓ,r)

]
+ L

ℓ(r + 1) log2+(n/(r + 1))

n
.

This term R(ℓ) can be interpreted as an upper-bound of the risk of a ρ-estimator on Pℓ,r (up to
constants), barely worse than the one given by Theorem 7 and that is written in (22).

Remark. As in Section 4.2, we could compare this estimator with the one that maximizes a

penalized log-likelihood criterion of the form m 7→ L(ŝm)− pen(m) over m ∈ M̂k̂,lower. We do not

know theoretical results for this estimator when {Yi, i ∈ Î} is random, but refer to [RMG10] for a
numerical study in framework 1.

5. Numerical simulations

We consider framework 1, r = 0, ℓ ∈ {1, . . . , n}, {Yi, i ∈ Î} = {X1, . . . ,Xn} and the (random)

collection M̂ℓ consisting of partitions of [X(1),X(n)] of size ℓ defined in Section 4.2. For each

m ∈ M̂ℓ, we consider the ρ- and maximum likelihood estimator ŝm on P0(m) defined by

ŝm =
∑

K∈m

N(K)

µ(K)
with N(K) =

1

n

n∑

i=1

1K(Xi).



ESTIMATING A DENSITY, A HAZARD RATE, AND A TRANSITION INTENSITY 25

We carry out in this section a numerical study to compare two selection rules described in Sec-
tions 4.2 and 4.3.

• The first procedure is based on the likelihood. We select the partition m̂(1,ℓ) ∈ M̂ℓ by
maximizing the map

m 7→ L(ŝm) =
1

n

n∑

i=1

log ŝm(Xi) over m ∈ M̂ℓ.

• The second procedure is based on the ρ-estimation method. We consider a set A consisting
of 300 equally spaced points over [0, 3], and define

L =

{
a

log2 n
, a ∈ A

}
.

For each L ∈ L, we use the procedure of Section 4.2 specified in (24) and (25) to get a

partition m̂L ∈ M̂ℓ. We then use the procedure of Section 4.1 to pick out an estimator
among {ŝm̂L

, L ∈ L} as explained in Section 4.3. This leads to a selected partition of the

form m̂L̂ ∈ M̂ℓ that will be denoted in the sequel by m̂(2,ℓ).

We consider four densities s:

Example 1. s is the density of a Normal distribution

s(x) =
1√
2π
e−x2/2 for all x ∈ R.

Example 2. s is the density of a log Normal distribution

s(x) =
1

x
√
2π
e−

1
2
log2 x

1(0,+∞)(x) for all x ∈ R.

Example 3. s is the density of an exponential distribution

s(x) = e−x
1[0,+∞)(x) for all x ∈ R.

Example 4. s is the density of a mixture of uniform distributions

s(x) =
1

2
× 31[0,1/3](x) +

1

8
× 31[1/3,2/3](x) +

3

8
× 31[2/3,1](x) for all x ∈ R.

We simulate Nrep samples (X1, . . . ,Xn) according to a density s defined above, and compute, in
each of these samples the two selected estimators. Let, for k ∈ {1, 2} and i ∈ {1, . . . , Nrep}, ŝm̂(k,ℓ,i)

be the value of the estimator corresponding to the kth procedure and the ith sample. We evaluate
the quality of the estimators by

R̂(k, ℓ) =
1

Nrep

Nrep∑

i=1

h2
(
s, ŝm̂(k,ℓ,i)

)
.

We estimate the probability that the two estimators coincide by

P̂equal(ℓ) =
1

Nrep

Nrep∑

i=1

1m̂(2,ℓ,i)=m̂(1,ℓ,i)

Results are summarized in Figures 1 (when n = 50) and 2 (when n = 100).
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Ex 1 Ex 2 Ex 3 Ex 4 Ex 1 Ex 2 Ex 3 Ex 4

R̂(1, 2) 0.057 0.078 0.064 0.052 R̂(1, 5) 0.062 0.063 0.061 0.060

R̂(2, 2) 0.057 0.080 0.065 0.051 R̂(2, 5) 0.059 0.062 0.059 0.060
R̂(2,2)

R̂(1,2)
1.00 1.02 1.02 0.99 R̂(2,5)

R̂(1,5)
0.95 0.98 0.98 1.00

P̂equal(2) 0.76 0.75 0.80 0.78 P̂equal(5) 0.27 0.33 0.32 0.39

R̂(1, 3) 0.052 0.056 0.053 0.048 R̂(1, 6) 0.067 0.068 0.066 0.065

R̂(2, 3) 0.047 0.055 0.052 0.047 R̂(2, 6) 0.065 0.067 0.065 0.065
R̂(2,3)

R̂(1,3)
0.91 0.98 0.97 0.99 R̂(2,6)

R̂(1,6)
0.97 0.99 0.99 1.00

P̂equal(3) 0.63 0.64 0.66 0.57 P̂equal(6) 0.28 0.33 0.33 0.37

R̂(1, 4) 0.057 0.058 0.056 0.054 R̂(1, 7) 0.071 0.072 0.071 0.070

R̂(2, 4) 0.052 0.055 0.053 0.053 R̂(2, 7) 0.070 0.072 0.070 0.071
R̂(2,4)

R̂(1,4)
0.92 0.94 0.95 0.98 R̂(2,7)

R̂(1,7)
0.99 1.00 1.00 1.00

P̂equal(4) 0.32 0.40 0.40 0.43 P̂equal(7) 0.32 0.36 0.35 0.41

Figure 1. Results for simulated data with n = 50, Nrep = 10000.

Ex 1 Ex 2 Ex 3 Ex 4 Ex 1 Ex 2 Ex 3 Ex 4

R̂(1, 2) 0.055 0.074 0.056 0.035 R̂(1, 5) 0.038 0.038 0.037 0.033

R̂(2, 2) 0.056 0.076 0.057 0.034 R̂(2, 5) 0.035 0.034 0.035 0.033
R̂(2,2)

R̂(1,2)
1.03 1.02 1.02 0.98 R̂(2,5)

R̂(1,5)
0.92 0.94 0.95 1.00

P̂equal(2) 0.63 0.60 0.70 0.80 P̂equal(5) 0.15 0.18 0.17 0.23

R̂(1, 3) 0.034 0.042 0.037 0.023 R̂(1, 6) 0.041 0.040 0.039 0.037

R̂(2, 3) 0.033 0.042 0.036 0.024 R̂(2, 6) 0.039 0.040 0.038 0.037
R̂(2,3)

R̂(1,3)
0.96 1.00 0.98 1.01 R̂(2,6)

R̂(1,6)
0.95 0.97 0.98 1.00

P̂equal(3) 0.71 0.63 0.63 0.57 P̂equal(6) 0.10 0.15 0.11 0.19

R̂(1, 4) 0.036 0.035 0.034 0.028 R̂(1, 7) 0.044 0.043 0.043 0.40

R̂(2, 4) 0.032 0.034 0.032 0.028 R̂(2, 7) 0.043 0.043 0.042 0.40
R̂(2,4)

R̂(1,4)
0.90 0.96 0.94 0.98 R̂(2,7)

R̂(1,7)
0.96 0.99 0.98 1.00

P̂equal(4) 0.29 0.39 0.35 0.33 P̂equal(7) 0.09 0.11 0.11 0.16

Figure 2. Results for simulated data with n = 100, Nrep = 1000.

Numerically, we observe in these examples that the two estimators ŝm̂(1,ℓ) and ŝm̂(2,ℓ) perform
similarly. Their risks are close and the estimators may even coincide. In Example 4, s does

belong to P3,0 and the fractions R̂(2, ℓ)/R̂(1, ℓ) are very close to 1. In the other examples, s is
not piecewise constant, and the robustness properties of the second procedure may be useful. The

fractions R̂(2, ℓ)/R̂(1, ℓ) suggest indeed that the second procedure improves the risk of the first one
by a few percent, at least when the size ℓ of the partitions is well adapted to the underlying density,

that is when ℓ corresponds to the smallest values of R̂(1, ℓ) and R̂(2, ℓ).
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Remark. The fractions R̂(2, ℓ)/R̂(1, ℓ) are computed with all significant digits and are then
rounded.

6. Proofs

6.1. Proof of Lemma 1. Let
√
q = (

√
f +

√
g)/2 and

X = {x ∈ R, g(x) 6= 0 or f(x) 6= 0} .
Then,

1

2

∫

X

√
g −√

f
√
q

(√
s−√

q
)2

dM =
1

2

∫

X

√
g −√

f
√
q

s dM +
1

2

∫

X

(√
g −

√
f
)√

q dM

−
∫

X

(√
g −

√
f
)√

s dM.

Note that

h2(s, g) − h2(s, f) =
1

2

∫

X
(g − f) dM +

∫

X

√
s
(√

f −√
g
)
dM.

Therefore,

1

2

∫

X

√
g −√

f
√
q

(√
s−√

q
)2

dM =
1

2

∫

X

√
g −√

f
√
q

s dM +
1

2

∫

X

(√
g −

√
f
)√

q dM

−1

2

∫

X
(g − f) dM + h2(s, g) − h2(s, f)

= TE(f, g) + h2(s, g)− h2(s, f).(34)

Now,

1

2

∫

X

√
g −√

f
√
q

(√
s−√

q
)2

dM =

∫

X

√
g −√

f√
f +

√
g

(√
s−

√
f +

√
g

2

)2

dM

≤
∫

X

(√
s−

√
f +

√
g

2

)2

dM

≤ 1

4

∫

X

((√
s−

√
f
)
+
(√
s−√

g
))2

dM.

By using the inequality (x+ y)2 ≤ (1 + α)x2 + (1 + α−1)y2,

1

2

∫

X

√
g −√

f
√
q

(√
s−√

q
)2

dM ≤ 1 + α

4

∫

X

(√
s−

√
f
)2

dM +
1 + α−1

4

∫

X

(√
s−√

g
)2

dM

≤ 1 + α

2
h2(s, f) +

1 + α−1

2
h2(s, g).

We now put this inequality into (34) to get

TE(f, g) ≤
3 + α

2
h2(s, f)− 1− α−1

2
h2(s, g).



28 MATHIEU SART

The right-hand side of (3) follows from this inequality with α = 3. As to the left-hand side, note
that we also have (setting α = 3, and exchanging the role of f and g),

TE(g, f) ≤ 3h2(s, g) − 1

3
h2(s, f).

Yet, TE(f, g) = −TE(g, f) and hence TE(f, g) ≥ 1
3h

2(s, f)− 3h2(s, g) as wished. �.

6.2. Proof of Theorem 1. In each framework, the measure N can be put of the form N(A) =

n−1
∑

i∈Î 1A(Yi) where Î ⊂ {1, . . . , n}, and where the Yi are suitable real-valued random variables.

For instance, in framework 1, Î = {1, . . . , n}, Yi = Xi, in framework 2, Î = {i ∈ {1, . . . , n},Di = 1},
Yi = Xi, and in framework 3, Î = {i ∈ {1, . . . , n}, T (i)

1,0 ∈ Iobs}, Yi = T
(i)
1,0.

Set Ĵ = {i ∈ Î , Yi ∈ X}. Then, for f, g ∈ S, T (f, g) and LX (f) take the form

T (f, g) =
1

n

∑

j∈Ĵ
ψ

(
g(Yj)

f(Yj)

)
− 1

4

∫

X
(g(x)− f(x)) dM(x)

LX (f) =
1

n

∑

j∈Ĵ
log f(Yj)−

∫

X
f(x) dM(x).

The proof is straightforward if Ĵ = ∅ since then 4T (f, g) = LX (g)−LX (f) and 4γ(f) = supg∈S LX (g)−
LX (f). We suppose from now on that Ĵ 6= ∅.
Claim 1. Let S̄ = {f ∈ S, LX (f) 6= −∞} and f̄ ∈ S̄. Then, supg∈S̄ T (f̄ , g) = 0 if and only if

supg∈S̄ LX (g)− LX (f̄) = 0.

Proof. Suppose that supg∈S̄ LX (g) − LX (f̄) = 0.

Let S̄1 =
{
g ∈ S̄, g = f̄ , N a.s

}
and S̄2 = S̄ \ S̄1. When g ∈ S̄1,

T (f̄ , g) = −1

4

∫

X

(
g(x)− f̄(x)

)
dM(x)

=
1

4

(
LX (g) − LX (f̄)

)
.

Therefore, T (f̄ , g) ≤ 0.

Let now g ∈ S̄2, u ∈ [0, 1] and ζ = g − f̄ . Note that f̄ + uζ = (1 − u)f̄ + ug ∈ S̄ and thus
LX (f̄ + uζ)− LX (f̄) ≤ 0. We introduce the real-valued map ℘1 for u ∈ [0, 1] by

℘1(u) = LX (f̄ + uζ)− LX (f̄)

=
1

n

∑

j∈Ĵ
log

(
f̄(Yj) + uζ(Yj)

f̄(Yj)

)
− u

∫

X
ζ(x) dM(x).

We now define ℘2 for u ∈ [0, 1] by

℘2(u) = 4T (f̄ , f̄ + uζ)

=
4

n

∑

j∈Ĵ
ψ

(
f̄(Yj) + uζ(Yj)

f̄(Yj)

)
− u

∫

X
ζ(x) dM(x).
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Some computations show that ℘1 and ℘2 are twice differentiable on [0, 1] and

℘1(0) = ℘2(0) = 0

℘′
1(0) = ℘′

2(0) =
1

n

∑

j∈Ĵ

ζ(Yj)

f̄(Yj)
−
∫

X
ζ(x) dM(x)

℘′′
1(0) = ℘′′

2(0) = − 1

n

∑

j∈Ĵ

(
ζ(Yj)

f̄(Yj)

)2

.

Therefore, ℘′′
1(0) and ℘

′′
2(0) are always negative.

Since ℘1(u) is non-positive for all u ∈ [0, 1], ℘′
1(0) ≤ 0. The above computations show the

existence of u1 ∈ (0, 1] such that ℘2(u) ≤ 0 for all u ∈ [0, u1]. Now, ℘2 is concave, and hence
non-positive on [0, 1]. In particular, ℘2(1) = T (f̄ , g) ≤ 0.

Likewise, supg∈S̄ T (f̄ , g) = 0 implies supg∈S̄ LX (g) − LX (f̄) = 0.

�

Let s̃ ∈ S such that LX (s̃) ≥ LX (g) for all g ∈ S and LX (s̃) 6= −∞. The above claim then shows
that T (s̃, g) ≤ 0 for all g ∈ S such that LX (g) 6= −∞. Choose now g ∈ S such that LX (g) = −∞.
Define for u ∈ [0, 1], fu = (1− u)s̃ + ug ∈ S and note that f1 = g. If u ∈ [0, 1), LX (fu) 6= −∞ and
thus T (s̃, fu) ≤ 0. The continuity of the map u ∈ [0, 1] 7→ T (s̃, fu) ensures that T (s̃, g) ≤ 0. Finally,
γ(s̃) = 0.

Conversely, let ŝ be a ρ-estimator satisfying γ(ŝ) = 0. We begin by proving that LX (ŝ) 6= −∞.
Consider g ∈ S such that LX (g) 6= −∞ and define for u ∈ [0, 1], fu = (1− u)ŝ+ ug ∈ S,

℘3(u) = T (ŝ, fu)

=
1

n

∑

j∈Ĵ
ψ

(
(1− u)ŝ(Yj) + ug(Yj)

ŝ(Yj)

)
− 1

4

∫

X
(fu(x)− ŝ(x)) dM(x).

When j ∈ Ĵ , g(Yj) > 0. Therefore, if Ĵ ′ =
{
j ∈ Ĵ , ŝ(Yj) = 0

}
and u ∈ (0, 1],

℘3(u) =
|Ĵ ′|
n

+
1

n

∑

j∈Ĵ\Ĵ ′

ψ

(
(1− u)ŝ(Yj) + ug(Yj)

ŝ(Yj)

)
− 1

4

∫

X
(fu(x)− ŝ(x)) dM(x).

Therefore, if Ĵ ′ 6= ∅ choosing u > 0 small enough leads to ℘3(u) ≥ |Ĵ ′|/(2n) > 0, which is impossible

as γ(ŝ) = 0. Therefore, Ĵ ′ = ∅ and LX (ŝ) 6= −∞. The claim then asserts that for all g ∈ S such
that LX (g) 6= −∞, LX (g) ≤ LX (ŝ). This inequality being true if LX (g) = −∞, the proof is
complete. �



30 MATHIEU SART

6.3. Sketch of the proof of Theorem 2. We define the elements Yi, Î, Ĵ as in the proof of
Theorem 1. Let for x ∈ [0,+∞], ψ2(x) = ψ(x2) and for f, g ∈ F ,

T2(f, g) = T (f2, g2) =
1

n

∑

j∈Ĵ
ψ2

(
g(Yj)

f(Yj)

)
− 1

4

∫

X

(
g2(x)− f2(x)

)
dM(x),

LX ,2(f) = LX (f2) =
2

n

∑

j∈Ĵ
log f(Yj)−

∫

X
f2(x) dM(x).

The proof is very similar to the one of Theorem 1. The main change lies in the replacement of the
symbols S, T , LX by F , T2, LX ,2. We will only give some insight into why Claim 1 remain valid
under these modifications.

As in the proof of Theorem 1, we may suppose that Ĵ 6= ∅.

Claim 2. Let F̄ = {g ∈ F , LX ,2(g) 6= −∞} and f̄ ∈ F̄ . Then, supg∈F̄ T2(f̄ , g) = 0 if and only if

supg∈F̄ LX ,2(g) − LX ,2(f̄) = 0.

Sketch of the proof. We prove that supg∈F̄ LX ,2(g) − LX ,2(f̄) = 0 implies supg∈F̄ T2(f̄ , g) = 0. The

proof of the converse is similar. Let F̄1 =
{
g ∈ F̄ , g = f̄ , N a.s

}
and F̄2 = F̄ \ F̄1. As in the proof

of Claim 1, T2(f̄ , g) = (LX ,2(g)−LX ,2(f̄))/4 when g ∈ F̄1 and is thus non-positive. Let now g ∈ F̄2,
u ∈ [0, 1] and ζ = g− f̄ . Note that f̄+uζ = (1−u)f̄+ug ∈ F̄ and thus LX ,2(f̄ + uζ)−LX ,2(f̄) ≤ 0.

We introduce the real-valued map ℘1 for u ∈ [0, 1] by

℘1(u) = LX ,2(f̄ + uζ)− LX ,2(f̄)

=
2

n

∑

j∈Ĵ
log

(
f̄(Yj) + uζ(Yj)

f̄(Yj)

)
− u2

∫

X
ζ2(x) dM(x)− 2u

∫

X
ζ(x)f̄(x) dM(x).

We now define ℘2 for u ∈ [0, 1] by

℘2(u) = 4T2(f̄ , f̄ + uζ)

=
4

n

∑

j∈Ĵ
ψ2

(
f̄(Yj) + uζ(Yj)

f̄(Yj)

)
− u2

∫

X
ζ2(x) dM(x)− 2u

∫

X
ζ(x)f̄(x) dM(x).

Some computations show that ℘1(0) = ℘2(0) = 0, ℘′
1(0) = ℘′

2(0), ℘
′′
1(0) = ℘′′

2(0) < 0.

As ℘1(u) is non-positive for all u ∈ [0, 1], ℘′
1(0) ≤ 0. There exists therefore u1 ∈ (0, 1] such that

℘2(u) ≤ 0 for all u ∈ [0, u1]. Since ψ2 is concave, ℘2 is also concave, and ℘2 is non-positive on [0, 1].
In particular, ℘2(1) = T2(f̄ , g) ≤ 0.

�

6.4. Proof of Theorem 3. Let Ms be the (random) measure defined by

Ms(A) =

∫

A
s dM for all A ∈ B(R).
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Let, for each A ∈ B(R), Q(A) be a random variable such that Q(·) defines a measure on (R,B(R)).
Let ϕ be a bounded function and

ZQ(ϕ) =

∫

R

ϕdQ− E

[∫

R

ϕdQ

]
.

Since E [N(A)] = E [Ms(A)] for all A ∈ B(R), Z(ϕ) can be written as Z(ϕ) = ZN (ϕ)− ZMs(ϕ).

We now aim at controlling the deviations of ZQ. We begin by showing that this issue boils down
to a suitable control of the deviations of Q(A)− E[Q(A)].

Lemma 6. Let F be a collection of functions of S such that |ϕ| ≤ 1 for all ϕ ∈ F . Consider a
collection A ⊂ B(R) such that

A ⊃ {{x ∈ R, ϕ+(x) > t}, ϕ ∈ F , t ∈ (0, 1)} ∪ {{x ∈ R, ϕ−(x) > t}, ϕ ∈ F , t ∈ (0, 1)}.
Suppose that supA∈A E[Q(A)] ≤ 1, that there exist non-negative numbers α, β, and an event on
which: for all A ∈ A,

|Q(A)− E[Q(A)]| ≤ √
α
(√

Q(A) +
√

E[Q(A)]
)
+ β.(35)

Then, on this event, for all ϕ ∈ F ,

|ZQ(ϕ)| ≤ C

{√
αυQ(ϕ) log+(1/υQ(ϕ)) + α+ β

}
,(36)

where

υQ(ϕ) = min

{∫

R

ϕ2 dQ,E

[∫

R

ϕ2 dQ

]}
.

Moreover, for all ε > 0,

|ZQ(ϕ)| ≤ ευQ(ϕ) + Cεα log+(1/α) + Cβ.(37)

The constant C is universal whereas Cε only depends on ε.

The proof of this result is delayed to Section 6.5 below. As N is an empirical measure, we can
prove that (35) is valid with Q = N on an event of high probability by using, for example, the
Vapnik-Chervonenkis inequalities for relative deviations. More precisely:

Lemma 7. Let A ⊂ B(R) be a collection of Borel sets and SA(2n) be the Vapnik-Chervonenkis
shatter coefficient of A defined by

SA(2n) = max
x1,...,x2n∈R

|{{x1, . . . , x2n} ∩A,A ∈ A}| .

Suppose that there exists an at most countable set A′ ⊂ A such that: for all A ∈ A, there exists a
sequence (Am)m≥0 ∈ A′N satisfying limm→+∞ 1Am(x) = 1A(x) for every x ∈ R.

Let now ξ > 0. Then, there exist a universal constant c1 and an event Ωξ,1 such that P [Ωξ,1] ≥
1− e−nξ and on which (35) holds for Q = N and for all A ∈ A with α = c1[log+ |SA(2n)| + nξ]/n
and β = 0.

We now need to study the deviations of ZMs . There is nothing to prove in framework 1 since then
ZMs = 0. The lemma below allows to control the deviations of ZMs(ϕ) for all bounded function ϕ.
It is proved in Section 6.7.
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Lemma 8. Define G(t) = P (X ≥ t) in framework 2 and G(t) = P (Xt− = 1)1Iobs(t) in framework 3.
For all ξ > 0, there exists an event Ωξ,2 such that P [Ωξ,2] ≥ 1 − e−nξ and on which: for all ε > 0,
and measurable function ϕ such that |ϕ(x)| ≤ 1 for all x ∈ R,

|ZMs(ϕ)| ≤ ευMs(ϕ) + C ′
ε inf
α≥0

{
[ξ + 1/n]

∫ α

0
s dµ+

∫ ∞

α
sGdµ+ ξ + 1/n

}
.(38)

Moreover, in framework 2,

|ZMs(ϕ)| ≤ ευMs(ϕ) + C ′′
ε (ξ + 1/n) log+ [1/(ξ + 1/n)] .(39)

In these inequalities, C ′
ε and C ′′

ε only depend on ε.

The computation of the infimum in (38) may be avoided in framework 3 when one restricts the
collection among which the functions ϕ may vary. More precisely, a bound on ZMs(ϕ) may be
deduced from the following result to be proved in Section 6.8 and from Lemma 7.

Lemma 9. Consider framework 3. Let for d ≥ 1, I2d be the class of unions of at most 2d intervals.
Then, there exist a universal constant c2 and an event Ωξ,2 such that P [Ωξ,2] ≥ 1 − e−nξ and on
which (35) holds true for Q =Ms for all A ∈ I2d with α = β = c2[d log+(n/d) + nξ]/n.

We are now in position to prove (8). In framework 1, we use Lemmas 6 and 7 to deduce on Ωξ,1:

|Z(ϕ)| ≤ ευ(ϕ) +Cε
c1[log+ |SA(2n)| + nξ]

n
log+

(
n

c1[log+ |SA(2n)|+ nξ]

)
.

Sauer’s lemma shows that there exists c′1 such that log+ |SA(2n)| ≤ c′1d log+(n/d). Inequality (8)
then follows from elementary computations.

We now turn to frameworks 2 and 3. As in framework 1, Lemmas 6 and 7 imply on Ωξ+(log 2)/n,1:

|ZN (ϕ)| ≤ ευN (ϕ) + Cε

[
d log2+(n/d)

n
+ ξ log+(1/ξ)

]
,

where Cε only depends on ε. It follows from Lemmas 6, 8 and 9 that on Ωξ+(log 2)/n,2:

|ZMs(ϕ)| ≤ ευMs(ϕ) + C ′
ε

[
d log2+(n/d)

n
+ ξ log+(1/ξ)

]
,

where C ′
ε only depends on ε. Since |Z(ϕ)| ≤ |ZN (ϕ)| + |ZMs(ϕ)|, we get on Ωξ+(log 2)/n,1 ∩

Ωξ+(log 2)/n,2:

|Z(ϕ)| ≤ ε(υN (ϕ) + υMs(ϕ)) + (Cε + C ′
ε)

[
d log2+(n/d)

n
+ ξ log+(1/ξ)

]
.(40)

Now,

υN (ϕ) ≤ E

[∫

R

ϕ2 dN

]
= E

[∫

R

ϕ2 dMs

]
.(41)
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In framework 2, we deduce from Lemma 8 with ε = 1/2 that on Ωξ+(log 2)/n,2:

∣∣∣∣
∫

R

ϕ2 dMs − E

[∫

R

ϕ2 dMs

]∣∣∣∣ ≤
1

2
E

[∫

R

ϕ4 dMs

]
+ C(ξ + 1/n) log+ [1/(ξ + 1/n)]

≤ 1

2
E

[∫

R

ϕ4 dMs

]
+ C

[
d log2+(n/d)

n
+ ξ log+(1/ξ)

]
,(42)

where C is universal. In framework 3,

{
x ∈ R, ϕ2(x) > t

}
=
{
x ∈ R, ϕ+(x) >

√
t
}⋃{

x ∈ R, ϕ−(x) >
√
t
}

is a union of at most 2d intervals. Lemma 9 with Lemma 7 show that (42) remains valid on
Ωξ+(log 2)/n,2. Moreover, as |ϕ| ≤ 1,

E

[∫

R

ϕ2 dMs

]
≤ 2

∫

R

ϕ2 dMs + 2C

[
d log2+(n/d)

n
+ ξ log+(1/ξ)

]
.

By using (41),

υN (ϕ) ≤ 2υMs(ϕ) + 2C

[
d log2+(n/d)

n
+ ξ log+(1/ξ)

]
.

We put this inequality in (40) and use υMs(ϕ) ≤ υ(ϕ) to show (8) on Ωξ+(log 2)/n,1 ∩ Ωξ+(log 2)/n,2.
Moreover,

P
[(
Ωξ+(log 2)/n,1 ∩ Ωξ+(log 2)/n,2

)c] ≤ e−nξ.

�

6.5. Proof of Lemma 6. For convenience, and to make the proof more readable, we introduce a
new notation. Given x, y ∈ R, the assertion: there exists a universal constant C such that x ≤ Cy
is written in the sequel as x 4 y. The claim below follows from elementary computations.

Claim 3. When (35) holds true,

|Q(A)− E[Q(A)]| 4
√
αmin{Q(A),E[Q(A)]} + α+ β.(43)

Proof of Claim 3. For reasons of symmetry, we may suppose that Q(A) ≥ E[Q(A)] to prove (43).
We derive from (35),

|Q(A)− E[Q(A)]| 4
√
αQ(A) + α+ β

4
√
α (Q(A)− E[Q(A)]) +

√
αE[Q(A)] + α+ β.

For all ε > 0, we deduce from the inequality 2
√
xy ≤ εx+ ε−1y, that

|Q(A)− E[Q(A)]| ≤ 1

2
|Q(A)− E[Q(A)]|+ C

[√
αE[Q(A)] + α+ β

]
,

where C is universal. This shows (43). �
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Without loss of generality, we prove the lemma when the functions ϕ of F are non-negative. We
suppose moreover that we are on an event on which (35) holds true. Let for t ∈ (0, 1), Aϕ,t =
{x ∈ R, ϕ(x) > t}. As in [Bar16], the notion of integral is a great help: for all x ∈ R,

ϕ(x) =

∫ 1

0
1Aϕ,t(x) dt.

Let ε > 0 and η ∈ (0, 1] to be specified later. Since

ϕ2(x) = 2

∫ 1

0
t1Aϕ,t(x) dt,

we get

|Z(ϕ)| − ευ(ϕ) =

∣∣∣∣
∫ 1

0
(Q(Aϕ,t)− E[Q(Aϕ,t)]) dt

∣∣∣∣− 2εmin

{∫ 1

0
tQ(Aϕ,t) dt,

∫ 1

0
tE[Q(Aϕ,t)] dt

}

≤
∫ 1

0
{|Q(Aϕ,t)− E[Q(Aϕ,t)]| − 2εtmin {Q(Aϕ,t),E[Q(Aϕ,t)]}} dt

≤
∫ η

0
|Q(Aϕ,t)− E[Q(Aϕ,t)]| dt

+

∫ 1

η
{|Q(Aϕ,t)− E[Q(Aϕ,t)]| − 2εtmin {Q(Aϕ,t),E[Q(Aϕ,t)]}} dt.(44)

It follows from (43) and the inequality 2
√
xy ≤ εx+ ε−1y,

|Q(Aϕ,t)− E[Q(Aϕ,t)]| − 2εtmin {Q(Aϕ,t),E[Q(Aϕ,t)]} 4 α/(εt) + α+ β.

We deduce,

|Z(ϕ)| − ευ(ϕ) 4
√
α

∫ η

0

√
E[Q(Aϕ,t)] dt+ (α/ε) log (1/η) + α+ β.(45)

We now optimize this result with respect to ε and η:

|Z(ϕ)| 4 √
α inf

η∈(0,1]

{√
υQ(ϕ) log(1/η) +

∫ η

0

√
E[Q(Aϕ,t)] dt

}
+ α+ β.

It remains to use E[Q(Aϕ,t)] ≤ 1 to prove (36).

Elementary computations then show (37). As x 7→ x log+(1/x) is non-decreasing, for all x ≤ y,
xy log+(1/x) ≤ y2 log+(1/y).Moreover, when x ≥ y, log+(1/x) ≤ log+(1/y) and hence xy log+(1/x) ≤
xy log+(1/y). Therefore, for all x, y > 0,

xy log+(1/x) ≤ max{x, y}y log+(1/y)
≤ (x+ y)y log+(1/y).

We thus obtain for all ε > 0,

2
√
xy log+(1/x) ≤ ε(x+ y) + ε−1y log+(1/y)

≤ εx+ Cεy log+(1/y),

where Cε = ε+ ε−1. We use this inequality with x = υQ(ϕ) and y = α to get

2
√
αυQ(ϕ) log+(1/υQ(ϕ)) ≤ ευQ(ϕ) + Cεα log+ (1/α).
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This proves (37). �

6.6. Proof of Lemma 7. Let A ∈ A and (Am)m≥1 be the sequence given by the theorem. Then,
N(Am) converges to N(A). Moreover, it follows from the dominated convergence theorem that
E
[∫

R
|1Am − 1A| dN

]
converges to 0. In particular, E[N(Am)] converges to E[N(A)]. We deduce

that

sup
A∈A

|
√
N(A)−

√
E[N(A)]| = sup

A∈A′

|
√
N(A)−

√
E[N(A)]|.

From now on, we may therefore consider, without loss of generality, the collection A as at most
countable. We then use the celebrated Vapnik-Chervonenkis inequalities for relative deviation (see
for instance page 24 of [DL12]) to prove the lemma. We recall them below:

Theorem 11 (Vapnik-Chervonenkis inequalities for relative deviation). Let Z1, . . . , Zn be n inde-
pendent and identically distributed random variables with values in a space X . Let B be an at most
countable collection of measurable sets. Define the empirical measure νn(B) = n−1

∑n
i=1 1B(Zi),

ν(B) = E[µn(B)] and the Vapnik-Chervonenkis shatter coefficient

SB(2n) = max
z1,...,z2n∈X

|{{z1, . . . , z2n} ∩B,B ∈ B}| .

Then, for all t > 0,

P

(
sup
B∈B

ν(B)− νn(B)√
ν(B)

≥ t

)
≤ 4SB(2n)e

−nt2/4

P

(
sup
B∈B

νn(B)− ν(B)√
νn(B)

≥ t

)
≤ 4SB(2n)e

−nt2/4.

In particular,

P

(
sup
B∈B

∣∣∣
√
νn(B)−

√
ν(B)

∣∣∣ ≥ t

)
≤ 8SB(2n)e−nt2/4.(46)

Assume that we are within framework 1. Then, the random measure N is the empirical measure
of X1, . . . ,Xn. Now (46) with B = A,

t2 =
4

n

(
log 8 + log+ |SA(2n)|+ nξ

)

shows that (35) holds true with probability larger than 1− e−nξ, α = t2, β = 0.

The proof in frameworks 2 and 3 is very similar since N is an empirical measure for suitable
random variables with values in X = R × {0, 1}: Zi = (Xi,1Di=1) in framework 2 and Zi =

(T
(i)
1,01T

(i)
1,0∈Iobs

,1
T

(i)
1,0∈Iobs

) in framework 3. We apply (46) with B = {A× {1}, A ∈ A}. Moreover,

|SB(2n)| ≤ max
x1,...,x2n∈R

|{{x1, . . . , x2n} ∩A,A ∈ A}|

≤ |SA(2n)| .
We end the proof as in framework 1. �
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6.7. Proof of Lemma 8. We define for t ≥ 0, V (t) = 1X≥t in framework 2 and V (t) = 1Xt−=11Iobs(t)
in framework 3.

Claim 4. For all Borel set A ⊂ [0,+∞), and k ≥ 1,

E

[(∫

A
s(t)V (t) dt

)k
]
≤ k!

∫

A
s(t)E[V (t)] dt.

The proof of this lemma is deferred to Sections 6.7.1 and 6.7.2 below. We now set for i ∈
{1, . . . , n}, t ≥ 0, Vi(t) = 1Xi≥t in framework 2 and Vi(t) = 1

X
(i)
t−=1

1Iobs(t) in framework 3. Let

then

Gn(t) =
1

n

n∑

i=1

Vi(t).

Note that G(t) = E[Gn(t)]. We define for α > 0,

Rα =

∫ α

0
s
(√

Gn −
√
G
)2

dµ.

Claim 5. For all ξ > 0 and probability larger than 1− 2e−nξ,

Rα ≤ 3ξ

∫ α

0
s dµ.

Proof. Let u = n/3 and λ = u/
∫ α
0 s dµ. It follows from Jensen’s inequality that

exp

(
u

Rα∫ α
0 s dµ

)
≤ 1∫ α

0 s dµ

∫ α

0
s exp

(
u(
√
Gn −

√
G)2

)
dµ.

We deduce,

E [exp (λRα)] ≤
1∫ α

0 s dµ

∫ α

0
s(t)E

[
exp

(
u(
√
Gn(t)−

√
G(t))2

)]
dt.(47)

Now,

E

[
exp

(
u(
√
Gn(t)−

√
G(t))2

)]
= 1 +

∫ ∞

1
P

[
exp

(
u(
√
Gn(t)−

√
G(t))2

)
≥ x

]
dx

= 1 +

∫ ∞

1
P

[∣∣∣
√
Gn(t)−

√
G(t)

∣∣∣ ≥
√

log x

u

]
dx.

The random variable nGn(t) is binomially distributed with parameters (n,G(t)). Therefore, we
derive from Theorems 3 and 4 of [Oka59] that

P

[∣∣∣
√
Gn(t)−

√
G(t)

∣∣∣ ≥
√

log x

u

]
≤ 2

xn/u
.



ESTIMATING A DENSITY, A HAZARD RATE, AND A TRANSITION INTENSITY 37

Hence,

E

[
exp

(
u(
√
Gn(t)−

√
G(t))2

)]
≤ 1 +

∫ ∞

1

2

xn/u
dx

≤ 1 +

∫ ∞

1

2

x3
dx

≤ 2.

By (47), E [exp (λRα)] ≤ 2 and by Markov’s inequality,

P [Rα ≥ nξ/λ] = P
[
eλRα ≥ enξ

]
≤ 2e−nξ.

�

We now prove Lemma 8. We have,

|ZMs(ϕ)| ≤
∫ ∞

0
s |ϕ (Gn −G)| dµ

≤
∫

Gn≤G
s
∣∣∣ϕ
(√

Gn −
√
G
)(√

G−
√
Gn + 2

√
Gn

)∣∣∣ dµ

+

∫

Gn>G
s
∣∣∣ϕ
(√

Gn −
√
G
)(√

Gn −
√
G+ 2

√
G
)∣∣∣ dµ

≤
∫ ∞

0
s|ϕ|

(√
Gn −

√
G
)2

dµ+ 2

∫ ∞

0
s|ϕ|

∣∣∣
√
Gn −

√
G
∣∣∣
√

min{Gn, G} dµ.

Define

R = R∞ =

∫ ∞

0
s
(√

Gn −
√
G
)2

dµ.

By using |ϕ| ≤ 1 and Cauchy-Schwarz inequality,

|ZMs(ϕ)| ≤ R+ 2
√
R

√∫ ∞

0
sϕ2 min{Gn, G}dµ

≤ R+ 2
√
R
√
υMs(ϕ).

Therefore, for all ε > 0, using that 2
√
xy ≤ ε−1x+ εy,

|ZMs(ϕ)| ≤ ευMs(ϕ) + (1 + ε−1)R.(48)

It remains to bound R from above. We consider α ≥ 0 that minimizes

[ξ + 1/n]

∫ α

0
s dµ+

∫ ∞

α
sGdµ+ ξ + 1/n.

Now,

R ≤ Rα +

∫ ∞

α
s (Gn +G) dµ.(49)

With probability larger than 1− (1/2)e−nξ , Claim 5 ensures that

Rα ≤ 3

(
ξ +

log 4

n

)∫ α

0
s dµ.(50)
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Now,
∫ ∞

α
sGn dµ =

1

n

n∑

i=1

∫ ∞

α
s(t)Vi(t) dt.

Claim 4 shows that the assumptions of Bernstein’s deviation inequality are satisfied (Proposition 2.9
of [Mas07]). Therefore, with probability larger than 1− (1/2)e−nξ ,

∫ ∞

α
s [Gn −G] dµ ≤ 2

√(
ξ +

log 2

n

)∫ ∞

α
sGdµ+ ξ +

log 2

n
.

Since 2
√
xy ≤ x+ y,

∫ ∞

α
sGn dµ ≤ 2

∫ ∞

α
sGdµ+ 2

(
ξ +

log 2

n

)
.(51)

By putting (50) and (51) into (49), we get with probability larger than 1− e−nξ,

R ≤ 3

[
log 4

n
+ ξ

] ∫ α

0
s dµ+ 3

∫ ∞

α
sGdµ+ 2ξ +

2 log 2

n
.

It then remains to use the definition of α and (48) to prove (38). Moreover, in framework 2,
∫ ∞

α
sGdµ =

∫ ∞

α

f(t)

P (T ≥ t)
P (T ≥ t)P (C ≥ t) dt ≤

∫ ∞

α
f dµ,

and ∫ α

0
s dµ =

∫ α

0

f(t)

P (T ≥ t)
dt = − log

(∫ ∞

α
f dµ

)
,

which gives (39). �

6.7.1. Proof of Claim 4 in framework 2. We define for k ≥ 1,

Jk =

∫
t1,...,tk∈A

t1<t2<···<tk




k∏

j=1

s(tj)


P (X ≥ tk) dt1 dt2 . . . dtk.

We have,

E

[(∫

A
s(t)1X≥t dt

)k
]

= E



∫

Ak

k∏

j=1

s(tj)1X≥tj dt1 dt2 . . . dtk




=

∫

Ak




k∏

j=1

s(tj)


P (X ≥ max{t1, . . . , tk}) dt1 dt2 . . . dtk

= k!Jk.

Now,

Jk ≤
∫

t1,...,tk−1∈A
t1<t2<···<tk−1




k−1∏

j=1

s(tj)



(∫ ∞

tk−1

s(tk)P (X ≥ tk) dtk

)
dt1 dt2 . . . dtk−1,
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and
∫ ∞

tk−1

s(tk)P (X ≥ tk) dtk =

∫ ∞

tk−1

f(tk)P (C ≥ tk) dtk

≤
(∫ ∞

tk−1

f(tk) dtk

)
P (C ≥ tk−1)

≤ P (T ≥ tk−1)P (C ≥ tk−1)

≤ P (X ≥ tk−1).

Therefore,

Jk ≤
∫

t1,...,tk−1∈A
t1<t2<···<tk−1




k−1∏

j=1

s(tj)


P (X ≥ tk−1) dt1 dt2 . . . dtk−1

≤ Jk−1.

By induction, Jk ≤ J1. �

6.7.2. Proof of Claim 4 in framework 3.

Claim 6. Let t > 0,Ft = σ(Xv , v ≤ t) be the σ-algebra generated by the family of random variables
Xv, v ∈ [0, t]. Let B be an event Ft-measurable. Let µB be the measure defined for all A ∈ B(R) by

µB(A) = P (B and T1,0 ∈ A) .

Then, for µ-almost all u > t,

dµB
du

(u) = P (B and Xu− = 1) s(u).(52)

Proof. First of all, µB is absolutely continuous with respect to the Lebesgue measure µ and admits
therefore a Radon-Nikodym derivative. We now aim to show that this derivative is given by (52)
for almost all u > t.

Let Zh(u) be the random variable giving the number of jumps of the Markov process in [u −
h, u+ h]. Then, P (Zh(u) ≥ 2) = o(h) when h→ 0. We deduce,

µB([u, u + h]) = P (B,Zh(u) = 1, T1,0 ∈ [u, u+ h]) + o(h).

When Zh(u) = 1, T1,0 ∈ [u, u+ h] is equivalent to Xu− = 1 and Xu+h = 0. This yields

µB([u, u + h]) = P (B,Zh(u) = 1,Xu− = 1, Xu+h = 0) + o(h)

= P (B,Xu− = 1, Xu+h = 0) + o(h)

= P (B,Xu− = 1)P (Xu+h = 0 | B,Xu− = 1) + o(h).

As B is Ft-measurable and u > t,

µB([u, u+ h]) = P (B,Xu− = 1)P (Xu+h = 0 | Xu− = 1) + o(h)

= P (B,Xu− = 1)
P (Xu− = 1,Xu+h = 0)

P (Xu− = 1)
+ o(h).(53)
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Now,

P (Xu− = 1,Xu+h = 0) = P (Xu− = 1,Xu+h = 0, Zh(u) = 1) + o(h)

= P (T1,0 ∈ [u, u+ h], Zh(u) = 1) + o(h)

= P (T1,0 ∈ [u, u+ h]) + o(h).

Finally, by putting this inequality into (53),

µB([u, u + h]) = P (B,Xu− = 1)
P (T1,0 ∈ [u, u+ h])

P (Xu− = 1)
+ o(h)

= P (B,Xu− = 1)
hf(u)

P (Xu− = 1)
+ o(h)

= hP (B,Xu− = 1)s(u) + o(h),

which proves (52). �

We now return to the proof of Claim 4. Without loss of generality, we suppose that A ⊂ Iobs.
Define for k ≥ 1,

Jk =

∫
t1,...,tk∈A

t1<t2<···<tk




k∏

j=1

s(tj)


P (Xt1− = 1, . . . ,Xtk− = 1) dt1 dt2 . . . dtk.

We have,

E

[(∫

A
s(t)1Xt−=1 dt

)k
]

= E



∫

Ak

k∏

j=1

s(tj)1Xtj−
=1 dt1 dt2 . . . dtk




=

∫

Ak




k∏

j=1

s(tj)


P (Xt1− = 1, . . . ,Xtk− = 1) dt1 dt2 . . . dtk

= k!Jk.

Yet,

Jk ≤
∫

t1,...,tk−1∈A
t1<t2<···<tk−1




k−1∏

j=1

s(tj)



(∫ ∞

tk−1

s(tk)P (Xt1− = 1, . . . ,Xtk− = 1) dtk

)
dt1 dt2 . . . dtk−1.

Let B =
[
Xt1− = 1, . . . ,Xtk−1− = 1

]
∈ Ftk−1

. Then,
∫ ∞

tk−1

s(tk)P (Xt1− = 1, . . . ,Xtk− = 1) dtk =

∫ ∞

tk−1

dµB
dtk

(tk) dtk

= µB([tk−1,+∞))

= P
(
Xt1− = 1, . . . ,Xtk−1− = 1 and T1,0 ≥ tk−1

)

≤ P
(
Xt1− = 1, . . . ,Xtk−1− = 1

)
.

Therefore, Jk ≤ Jk−1 and by induction Jk ≤ J1. �
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6.8. Proof of Lemma 9. Let I2d be the class of unions of at most 2d intervals with endpoints
in (Q ∩ [0,+∞)) ∪ {+∞}. Then, I2d is at most countable, and we only need to prove (35) when
A ∈ I2d.

The random measure Ms is of the form

Ms(A) =
1

n

n∑

i=1

∫

A
s(t)Vi(t) dt for all A ∈ B(R).

There exist independent random variables Z1, . . . , Zn such that

Ms(A) =
1

n

n∑

i=1

fA(Zi) with fA(Zi) =

∫

A
s(t)Vi(t) dt.

We measure the complexity of the family {fA, A ∈ I2d} by means of the notion of entropy with
bracketing:

Claim 7. For all δ > 0, there exists a collection Cδ of functions of the form fA with A ∈ I2d.
The cardinal of this set can be bounded by log |Cδ| ≤ cd log+(1/δ

2), where c is a universal constant.

Moreover, for all A ∈ I2d, there exist fA1 , fA2 ∈ Cδ such that fA1 ≤ fA ≤ fA2 and such that for all
k ≥ 1,

E

[
(fA2(Z1)− fA1(Z1))

k
]
≤ k!

2
δ2.

Proof. First of all, we only need to prove the claim when δ is smaller than 1, what we will do in the
sequel.

We endow I2d with the distance dist defined for A1, A2 ∈ I2d by

dist(A1, A2) = E [Ms(A1∆A2)] where A1∆A2 = (A1 \A2) ∪ (A2 \ A1).

We may write dist(A1, A2) as

dist(A1, A2) =

∫ ∞

0
|1A1(t)− 1A2(t)| f(t) dt,

where f(t) = s(t)E[V1(t)] is a non-negative function satisfying
∫∞
0 f(t) dt ≤ 1.

We introduce the real valued function F defined for x ≥ 0 by

F (x) =

∫ x

0
f(t) dt.

Since F is a continuous non-decreasing function such that F ([0,+∞)) ⊂ [0, 1], there exist an even
integer ℓ ∈ [2, 8d/δ2 + 2], and ℓ non-negative numbers (x1, x2, . . . , xℓ−1, xℓ) ∈ {0} ×Qℓ−2 × {+∞}
such that

max
1≤i≤ℓ−1

{F (xi+1)− F (xi)} ≤ δ2/(8d).

We may suppose that ℓ ≥ 2d. Let X = {x1, x2, . . . , xℓ}, and Idis be the collection of unions of at
most 2d closed intervals whose endpoints belong to X .

When k ≤ ℓ/2, choosing k disjoint closed intervals whose endpoints belong to X amounts to
choosing 2k numbers among X . When k > ℓ/2, we cannot find k disjoint closed intervals with
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endpoints in X . The cardinality of Idis is therefore bounded by

|Idis| ≤
2d∑

k=0

C2k
ℓ .

Standard arguments (see, for instance, exercise 2.14 of [BLM13]) show that |Idis| ≤ (ℓe/(2d))2d .
Using now that ℓ ≤ 8d/δ2 + 2, we derive that

log |Idis| ≤ cd log+(1/δ
2)

for a suitable universal constant c.

For each set A ∈ I2d, we now show that there exist A1, A2 ∈ Idis such that fA1 ≤ fA ≤ fA2

and dist(A1, A2) ≤ δ2/2. Let A ∈ I2d be written as A =
⋃2d

k=1Ak where Ak is an interval whose

endpoints are ak ≤ bk. For each k ∈ {1, . . . , 2d}, there exist a
(1)
k ≤ a

(2)
k ≤ b

(1)
k ≤ b

(2)
k ∈ X such that

a
(1)
k ≤ ak ≤ a

(2)
k , b

(1)
k ≤ bk ≤ b

(2)
k ,

and

F
(
a
(2)
k

)
− F

(
a
(1)
k

)
≤ δ2/(8d), F

(
b
(2)
k

)
− F

(
b
(1)
k

)
≤ δ2/(8d).

Define the closed intervals

A
(1)
k =

{
x ∈ R, a

(2)
k ≤ x ≤ b

(1)
k

}
, A

(2)
k =

{
x ∈ R, a

(1)
k ≤ x ≤ b

(2)
k

}
.

Then, A1 =
⋃2d

k=1A
(1)
k and A2 =

⋃2d
k=1A

(2)
k belong to Idis and satisfy fA1 ≤ fA ≤ fA2 . Moreover,

A2∆A1 ⊂
2d⋃

k=1

[a
(1)
k , a

(2)
k ) ∪ (b

(1)
k , b

(2)
k ],

and hence,

dist(A1, A2) ≤
2d∑

k=1

∫

[a
(1)
k ,a

(2)
k )∪(b(1)k ,b

(2)
k ]

f(t) dt

≤
2d∑

k=1

(
F
(
a
(2)
k

)
− F

(
a
(1)
k

)
+ F

(
b
(2)
k

)
− F

(
b
(1)
k

))

≤
2d∑

k=1

(
δ2/(8d) + δ2/(8d)

)

≤ δ2/2.

Now,

E

[
(fA2(Z1)− fA1(Z1))

k
]
= E

[(
fA2\A1

(Z1)
)k]

≤ k!E [Ms(A2 \A1)] thanks to Claim 4

≤ k!dist(A1, A2)

≤ k!δ2/2,

which completes the proof with Cδ = {fA, A ∈ Idis}. �
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We will use several times an exponential inequality of [Mas07] to prove Lemma 9. We keep the
notation 4 introduced at the beginning of Section 6.5.

Set for δ > 0, Bδ = Cδ ∪ {−f, f ∈ Cδ}. Note that

log |Bδ| ≤ log 2 + log |Cδ| ≤ c1d log+(1/δ
2),

where c1 is a universal constant. We set H(δ) = c1d log+(1/δ
2) and for σ ∈ (0, 1],

E =
√
n

∫ σ

0

√
H(u) ∧ ndu+ 2(1 + σ)H(σ).

Simple arguments allow to bound E from above, see for instance page 190 of [GN15]: the funda-
mental theorem of calculus shows

σ
√

log(e/σ) =

∫ σ

0

(
√

log(e/u) − 1

2
√

log(e/u)

)
du

≥
∫ σ

0

√
log+(1/u) du− σ/2.

Consequently,

E 4 σ
√
nd log+(1/σ

2) + d log+(1/σ
2).(54)

Consider ξ > 0 and define J as the (possibly empty) set of non-negative integers j such that
2−j ≥ d/(2n). Let, for j ∈ J , xj = 2 log(j+1)+1+nξ, Aj =

{
A ∈ I2d, 2

−j−1 ≤ E[Ms(A)] ≤ 2−j
}
.

Claims 4 and 7 show that assumptions of Corollary 6.9 of [Mas07] are satisfied with F =
{
fA,−fA, A ∈ Aj

}
,

σ2 = 2−j+1, b = 1, and H(δ) = c1d log+(1/δ
2). There exists therefore an event Ωj such that

P (Ωj) ≥ 1− e−xj and on which: for all A ∈ Aj ,

n |Ms(A)− E[Ms(A)]| 4 E + σ
√
nxj + xj.

Hence,

|Ms(A)− E[Ms(A)]| 4 σ

√
d log+(1/σ

2) + xj
n

+
d log+(1/σ

2) + xj
n

.

As σ2 ≤ 4E[Ms(A)], σ
2 ≥ d/n, and xj 4 log+(n/d) + nξ,

|Ms(A)− E[Ms(A)]| 4
√

E[Ms(A)]

√
d log+(n/d) + nξ

n
+
d log+(n/d) + nξ

n
.

Let now A =
{
A ∈ I2d, E[Ms(A)] ≤ d/(2n)

}
. We apply Corollary 6.9 of [Mas07] with F ={

fA,−fA, A ∈ A
}
, b = 1, σ2 = min{d/n, 2}. We deduce that there exists an event Ω′ such that

P (Ω′) ≥ 1− (1/2)e−nξ and on which: for all A ∈ A,

|Ms(A)− E[Ms(A)]| 4 σ

√
d log+(1/σ

2) + nξ + log 2

n
+
d log+(1/σ

2) + nξ + log 2

n
.

Since σ ≤
√
d/n ≤

√
(d log+(n/d) + nξ)/n,

|Ms(A)− E[Ms(A)]| 4
d log+(n/d) + nξ

n
.



44 MATHIEU SART

We deduce from these computations that (35) holds true with Q =Ms on the event Ω′⋂(∩j∈J Ωj

)

for all A ∈ ⋃j∈J Aj ∪ A with α, β of the form c2(d log+(n/d) + nξ)/n. Now, I2d =
⋃

j∈J Aj ∪ A,
and

P




Ω′⋂


⋂

j∈J
Ωj






c
 ≤ P

[
Ω′c]+

∑

j∈J
P
[
Ωc
j

]

≤ e−nξ

2
+

∞∑

j=1

e−nξ

j2e

≤ e−nξ.

�

6.9. Proof of Proposition 4. Suppose without loss of generality that the functions ϕ are non-
negative. Consider ε > 0 and η ∈ (0, 1). We derive from the beginning of the proof of Theorem 3
that for all ϕ ∈ F , and t ∈ (0, 1), there exists At ∈ At (we omit the subscript ϕ) such that

|Z(ϕ)| ≤ εσ2 +

∫ η

0
|N(At)− E[N(At)]| dt

+

∫ 1

η
{|N(At)− E[N(At)]| − 2εtE[N(At)]} dt.

Therefore,

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ εσ2 +

∫ η

0
E

[
sup

At∈At

|N(At)− E[N(At)]|
]
dt(55)

+

∫ 1

η
E

[
sup

At∈At

{|N(At)− E[N(At)]| − 2εtE[N(At)]}
]
dt.

Let now ξ > 0. As (35) holds true for all A ∈ At, on an event Ωξ,t such that P [Ωξ,t] ≥ 1−e−nξ , with
α = c[log+ |SAt(2n)| + nξ]/n, β = 0, we deduce from Claim 3 that on this event: for all At ∈ At,

|N(At)− E[N(At)]| ≤ C

[√
log+ |SAt(2n)|+ nξ

n

√
E[N(At)] +

log+ |SAt(2n)|+ nξ

n

]
,

and using that
√
xy ≤ C/(8εt)x + (2εt/C)y,

|N(At)− E[N(At)]| − 2εtE[N(At)] ≤ C ′
{
log+ |SAt(2n)|+ nξ

n
+

log+ |SAt(2n)|+ nξ

nεt

}
.

In these two inequalities, C and C ′ are universal constants.

We integrate these inequalities with respect to ξ to get

E

[
sup

At∈At

|N(At)− E[N(At)]|
]
≤ C ′′

[√
log+ |SAt(2n)|

n
sup

At∈At

√
E[N(At)] +

log+ |SAt(2n)|
n

]
,

and

E

[
sup

At∈At

{|N(At)− E[N(At)]| − 2εtE[N(At)]}
]
≤ C ′′

[
log+ |SAt(2n)|

n
+

log+ |SAt(2n)|
nεt

]
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where C ′′ is universal. We now deduce from (55),

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ εσ2 +

C ′′

nε

∫ 1

η

log+ |SAt(2n)|
t

dt

+
C ′′
√
n

∫ η

0

√(
sup

At∈At

E[N(At)]

)(
log+ |SAt(2n)|

)
dt+

C ′′

n

∫ 1

0
log+ |SAt(2n)| dt.

As ε > 0 and η ∈ (0, 1) are arbitrary,

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ C ′′′

√
n

inf
η∈(0,1)

{
σ

√∫ 1

η

log+ |SAt(2n)|
t

dt+

∫ η

0

√(
sup

At∈At

E[N(At)]

)(
log+ |SAt(2n)|

)
dt

}

+
C ′′′

n

∫ 1

0
log+ |SAt(2n)| dt,

where C ′′′ is a universal constant. It then remains to bound above these integrals. �

6.10. Proof of Lemma 2. The proof of this lemma follows from some computations as in Sec-
tion 8.4 of [Bar11] (see also Proposition 3 of [BB17]). Let

√
q = (

√
f +

√
g)/2 and

X = {x ∈ R, g(x) 6= 0 or f(x) 6= 0} .

Then,

∫

R

ψ2

(
g

f

)
s dM =

∫

X
ψ2

(
g

f

)
s dM

=
1

4

∫

X

(√
g −

√
f
)2 s

q
dM

=
1

4

∫

X

(√
g −

√
f
)2(√s

q
− 1 + 1

)2

dM

≤ 1

2

∫

X

(√
g −

√
f
)2(√s

q
− 1

)2

dM +
1

2

∫

X

(√
g −

√
f
)2

dM

≤ 1

2

∫

X

(√
g −√

f
)2

q

(√
s−√

q
)2

dM + h2(f, g)

≤ 2

∫

X

(√
s−√

q
)2

dM + h2(f, g)

≤ 1

2

∫

X

(
(
√
s−

√
f) + (

√
s−√

g)
)2

dM + h2(f, g)

≤
∫

X

(√
s−

√
f
)2

dM +

∫

X

(√
s−√

g
)2

dM + h2(f, g)

≤ 2h2(s, f) + 2h2(s, g) + h2(f, g).

We complete the proof by using h2(f, g) ≤ 2h2(s, f) + 2h2(s, g). �
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6.11. Proof of Proposition 5 for S = Pℓ,r. Let f, g ∈ Pℓ,r. There exist two partitions m1,m2

of R into intervals such that |m1| ≤ 2ℓ + 1 and |m2| ≤ 2ℓ + 1 and such that f (respectively g) is
polynomial on each element K1 ∈ m1 (respectively K2 ∈ m2). Let

m = {K1 ∩K2, (K1,K2) ∈ m1 ×m2, K1 ∩K2 6= ∅} .
Then, m is a partition of R into intervals such that |m| ≤ |m1|+ |m2| ≤ 4ℓ+ 2. Moreover, we may
write f and g as

f =
∑

K∈m
PK1K and g =

∑

K∈m
QK1K ,

where PK and QK are non-negative polynomial functions on K of degree at most r. Let RK =
PK − tQK . Now,

{x ∈ R, g(x) > tf(x)} =
⋃

K∈m
{x ∈ K, RK(x) > 0} .

Let X be the set gathering the zeros of RK . If X = ∅, then RK is either positive, or negative on R

and the set {x ∈ K, RK(x) > 0} is either empty or the interval K. If X = R, then RK = 0 and
{x ∈ K, RK(x) > 0} = ∅. Suppose now that X 6= ∅ and X 6= R. We may write X = {b1, . . . , bk}with
b1 < b2 < · · · < bk and k ≤ r. We set b0 = −∞ and bk+1 = +∞. For all j ∈ {0, . . . , k}, RK is either
positive or negative on (bj , bj+1), and its sign changes with j. Therefore, the set {x ∈ K, RK(x) > 0}
is a union of at most k/2 + 1 intervals.

Finally, for all K ∈ m, {x ∈ K, RK(x) > 0} is always a union of at most r/2+ 1 intervals, which
implies that {x ∈ R, g(x) > tf(x)} is a union of at most (r/2 + 1)(4ℓ + 2) intervals. �

6.12. Proof of Theorem 7. Let for d ≥ 1,

ϑ(d) =
d

n
log2+

(n
d

)
.

We need to prove that there exists an event Ωξ such that P (Ωξ) ≥ 1 − e−nξ and on which any
ρ-estimator ŝ on S satisfies

h2(s, ŝ) ≤ inf
f∈S̄

{
c1h

2(s, f) + c2ϑ(dS(f)) + c3ξ log+(1/ξ)
}
.(56)

We introduce the following notations. We define for all odd integer d ≥ 3,

Jd =

{ ∞⋂

r=1

Ar, (Ar)r≥1 is a non-increasing sequence of I(d−1)/2

}
,

J̄d = Jd ∪ {R \A, A ∈ Jd} .
Let f, g ∈ S. Suppose that there exists d ≥ 1 such that for all t > 0, the set {x ∈ R, g(x) > tf(x)}
belongs to Id. Then, dg(f) stands for any number d such that

{x ∈ R, g(x) > tf(x)}
belongs to Id (for all t > 0). If the preceding assumption does not hold, we set dg(f) = +∞. We
define for all odd integer d ≥ 3,

Gd = {ψ(g/f), f, g ∈ S, dg(f) = (d− 1)/2} .
We will apply Theorem 3 to the class F = Gd. We begin with the following elementary claim:
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Claim 8. The functions ϕ ∈ Gd satisfy |ϕ| ≤ 1. Moreover, the collection

A = {{x ∈ R, ϕ+(x) > t} , ϕ ∈ Gd, t ∈ (0, 1)} ∪ {{x ∈ R, ϕ−(x) > t} , ϕ ∈ Gd, t ∈ (0, 1)}(57)

is included in J̄d.

Proof. Let ϕ ∈ Gd written as ϕ = ψ(g/f). Then,

{x ∈ R, ϕ+(x) > t} = {x ∈ R, ψ+(g(x)/f(x)) > t}
= {x ∈ R, f(x) 6= 0, ψ+(g(x)/f(x)) > t} ∪ {x ∈ R, f(x) = 0, g(x) > 0}
= {x ∈ R, f(x) 6= 0, g(x) > uf(x)} ∪ {x ∈ R, f(x) = 0, g(x) > 0} ,

where u = ψ−1(t) ∈ (0,+∞). Therefore,

{x ∈ R, ϕ+(x) > t} = {x ∈ R, g(x) > uf(x)} ,
belongs to I(d−1)/2 ⊂ J̄d.

Now, note that ψ−(x) = ψ+(1/x). Hence,

{x ∈ R, ϕ−(x) > t} = {x ∈ R, ψ+(f(x)/g(x)) > t} .
By exchanging the role of f and g in the above computations, we derive

{x ∈ R, ϕ−(x) > t} = {x ∈ R, f(x) > ug(x)}
= {x ∈ R, g(x) < (1/u)f(x)} .

Now, for all r ≥ 1,

{x ∈ R, g(x) > (1− 1/(2r))(1/u)f(x)} ∈ I(d−1)/2.

Therefore,

{x ∈ R, g(x) ≥ (1/u)f(x)} =

∞⋂

r=1

{x ∈ R, g(x) > (1− 1/(2r))(1/u)f(x)}

belongs to Jd and {x ∈ R, ϕ−(x) > t} = R \ {x ∈ R, g(x) ≥ (1/u)f(x)} belongs to J̄d. �

Claim 9. The collection J̄d is Vapnik-Chervonenkis with dimension at most 2d−1 ≤ 2d. Moreover,
in framework 3, each set A ∈ J̄d is a union of at most (d+ 1)/2 ≤ d intervals.

Proof. Let x1, . . . , x2n ∈ R and a non-increasing sequence (Ar)r≥1. Then,
∣∣∣∣∣
∞⋂

r=1

({x1, . . . , x2n} ∩Ar)

∣∣∣∣∣ = lim
r→+∞

|{x1, . . . , x2n} ∩Ar| .

The non-increasing sequence (|{x1, . . . , x2n} ∩Ar|)r≥1 consists of integers. Therefore, there exists r0
such that |{x1, . . . , x2n} ∩Ar| = |{x1, . . . , x2n} ∩Ar0 | for all r ≥ r0. Hence,

∞⋂

r=1

({x1, . . . , x2n} ∩Ar) = {x1, . . . , x2n} ∩Ar0 .

This implies that

{{x1, . . . , x2n} ∩A, A ∈ Jd} =
{
{x1, . . . , x2n} ∩A, A ∈ I(d−1)/2

}
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and SJd
(2n) = SI(d−1)/2

(2n). Therefore, Jd is Vapnik-Chervonenkis with dimension at most d− 1.

We deduce that J̄d is Vapnik-Chervonenkis with dimension at most 2(d − 1) + 1 ≤ 2d (see, for
instance, exercise 4.1 of [DL12]).

The two following elementary results show that each set A ∈ J̄d is a union of at most (d + 1)/2
intervals in framework 3:

• For all union A of at most (d−1)/2 intervals, R\A is a union of at most (d+1)/2 intervals.
• For all non-increasing sequence (Ar)r≥1 consisting of unions of at most (d − 1)/2 intervals,⋂∞

r=1Ar is a union of at most (d− 1)/2 intervals.

�

The lemma below is at the core of the proof of Theorem 7.

Lemma 10. For all ξ > 0, there exists an event Ωξ such that P (Ωξ) ≥ 1− e−nξ and on which: for
all ε ∈ (0, 1/12), f, g ∈ S,

T (f, g) ≤ (3 + 4ε)h2(s, f)− 4− 3ε

12
h2(s, g) + c1 min {ϑ(dg(f)), ϑ(df (g))} + c2ξ log+(1/ξ).(58)

In the above inequality, c1 and c2 only depend on ε and the convention ϑ(+∞) = +∞ is used.

Proof. Let d ≥ 3 be an odd integer. Claims 8 and 9 show that the assumptions of Theorem 3 are
satisfied with F = Gd. Therefore, there exists for all ξ > 0 an event Ωξ(d) such that P [Ωξ(d)] ≥
1− e−nξ and on which: for all ε > 0, ϕ ∈ Gd of the form ϕ = ψ(g/f), with f, g ∈ S,

|Z(ϕ)| ≤ ευ(ϕ) + c
[
ϑ (2dg(f) + 1) + ξ log+(1/ξ)

]
.

In this inequality, c only depends on ε. Let Ωξ =
⋂

d odd
d≥3

Ωξ+(2 log(1+d))/n(d). Then,

P [(Ωξ)
c] ≤

∑

d odd
d≥3

P
[(
Ωξ+(2 log(1+d))/n(d)

)c] ≤
∞∑

d=1

e−nξ

(1 + d)2
≤ e−nξ.

Moreover, on Ωξ: for all f, g ∈ S, ϕ = ψ(g/f) such that dg(f) <∞,

|Z(ϕ)| ≤ ευ(ϕ) + cϑ (2dg(f) + 1) + c

[(
ξ +

2 log(2 + 2dg(f))

n

)
log+

(
1

ξ +
2 log(2+2dg(f))

n

)]

≤ ευ(ϕ) + cϑ (2dg(f) + 1) +
2c log(2 + 2dg(f))

n
log+

(
n

2 log(2 + 2dg(f))

)
+ cξ log+(1/ξ)

≤ ευ(ϕ) + c′ϑ(dg(f)) + cξ log+(1/ξ),

where c′ only depends on ε. This last inequality remains true when dg(f) = ∞ using the convention
ϑ(+∞) = +∞. Moreover, as |Z(−ϕ)| = |Z(ϕ)|, υ(−ϕ) = υ(ϕ), ψ(f/g) = −ψ(g/f), we may
exchange the role of f and g in the preceding inequality to get on Ωξ:

|Z(ϕ)| ≤ ευ(ϕ) + c′ min {ϑ(dg(f)), ϑ(df (g))} + cξ log+(1/ξ).(59)

Now, it follows from (3) that for all f, g ∈ S,

T (f, g) ≤ 3h2(s, f)− 1

3
h2(s, g) + Z(ψ(g/f)).(60)
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Therefore, we deduce from Lemma 2 and from (59) that on Ωξ: for all f, g ∈ S,

T (f, g) ≤ (3 + 4ε)h2(s, f)− 4− 3ε

12
h2(s, g) + c′ min {ϑ(dg(f)), ϑ(df (g))} + cξ log+(1/ξ),

which proves (58) with c1 = c′ and c2 = c. �

We now finish the proof of Theorem 7. Lemma 10 implies that on Ωξ: for all f, g ∈ S,

T (f, g) ≤ (3 + 4ε)h2(s, f)− 4− 3ε

12
h2(s, g) + c1ϑ(dg(f)) + c2ξ log+(1/ξ).(61)

Thus, for all f ∈ S,

γ(f) ≤ (3 + 4ε)h2(s, f)− 4− 3ε

12
h2(s, S) + c1 sup

g∈S
ϑ(dg(f)) + c2ξ log+(1/ξ).(62)

By using T (f, g) = −T (g, f), we deduce from (61) that for all f, g ∈ S,

4− 3ε

12
h2(s, g) − (3 + 4ε)h2(s, f)− c1ϑ(dg(f))− c2ξ log+(1/ξ) ≤ T (g, f).

Any ρ-estimator ŝ satisfies on Ωξ: for all f ∈ S,
4− 3ε

12
h2(s, ŝ)− (3 + 4ε)h2(s, f)− c1 sup

g∈S
ϑ(dg(f))− c2ξ log+(1/ξ) ≤ T (ŝ, f)(63)

≤ γ(ŝ)

≤ γ(f) + 1/n.

Using now (62) and 1/n ≤ ϑ(dg(f)), we deduce when ε ∈ (0, 1/12),

h2(s, ŝ) ≤ inf
f∈S

{
c1,εh

2(s, f)− h2(s, S) + c2,ε sup
g∈S

ϑ(dg(f)) + c2,εξ log+(1/ξ)

}
,(64)

with c1,ε = 24(3 + 4ε)/(4 − 3ε), and with c2,ε depending only on ε.

When f ∈ S̄ and g ∈ S, Assumption 2 says that dg(f) may be defined by dg(f) = dS(f).
Therefore, (64) becomes

h2(s, ŝ) ≤ inf
f∈S̄

{
c1,εh

2(s, f)− h2(s, S) + c2,εϑ(dS(f)) + c2,εξ log+(1/ξ)
}
,

and it remains to choose ε arbitrarily in (0, 1/12) to prove the theorem. �

6.13. Proof of Proposition 8. We keep the notations introduced in the proof of Theorem 7. It
follows from (63) that on Ωξ: for all f ∈ S,

4− 3ε

12
h2(s, ŝ)− (3 + 4ε)h2(s, f)− c1 sup

g∈S
ϑ(dg(f))− c2ξ log+(1/ξ) ≤ T (ŝ, f),

where c1 and c2 only depends on ε. Now γ(ŝ) = 0 and hence T (ŝ, f) ≤ 0. This leads to

h2(s, ŝ) ≤ inf
f∈S

{
c1,εh

2(s, f) + c2,ε sup
g∈S

ϑ(dg(f)) + c2,εξ log+(1/ξ)

}
with c1,ε = 12

3 + 4ε

4− 3ε
.

It then remains to use Assumption 2 to define dg(f) by dg(f) = dS(f) when f ∈ S̄, g ∈ S. �
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6.14. Proofs of Theorems 9 and 10. It is convenient for ease of demonstration to encompass
the two procedures into a more general selection rule we now describe. Theorems 9 and 10 follow
from Theorem 12 below. Their proofs are given in Sections 6.14.2 and 6.14.3.

We consider an arbitrary (possibly random) set Λ̂. For each λ ∈ Λ̂, we consider an estimator ŝλ
with values in S. Our aim is to select an estimator among the collection {ŝλ, λ ∈ Λ̂}.

We consider for each λ ∈ Λ̂ a (possibly random) model Ŝλ ⊂ S. We associate to each λ ∈ Λ̂,

ĝ ∈ Ŝλ, two penalty terms pen1,λ(ĝ) and pen2(λ). We finally define the criterion γ4 by

γ4(ŝλ) = sup
ĝ∈Ŝλ

[
T (ŝλ, ĝ)− pen1,λ(ĝ)

]
.

The selected estimator ŝλ̂ is then any estimator among {ŝλ, λ ∈ Λ̂} satisfying

γ4(ŝλ̂) + 2pen2(λ̂) ≤ inf
λ∈Λ̂

{γ4(ŝλ) + 2pen2(λ)}+ 1/n.

The risk of this estimator is bounded above as follows.

Theorem 12. Let (Id)d≥1 be a non-decreasing collection of Borel sets that fulfils Assumption 1,
and dg(f) be the notation introduced in Section 6.12. Let for ξ > 0, Ωξ be the event given by

Lemma 10. This event, which depends on (Id)d≥1, is such that P (Ωξ) ≥ 1− e−nξ. We suppose that

there exist two real valued maps, ∆ ≥ 0 on Λ̂, and d ≥ 1 on S such that

dŝλ(ĝ) ≤ d(ĝ) + ∆(λ) for all λ ∈ Λ̂, ĝ ∈ Ŝλ.(65)

We suppose that there exist a (possibly random) model Ŝ ⊂ ⋂
λ∈Λ̂ Ŝλ and a map pen1 on Ŝ such

that

pen1,λ(ĝ) ≤ pen1(ĝ) + pen2(λ) for all ĝ ∈ Ŝ, λ ∈ Λ̂.(66)

There exists a universal constant L1 such that if for all λ ∈ Λ̂, ĝ ∈ Ŝλ, f̂ ∈ Ŝ,

pen1,λ(ĝ) ≥ L1
d(ĝ)

n
log2+

(
n

d(ĝ)

)
(67)

pen1(f̂) ≥ L1
d(f̂)

n
log2+

(
n

d(f̂)

)

pen2(λ) ≥ L1
∆(λ)

n
log2+

(
n

∆(λ)

)

then, for all ξ > 0, on Ωξ:

h2(s, ŝλ̂) ≤ c

(
inf
λ∈Λ̂

{
h2(s, ŝλ) + pen2(λ)

}
+ inf

ĝ∈Ŝ

{
h2(s, ĝ) + pen1(ĝ)

}
+ ξ log+(1/ξ)

)
.

In the above inequality, c is a universal constant and the convention 0× log2+(n/0) = 0 is used when
∆(λ) = 0.
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6.14.1. Proof of Theorem 12. Let ε ∈ (0, 1/12). The following assertion holds true on Ωξ: for all
f, g ∈ S

T (f, g) ≤ (3 + 4ε)h2(s, f)− 4− 3ε

12
h2(s, g) + c1 min {ϑ(dg(f)), ϑ(df (g))} + c2ξ log+(1/ξ)(68)

where c1, c2 only depend on ε.

Let λ ∈ Λ̂ and ĝ ∈ Ŝλ. We use (68) with f = ŝλ, g = ĝ:

T (ŝλ, ĝ) ≤ (3 + 4ε)h2(s, ŝλ)−
4− 3ε

12
h2(s, ĝ) + c1ϑ (dŝλ(ĝ)) + c2ξ log+(1/ξ).

Note that ϑ(d1) ≤ 1.48ϑ(d2) for all d1 ≤ d2. Therefore,

T (ŝλ, ĝ) ≤ (3 + 4ε)h2(s, ŝλ) + 1.48c1ϑ(d(ĝ) + ∆(λ)) + c2ξ log+(1/ξ)

≤ (3 + 4ε)h2(s, ŝλ) + 1.48c1ϑ(d(ĝ)) + 1.48c1ϑ(∆(λ)) + c2ξ log+(1/ξ).

If L1 is large enough,

T (ŝλ, ĝ) ≤ (3 + 4ε)h2(s, ŝλ) + pen1,λ(ĝ) + pen2(λ) + c2ξ log+(1/ξ),

and hence

γ4(ŝλ) ≤ (3 + 4ε)h2(s, ŝλ) + pen2(λ) + c2ξ log+(1/ξ).(69)

We now derive from (68) that for all ĝ ∈ Ŝλ̂,

T (ĝ, ŝλ̂) ≤ (3 + 4ε)h2(s, ĝ)− 4− 3ε

12
h2(s, ŝλ̂) + c1ϑ(dŝ

λ̂
(ĝ)) + c2ξ log+(1/ξ).

Using moreover that T (ŝλ̂, ĝ) = −T (ĝ, ŝλ̂) we deduce,

4− 3ε

12
h2(s, ŝλ̂) ≤ T (ŝλ̂, ĝ) + (3 + 4ε)h2(s, ĝ) + c1ϑ(dŝ

λ̂
(ĝ)) + c2ξ log+(1/ξ)

≤ T (ŝλ̂, ĝ) + (3 + 4ε)h2(s, ĝ) + 1.48c1ϑ(d(ĝ) + ∆(λ̂)) + c2ξ log+(1/ξ)

≤ T (ŝλ̂, ĝ) + (3 + 4ε)h2(s, ĝ) + 1.48c1ϑ(d(ĝ)) + 1.48c1ϑ(∆(λ̂)) + c2ξ log+(1/ξ).

If L1 is large enough,

4− 3ε

12
h2(s, ŝλ̂) ≤ T (ŝλ̂, ĝ) + (3 + 4ε)h2(s, ĝ) +

1

2
pen1,λ̂(ĝ) +

1

2
pen2(λ̂)

+ c2ξ log+(1/ξ) − 1/n

≤
[
T (ŝλ̂, ĝ)− pen1,λ̂(ĝ)

]
+

1

2
pen2(λ̂) +

[
(3 + 4ε)h2(s, ĝ) +

3

2
pen1,λ̂(ĝ)

]

+ c2ξ log+(1/ξ) − 1/n.

Since this inequality is valid for all ĝ ∈ Ŝλ̂ and Ŝ ⊂ Ŝλ̂,

4− 3ε

12
h2(s, ŝλ̂) ≤ γ4(ŝλ̂) +

1

2
pen2(λ̂) + inf

ĝ∈Ŝ

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1,λ̂(ĝ)

}

+ c2ξ log+(1/ξ) − 1/n.
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We deduce from (66),

4− 3ε

12
h2(s, ŝλ̂) ≤ γ4(ŝλ̂) + 2pen2(λ̂) + inf

ĝ∈Ŝ

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1(ĝ)

}

+ c2ξ log+(1/ξ) − 1/n.

By using the definition of λ̂ and (69), we get for all λ ∈ Λ̂,

4− 3ε

12
h2(s, ŝλ̂) ≤ γ4(ŝλ) + 2pen2(λ) + inf

ĝ∈Ŝ

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1(ĝ)

}
+ 2c2ξ log+(1/ξ)

≤ (3 + 4ε)h2(s, ŝλ) + 3pen2(λ) + inf
ĝ∈Ŝ

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1(ĝ)

}

+ 2c2ξ log+(1/ξ).

It remains to take the infimum over λ ∈ Λ̂ to finish the proof. �

6.14.2. Proof of Theorem 9. We will apply the selection rule developed in Section 6.14 to pick out

an estimator among {ŝλ, λ ∈ Λ̂} = {ŝm, m ∈ M̂ℓ̂}. For this purpose, we need to explain the values
of the different parameters involved in the procedure. We define Id as the collection of unions of at

most d intervals. We set Ŝ = {ŝm, m ∈ M̂ℓ̂}, and for m ∈ M̂ℓ̂,

Ŝm =

{∑

K∈m
ŝmK

1K , mK ∈ M̂ℓ̂

}
.

Note that the assumption Ŝ ⊂ ⋂
m∈M̂

ℓ̂
Ŝm of Theorem 12 is fulfilled. We define for m ∈ M̂ℓ̂,

K ∈ m and mK ∈ M̂ℓ̂, the partition mK ∨ K of K by (23). A function ĝ ∈ Ŝm of the form

ĝ =
∑

K∈m ŝmK
1K is piecewise polynomial. In the sequel, m(ĝ) designs a partition of M̂ of the

form

m(ĝ) =
⋃

K∈m
mK ∨K,

with minimal length that is such that

|m(ĝ)| = inf

{∑

K∈m
|mK ∨K|, ĝ =

∑

K∈m
ŝmK

1K

}
.

Let S̄ =
⋃∞

k=1Pk,r and note that Ŝm ⊂ S̄ for all m ∈ M̂ℓ̂. Let f ∈ S̄ and k ≥ 1 be the smallest
integer for which f ∈ Pk,r. It follows from Proposition 5 that Assumption 2 is satisfied with

S = Pℓ̂∨k,r and dP
ℓ̂∨k,r

(f) = (r + 2)(2(ℓ̂ ∨ k) + 1). In particular, for all m ∈ M̂ℓ̂ and f ∈ S̄, we may

set since ŝm ∈ Pℓ̂,r,

dŝm(f) = (r + 2)(2 inf
k≥1

Pk,r∋f
(ℓ̂ ∨ k) + 1).

We now define d for f ∈ S̄ and ∆ for m ∈ M̂ℓ̂ by

d(f) = (r + 2)(2 inf
k≥1

Pk,r∋f
k + 1), ∆(m) = 2ℓ̂(r + 2).
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We define d arbitrarily when f 6∈ S̄. Note that (65) is satisfied. We now define L0 = 6L1 and the

penalties for L ≥ L0, m ∈ M̂ℓ̂ and ĝ ∈ Ŝm by

pen1,m(ĝ) = L
(r + 1)|m(ĝ)| log2+(n/(r + 1))

n
, pen2(m) = L

(r + 1)ℓ̂ log2+(n/(r + 1))

n
.

The first penalty satisfies the lower bound (67) since

d(ĝ) ≤ (r + 2)(2|m(ĝ)|+ 1) ≤ 6(r + 1)|m(ĝ)| for all ĝ ∈ Ŝm.

It remains to define pen1(ĝ) for ĝ ∈ Ŝ = {ŝm, m ∈ M̂ℓ̂}.

Claim 10. For all m,m′ ∈ M̂, |m(ŝm′)| ≤ |m|+ |m′|.

Proof of Claim 10. We have,

|m(ŝm′)| ≤
∑

K∈m
|m′

K ∨K|

≤
∑

K∈m

∣∣{K ∩K ′,K ′ ∈ m,K ∩K ′ 6= ∅
}∣∣

≤
∣∣{K ∩K ′, (K,K ′) ∈ m×m′,K ∩K ′ 6= ∅

}∣∣ .
Since m and m′ are partitions into intervals, we deduce that |m(ŝm′)| ≤ |m|+ |m′|. �

It then follows that for all m,m′ ∈ M̂ℓ̂,

pen1,m(ŝm′) ≤ L
(r + 1)ℓ̂ log2+(n/(r + 1))

n
+ pen2(m).

The penalty defined by

pen1(ŝm′) = L
(r + 1)ℓ̂ log2+(n/(r + 1))

n

satisfies therefore (66).

Note now that the selection rules described in Sections 6.14 and 4.2 coincide. Theorem 12 controls
the risk of the selected estimator: for all ξ > 0, there exists an event Ωξ of probability larger than

1− e−nξ, and on which:

h2(s, ŝm̂) ≤ C

(
inf

m∈M̂
ℓ̂

{
h2(s, ŝm) + pen2(m)

}
+ inf

m∈M̂
ℓ̂

{
h2(s, ŝm) + pen1(ŝm)

}
+ ξ log+(1/ξ)

)
,

where C is a universal constant. By using the definition of the penalty terms,

h2(s, ŝm̂) ≤ C ′
{

inf
m∈M̂

ℓ̂

{
h2(s, ŝm)

}
+ L

(r + 1)ℓ̂ log2+(n/(r + 1))

n
+ ξ log+(1/ξ)

}
,

where C ′ is a universal constant. It then remains to use the fact that ŝm is a ρ-estimator on Pr(m)
to get a bound on h2(s, ŝm) on the same event Ωξ (the event that appears in Theorem 7 to control
the risk of a ρ-estimator is the same that the one that appears in Theorem 12. It is, in each case,
defined by Lemma 10). �
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6.14.3. Proof of Theorem 10. The proof is almost the same than the one of Theorem 9. The
modifications are very mild, and this is the reason why we only specify the values of the different
parameters involved in the procedure of Section 6.14:

Ŝ = {ŝm, m ∈ M̂k̂,lower}

Ŝm =

{∑

K∈m
ŝmK

1K , mK ∈ M̂k̂,lower

}
for all m ∈ M̂k̂,lower

pen1(ŝm) = pen2(m) = L
(r + 1)|m| log2+(n/(r + 1))

n
for all m ∈ M̂k̂,lower.

�

6.15. Proof of Lemma 3. As in the proof of Theorem 1, the measure N can be put of the form
N(A) = n−1

∑
i∈Î 1A(Yi) where Î ⊂ {1, . . . , n}, and where the Yi are suitable real-valued random

variables.

Note that if K ∩ {Y(1), . . . , Y(n̂)} = ∅ then,

LK(f) = −
∫

K
f(t) dM(t),

and the supremum supf∈Pr(K) LK(f) is achieved at ŝK = 0 and equals 0. We now suppose that

K ∩ {Y(1), . . . , Y(n̂)} 6= ∅.
Let Gn be the Radon–Nikodym derivative of M with respect to the Lebesgue measure µ. Then,

Gn = 1 in framework 1, Gn(t) = n−1
∑n

i=1 1Xi≥t1[0,+∞)(t) in framework 2 and

Gn(t) = n−1
n∑

i=1

1

X
(i)
t−=1

1Iobs(t)

in framework 3. Let k be the largest integer of {1, . . . , n̂} such that Y(k) belongs to K and K ′ =
K∩ (−∞, Y(k)]. There exists some α > 0 such that (Y(k)−α, Y(k)) ⊂ K ′. Moreover, we can choose α
small enough to get Gn(t) ≥ 1/n for all t ∈ (Y(k) − α, Y(k)).

Let now f ∈ Pr(K). Then, LK(f) takes the form

LK(f) =
1

n

∑

i∈Î
(log f(Yi))1K(Yi)−

∫

K
f(t)Gn(t) dt,

and is bounded above by

LK(f) ≤ log+

(
sup
t∈K ′

f(t)

)
− 1

n

∫ Y(k)

Y(k)−α
f(t) dt.

We endow the linear space consisting of polynomial functions of degree at most r with the two
following norms:

‖f‖1 =
∫ Y(k)

Y(k)−α
|f(t)| dt, ‖f‖∞ = sup

t∈K ′

|f(t)| .
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This linear space being of finite dimension, there exists C such that ‖f‖∞ ≤ C‖f‖1 for all f ∈ Pr(K).
Now,

LK(f) ≤ log+ (C‖f‖1)−
‖f‖1
n

.

The continuous map LK tends therefore to −∞ when ‖f‖1 → +∞. As there exists at least a
function f ∈ Pr(K) such that LK(f) 6= −∞, ŝK does exist.

For the second part of the lemma, we use Theorem 1 to deduce that T (ŝK , fK) ≤ 0 for all
fK ∈ Pr(K). If f ∈ Pr(m) is of the form f =

∑
K∈m fK ,

T (ŝm, f) =
∑

K∈m
T (ŝK , fK) ≤ 0.

Thus, γ(ŝm) = 0 and ŝm is a ρ-estimator on Pr(m). �

6.16. Proof of Lemmas 4 and 5. The following claim will be useful in the sequel.

Claim 11. Let ξ > 0 and Ωξ be the event given by Lemma 10 when Id is the collection of unions

of at most d intervals. Then, P (Ωξ) ≥ 1 − e−nξ. Let η ≥ 0, r ≥ 0, and m,m′ ∈ M. The
following holds on Ωξ: for all piecewise polynomial estimators ŝm ∈ Pr(m), ŝm′ ∈ Pr(m

′) such that
T (ŝm, ŝm′) ≥ −η,

h2(s, ŝm′) ≤ C

{
h2(s, ŝm) +

(r + 1)(|m| + |m′|)
n

log2+

(
n

(r + 1)(|m| + |m′|)

)
+ ξ log+(1/ξ) + η

}
.

Moreover, if ŝm is a ρ-estimator on Pr(m),

h2(s, ŝm) ≤ C

{
h2(s,Pr(m)) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
.

In the above inequalities, C is universal.

Proof. Let ε = 1/24. On Ωξ:

T (ŝm, ŝm′) ≤ (3 + 4ε)h2(s, ŝm)− 4− 3ε

12
h2(s, ŝm′) + c1ϑ(dŝm′

(ŝm)) + c2ξ log+(1/ξ),(70)

where c1 and c2 are universal constants. Now, ŝm and ŝm′ belong to Pr(m
′′) where

m′′ =
{
K ∩K ′, (K,K ′) ∈ m×m′, K ∩K ′ 6= ∅

}
.

Yet, |m′′| ≤ |m|+ |m′|. Thereby, ŝm and ŝm′ belong to P|m|+|m′|,r and it follows from Proposition 5
that we may set

dŝ′m(ŝm) = (r + 2)(2(|m| + |m′|) + 1).

We now bound above ϑ(dŝ′m(ŝm)) in (70), and then use T (ŝm, ŝm′) ≥ −η to prove the first inequality
of the claim. The second one follows from Theorem 7 and Proposition 5. �

Proof of Lemma 4. Let m ∈ M′
ℓ be a collection written as

m = {[x1, x2], (x2, x3], (x3, x4], . . . , (xℓ, xℓ+1]}
and such that x1 ≤ Y(1), and Y(n̂) ≤ xℓ+1. We may define a partition m̄ ∈ M′

ℓ of the form

m̄ = {[x̄1, x̄2], (x̄2, x̄3], (x̄3, x̄4], . . . , (x̄ℓ, x̄ℓ+1]}
where x̄1 = Y(1) and x̄ℓ+1 = Y(n̂) and whose intervals are included into the ones of m.
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Let ŝm and ŝm̄ be ρ-estimators on P0(m) and P0(m̄) respectively. We order the intervals of m̄
as follows. We define ℓ intervals I1, . . . , Iℓ such that m̄ = {I1, . . . , Iℓ} and such that the value ŝm̄
on Ij, denoted by ŝIj , is non-decreasing when j grows up. We denote the endpoints of Ij by aj < bj .
We now define j1 as the largest integer of {1, . . . , n̂} such that Y(j1) ≤ aj and j2 as the smallest
integer such that Y(j2) ≥ bj. When j1 = 1, we set Kj = [Y(j1), Y(j2)] and when j1 6= 1, we set
Kj = (Y(j1), Y(j2)]. Note that Kj is the smallest interval containing Ij that is either of the form
[Y(j1), Y(j2)] or (Y(j1), Y(j2)].

Define J1 = K1 and for j ∈ {2, . . . , ℓ}, Jj = Kj \
⋃j−1

i=1 Ki. Since Ki 6⊂ Kj when i 6= j, Kj \Ki is

an interval. Therefore, Jj =
⋂j

i=1(Kj \Ki) is also an interval. When it is not empty, it is either of
the form [Y(1), Y(i)] with i > 1 or (Y(i1), Y(i2)] with i1 < i2. The collection m̄′ = {Jj , j ∈ {1, . . . , ℓ}}
defines therefore a partition of [Y(1), Y(n̂)] that belongs to M̂ℓ′ with ℓ′ ≤ ℓ (we must remove the

empty sets). Let f be the step function of P0(m̄
′) defined by

f =

ℓ∑

j=1

ŝIj1Jj .

We now prove that f ≤ ŝm̄. When x 6∈ [Y(1), Y(n̂)], f(x) = ŝm̄(x) = 0. When x ∈ [Y(1), Y(n̂)], there

exist j ∈ {1, . . . , ℓ} such that x ∈ Ij and j′ ≤ j such that x ∈ Jj′ . Therefore, f(x) = ŝIj′ . By using

that ŝIj′ ≤ ŝIj , we finally deduce that f(x) ≤ ŝm̄(x).

Consider an interval Ij ∈ m̄ and let us denote the cardinal of
{
Y(i), Y(i) ∈ Ij, i ∈ {1, . . . , n̂}

}

by kj . When kj ≥ 3, there exists at least kj − 2 random variables Y(i) that belong to Ij but not to
∪j′∈{1,...,n̂}

j′ 6=j

Kj′ . Such Y(i) belong therefore to Jj and satisfy f(Y(i)) = ŝm̄(Y(i)). Therefore,

∣∣{Y(i), f(Y(i)) 6= ŝm̄(Y(i)), i ∈ {1, . . . , n̂}
}∣∣ =

ℓ∑

j=1

∣∣{Y(i), f(Y(i)) 6= ŝm̄(Y(i)), Y(i) ∈ Ij , i ∈ {1, . . . , n̂}
}∣∣

≤ 2ℓ.(71)

It follows from f ≤ ŝm̄, (71) and (28) that T (f, ŝm̄) ≤ 2ℓ/n. We now use Claim 11 to get on Ωξ

h2(s, f) ≤ C

{
h2(s, ŝm̄) +

ℓ

n
log2+ (n/ℓ) + ξ log+(1/ξ)

}
,(72)

where C is universal.

We may refine the partition m̄′ ∈ M̂ℓ′ to get m′ ∈ M̂ℓ such that P0(m̄
′) ⊂ P0(m

′). Let ŝm′

and ŝm̄′ be ρ-estimators on P0(m
′) and P0(m̄

′) respectively. There exists a universal constant C ′

such that on Ωξ:

h2(s, ŝm′) ≤ C ′
{
h2(s,P0(m

′)) +
ℓ

n
log2+ (n/ℓ) + ξ log+(1/ξ)

}
.

By using that f ∈ P0(m̄
′) ⊂ P0(m

′) and (72),

h2(s, ŝm′) ≤ C ′
{
h2(s, f) +

ℓ

n
log2+ (n/ℓ) + ξ log+(1/ξ)

}
,

≤ C ′′
{
h2(s, ŝm̄) +

ℓ

n
log2+ (n/ℓ) + ξ log+(1/ξ)

}
,(73)
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where C ′′ is universal. Note now that ŝm1[Y(1),Y(n̂)] ∈ P0(m̄) and thus T (ŝm̄, ŝm1[Y(1),Y(n̂)]) ≤ 0 as ŝm̄
is a ρ-estimator on the convex model P0(m̄) (see Theorem 1 and Lemma 3). Now,

T (ŝm̄, ŝm) = T (ŝm̄, ŝm1[Y(1),Y(n̂)]) +
1

4

(∫

R

ŝm1[Y(1),Y(n̂)] dM −
∫

R

ŝm dM

)

≤ 0.

Therefore, Claim 11 asserts that

h2(s, ŝm̄) ≤ C ′′′
{
h2(s, ŝm) +

ℓ

n
log2+ (n/ℓ) + ξ log+(1/ξ)

}
,(74)

where C ′′′ is universal. By using that ŝm is a ρ-estimator,

h2(s, ŝm) ≤ C ′′′′
{
h2(s,P0(m)) +

ℓ

n
log2+ (n/ℓ) + ξ log+(1/ξ)

}
.(75)

It remains to put inequalities (73), (74) and (75) together to finish the proof. �

Proof of Lemma 5. Note that we may always suppose that
{
K ∩ {Y(1), . . . , Y(n̂)},K ∈ m

}

contains Y(1) and Y(n̂) (up to an increase of |m| by 2). Let

m1 =
{
K ∈ m, {Y(1), . . . , Y(n̂)} ∩K 6= ∅

}
.

Then, m1 6= ∅ and we may write m1 = {Kj , j ∈ {1, . . . , ℓ}} where 1 ≤ ℓ ≤ |m| and where Kj is an
interval with endpoints aj , bj satisfying a1 < b1 ≤ a2 < b2 < . . . .

Let us recall that the ρ-estimator ŝm is of the form

ŝm =
∑

K∈m
ŝK where ŝK maximizes LK over Pr(K).

When K ∈ m does not belong to m1, ŝK = 0 and hence

ŝm =
ℓ∑

j=1

ŝKj .

For each j ∈ {1, . . . , ℓ}, we set αj = min
{
Y(i), Y(i) ∈ Kj

}
, βj = max

{
Y(i), Y(i) ∈ Kj

}
. We define

for j ∈ {2, . . . , ℓ − 1}, J2j = (βj , αj+1] and for j ∈ {2, . . . , ℓ}, J2j−1 = (αj , βj ]. If β1 = Y(1), we
set J1 = ∅, J2 = [β1, α2] and if β1 > Y(1), J1 = [Y(1), β1], J2 = (β1, α2]. Note that J2j−1 ⊂ Kj for

all j ∈ {1, . . . , ℓ}. The collection m′ = {Jj , j ∈ {1, . . . , 2ℓ− 1}} defines a partition of M̂ such that
|m′| ≤ 2ℓ− 1. We define the ρ-estimator

ŝm′ =
ℓ∑

j=1

ŝJ2j−1 +
ℓ−1∑

j=1

ŝJ2j ,

where ŝA maximizes LA over Pr(A) for all non-empty interval A with the convention that ŝ∅ = 0
when A = ∅. We now consider

s̃m′ =

ℓ∑

j=1

ŝJ2j−1 .
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Note that s̃m′ also belongs to the random model Pr(m
′) and hence T (ŝm′ , s̃m′) ≤ 0. We deduce

from Claim 11 that on Ωξ:

h2(s, ŝm′) ≤ C

{
h2(s, s̃m′) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,(76)

where C is universal.

Now, for all j ∈ {1, . . . , ℓ}, such that J2j−1 6= ∅,

T
(
ŝJ2j−1 , ŝKj1J2j−1

)
≤ 0,(77)

since ŝJ2j−1 maximizes LJ2j−1 over Pr(J2j−1) and that ŝKj1J2j−1 ∈ Pr(J2j−1). When J2j−1 = ∅,
T
(
ŝJ2j−1 , ŝKj1J2j−1

)
= 0, and thus (77) also holds.

We define

A =
ℓ⋃

j=1

J2j−1.

We deduce from (77) that T (s̃m′
1A, ŝm1A) ≤ 0. Therefore,

T (s̃m′ , ŝm) = T (s̃m′
1A, ŝm1A) + T (0, ŝm1Ac)

≤ 0 + T (0, ŝm1Ac)

≤
∫

Ac

ψ (ŝm/0) dN,

where we recall the conventions ψ(0/0) = ψ(1) = 0, ψ(x/0) = ψ(∞) = 1 for all x > 0. Let

B =
⋃ℓ

j=1Kj . Note that ŝm vanishes outside B and thus, as |ψ| ≤ 1,

T (s̃m′ , ŝm) ≤
∫

B∩Ac

ψ (ŝm/0) dN ≤ N(B ∩Ac).(78)

Now,

N(B ∩Ac) =
ℓ∑

j=1

{N(Kj)−N(J2j−1)} .

Since αj, βj ∈ {Yi, i ∈ Î}, we deduce from (28) that N(Kj) −N(J2j−1) = N({αj}). In each of the
frameworks, N({αj}) ≤ 1/n and thus N(B ∩ Ac) ≤ ℓ/n. By using (78), we get T (s̃m′ , ŝm) ≤ ℓ/n.
Claim 11 with η = ℓ/n ≤ |m|/n ensures that on Ωξ:

h2(s, s̃m′) ≤ C ′
{
h2(s, ŝm) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,

where C ′ is universal. Since ŝm is a ρ-estimator on Pr(m), we deduce that on the same event Ωξ:

h2(s, ŝm) ≤ C ′′
{
h2(s,Pr(m)) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,

where C ′′ is universal. It then remains to combine the two last inequalities with (76) to finish the
proof. �
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[GN15] Evarist Giné and Richard Nickl. Mathematical foundations of infinite-dimensional statis-
tical models. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2015.



60 MATHIEU SART

[Gre56] Ulf Grenander. On the theory of mortality measurement. Scandinavian Actuarial Journal,
1956(1):70–96, 1956.

[Kan92] Yuichiro Kanazawa. An optimal variable cell histogram based on the sample spacings.
The Annals of Statistics, 20(1):291–304, 1992.

[Mas07] Pascal Massart. Concentration inequalities and model selection, volume 1896 of Lecture

Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2007. École d’été de Proba-
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Henri Poincaré. Probabilités et Statistique, 50(3):1028–1068, 2014.

[Sau72] Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory,
Series A, 13(1):145–147, 1972.

[vdG95] Sara van de Geer. Exponential inequalities for martingales, with application to maximum
likelihood estimation for counting processes. The Annals of Statistics, 23(5):1779–1801,
1995.
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82301, F-42023 Saint-Etienne Cedex 2, France

E-mail address: mathieu.sart@univ-st-etienne.fr


	1. Introduction
	1.1. Statistical settings.
	1.2. On -estimation in framework 1.
	1.3. On hazard rate and transition intensity estimation.
	1.4. A generalized procedure.
	1.5. On maximum likelihood estimation.
	1.6. Estimator selection.
	1.7. Organization of the paper.

	2. The -estimation method
	2.1. Statistical setting and notations.
	2.2. Heuristics.
	2.3. The procedure.
	2.4. Connection with maximum likelihood estimation.

	3. Risk bounds of -estimators
	3.1. A uniform exponential inequality.
	3.2. Assumptions on models.
	3.3. A uniform risk bound.
	3.4. Risks of -estimators for models consisting of step functions.
	3.5. Risks of -estimators for models consisting of piecewise monotone functions.

	4. Selecting among estimators
	4.1. Piecewise polynomial estimator selection.
	4.2. Selecting among a special collection of piecewise polynomial estimators.
	4.3. About L.
	4.4. Adaptive piecewise polynomial estimation.

	5. Numerical simulations
	6. Proofs
	6.1. Proof of Lemma 1.
	6.2. Proof of Theorem 1.
	6.3. Sketch of the proof of Theorem 2.
	6.4. Proof of Theorem 3.
	6.5. Proof of Lemma 6.
	6.6. Proof of Lemma 7.
	6.7. Proof of Lemma 8.
	6.8. Proof of Lemma 9.
	6.9. Proof of Proposition 4.
	6.10. Proof of Lemma 2.
	6.11. Proof of Proposition 5 for S = P,r .
	6.12. Proof of Theorem 7.
	6.13. Proof of Proposition 8.
	6.14. Proofs of Theorems 9 and 10.
	6.15. Proof of Lemma 3.
	6.16. Proof of Lemmas 4 and 5

	References

