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ESTIMATING A DENSITY, A HAZARD RATE, AND A TRANSITION

INTENSITY VIA THE ρ-ESTIMATION METHOD

MATHIEU SART

Abstract. We propose a unified study of three statistical settings by widening the ρ-estimation
method developed in [BBS17]. More specifically, we aim at estimating a density, a hazard rate
(from censored data), and a transition intensity of a time inhomogeneous Markov process. We
relate the performance of ρ-estimators to deviations of a (possibly unbounded) empirical process.
We deduce non-asymptotic risk bounds for an Hellinger-type loss on possibly random models.
When the models are convex, maximum likelihood estimators coincide with ρ-estimators, and
satisfy therefore our risk bounds. However, our results also apply to some models where the
maximum likelihood method does not work. Besides, the robustness properties of ρ-estimators
are not, in general, shared by maximum likelihood estimators. Subsequently, we present an
alternative procedure to ρ-estimation, more numerically friendly, that yields a piecewise poly-
nomial estimator. We prove theoretical results and carry out some numerical simulations that
show the benefits of our approach compared with a more classical one based on maximum
likelihood.

1. Introduction

1.1. Statistical settings. In the present paper, we are interesting in estimating a unknown
function s that appears in one of the following frameworks.

Framework 1 (Density Estimation). Let X be a real-valued random variable with density func-
tion s with respect to the Lebesgue measure µ. Our aim is to estimate the density s from the
observation of n independent copies X1, . . . ,Xn of X.

Framework 2 (Hazard rate estimation for right censored data). Let (T1, C1), . . . , (Tn, Cn) be n
independent copies of a pair (T,C) of non-negative random variables. We suppose that T is
independent of C and that T admits a density f with respect to the Lebesgue measure µ. The
target function is the hazard rate s defined for all t ∈ R by

s(t) =
f(t)

P (T ≥ t)
.

The observations are (Xi,Di)1≤i≤n where Xi = min{Ti, Ci} and Di = 1Ti≤Ci
.

Framework 3 (Estimation of the transition intensity of a Markov process). We consider a
(possibly inhomogeneous) Markov process {Xt, t ≥ 0} with the following properties:

• The process is cadlag with finite state space, says {0, 1, . . . ,m}.
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• The state 0 is absorbing.
• Let, for each interval I ⊂ [0,+∞), AI be the event: “the process jumps at least two times
on I”. Then, P (AI) = o(µ(I)) when the length µ(I) of I tends to 0.

• The transition time

T1,0 = inf {t > 0, Xt− = 1, Xt = 0} ,
which has values in [0,+∞], is absolutely continuous with respect to the Lebesgue mea-
sure µ on R and satisfies therefore for all Borel set A of R,

P (T1,0 ∈ A) =

∫

A
f(u) du,

for a suitable non-negative measurable function f .

Our aim is to estimate the transition rate s from state 1 to 0 defined for t > 0 by

s(t) =
f(t)

P (Xt− = 1)
,

from the observation of n independent copies {X(i)
t , t ≥ 0} of {Xt, t ≥ 0}.

In all these frameworks, we shall always suppose that n ≥ 3. Numerous estimation strategies
are possible, and we propose here to broaden the approach developed in [BBS17] and named
“ρ-estimation”.

1.2. On ρ-estimation in framework 1. The procedure described in [BBS17] fits into the
scheme of some ideas relating estimation and test as it appeared as early as the 70’s in the
works of Lucien Le Cam. Given two densities f and g, a statistical test is a decision rule that
tends to decide which one is the closer of s. In order to give meaning to this notion of closeness,
we consider the Hellinger distance h, which is defined for two non-negative integrable functions f
and g by

h2(f, g) =
1

2

∫

R

(√
f(t)−

√
g(t)

)2
dt.

Several tests appeared in the literature, see [Bir06, Bir12, Bar11] and the references therein.
In ρ-estimation, the idea is to try to estimate h2(s, f) − h2(s, g) as explained in Section 1.4
of [BBS17]. The smaller this difference, the better f . Conversely, the larger this difference, the
better g. Unfortunately, h2(s, f) − h2(s, g) is difficult to directly estimate. A solution, which
actually follows from [Bar11], is to estimate an approximation TE(f, g) of h2(s, f) − h2(s, g).
This estimator, we shall name T (f, g), can also be interpreted as a test between f and g.

We then consider models S, that is collections of densities, which translate, in mathematical
terms, the knowledge we have on the target s. A model may correspond to different assumptions
on s, such as parametric, regularity, or qualitative ones. There exist several ways of deducing an
estimator on S from testing, see [Bir06] for a recent reference. We may also cite the procedures
of [Sar14, Sar16], which are based on T (f, g), and which give a glimpse of what can be expected
for these estimators in numerical simulations. In [BBS17], T (f, g) is not only used as a test,
but more precisely as an estimate of h2(s, f)− h2(s, g). We may then form the criterion γ(f) =
supg∈S T (f, g) and interpret it as an estimator of h2(s, f) − infg∈S h2(s, g). It then remains to
minimize this criterion to define the ρ-estimator (if such a minimizer does not exist, take an
approximate minimizer).
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Before going any further, we need to mention that we may construct several variants of the
ρ-estimation procedure that lead to similar theoretical results, at least in density estimation. We
may for instance, change the estimator T (f, g), see [BB17] and our Section 2.3. In particular, in
density estimation, it will be convenient to deal with (non-negative) functions f and g that may
not be densities. When f and g are densities, in framework 1, our definition of T (f, g) coincides
with the one of [BB17]. Besides, as it will be explained later, some results remain true when the
criterion γ is replaced by a T -procedure [Bir06] or by the one of Section 4.1 of [Sar14]. It turns
out that ρ-estimators (and some variants) satisfy interesting statistical properties. We briefly
present below four of them: generality, optimality, robustness, and superminimaxity.

First of all, the theoretical performances of ρ-estimators rely on the behaviour of the random
process T (f, g)−TE(f, g). The deviations of this process can be controlled according to different
notions that aim at measuring the “complexity”, or “massiveness” of S (entropy with bracketing,
universal entropy, metric dimension, . . . ). Thereby, we may control the risks of ρ-estimators in
various models of interest, including in particular the ones for which other procedures may not
work, such as the maximum likelihood one (see [BBS17, BB16] for examples).

We may moreover generally compute an upper-boundRS(n) of the maximal risk sups∈S h
2(s, ŝ)

of a ρ-estimator ŝ. The quality of the estimator ŝ can then be assessed by comparing RS(n) to
the minimax bound inf s̃ sups∈S h

2(s, s̃), where the infimum is taken over all estimators s̃ with
values in S. The rate of convergence of the minimax bound inf s̃ sups∈S h

2(s, s̃) to 0 is usually
called the optimal minimax rate of convergence. Yet, RS(n) achieves this rate, up to a possible
logarithmic factor, in all cases we know.

This minimax point of view supposes that s does belong to S. Such an assumption corresponds
to a perfect modelling of the statistical problem, which is scarcely the case in practice. It makes
therefore more sense to study the risk of the estimator ŝ not only when s lies in S but more
generally when s is close to the model S. It turns out that the Hellinger quadratic risk of a
ρ-estimator ŝ can be bounded above by

E[h2(s, ŝ)] ≤ C inf
f∈S

h2(s, f) +RS(n) whatever the density s,

where C is a universal constant (that is a numerical number). This inequality asserts that a
small error in the choice of the model S induces a small error in the estimation of s. This is
a robustness property. We recall that such a property is not shared by all estimators, and in
particular by the maximum likelihood one, which may perform very poorly when s 6∈ S but is
close to S (when this closeness is measured by the Hellinger distance, see Section 2.3 of [Bir06]
for an example).

The rate given by RS(n) stands for the worst-case rate over all densities s of S. This rate
may therefore be very pessimistic in the sense that the estimation may be much faster for
some densities s ∈ S. One may actually refine the preceding risk bound to take into account
this phenomenon (named superminimaxity in [BB16]). More precisely, it is shown in [BB16] a
non-asymptotic risk bound of the form

E[h2(s, ŝ)] ≤ C ′ inf
f∈S̄

{
h2(s, f) +RS(f, n)

}
whatever the density s,(1)
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where C ′ is a universal constant, S̄ a subset of S, and where RS(f, n) tends to 0 faster than the
optimal rate on S. For illustration purposes, consider the model

S = {f1I , I is an interval of R and f a non-increasing density on I} ,(2)

where 1I denotes the indicator function of I. Then, S̄ consists of piecewise constant densities
belonging to S,

RS(f, n) =
d(f)

n
log3+

(
n

d(f)

)
,

where d(f) is the number of pieces of f , and log+ x = max{log x, 1}. In particular, when s is
piecewise constant, the rate of convergence is parametric (up to a logarithmic term). If we now

only suppose that s belongs to S, we may bound the infimum (1) from above by Cs(log
3 n/n)1/3,

where Cs only depends on s, which corresponds, up to a logarithmic factor, to the expected rate
of convergence. The previous reasoning is not only valid for this particular model S but is more
general and holds true for numerous models S of interest corresponding to different qualitative
assumptions on the density (s may be piecewise monotone, piecewise log-concave,

√
s may be

piecewise convex-concave. . . ).

There is moreover two additional properties of ρ-estimators we now briefly mention. First,
ρ-estimators can be related to maximum likelihood ones. This will be further detailed in Sec-
tion 1.5. Second, it is possible to introduce penalties into the criterion γ, leading to penalized
ρ-estimators and allowing to cope with model selection.

1.3. On hazard rate and transition intensity estimation. In this paper, we propose to
extend the scope of ρ-estimation to these two statistical settings. The first one, namely hazard
rate estimation, frequently appears in different domains such as reliability or survival analysis.
Typically, in medical studies, T may represent the lifetime of a patient, and the hazard rate s
at time t,

s(t) =
f(t)

P (T ≥ t)
,

= lim
h→0

P (t ≤ T ≤ t+ h | T ≥ t)

h
,

stands for the propensity of succumbing just after t, given survival to time t. In practice,
some patients may leave the study before dying, which makes the data censored. The random
variable C then gives the time of leaving and D = 1T≤C indicates whether the patient dies
(D = 1) or leaves the study (D = 0).

Note that this problem differs from the one of density estimation, even when the data are
not censored, that is when one observes T1, . . . , Tn. Indeed, although that the survival function
t 7→ P (T ≥ t) may be estimated at a parametric rate, it is different to put an assumption
on s and on f . The problem of hazard rate estimation is moreover more delicate as it cannot
be uniformly estimated on [0,+∞). It is actually better estimated in regions of high value of
P (T ≥ t) than in regions of low value, see for instance [Efr16].

The problem of transition intensity estimation of a Markov process may also be encountered
in various domains. For example, in medical trials, a Markov process {Xt, t > 0} may be used to
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model the evolution of a disease, the state 0 representing (for instance) the death of the patient.
The transition rate s at time t,

s(t) =
f(t)

P (Xt− = 1)
,

= lim
h→0

P (Xt+h = 0 | Xt− = 1)

h
,

has similar interpretation than the hazard rate: it measures the risk of dying just after t, given
the disease is in state 1 at time t−. This framework is actually more general than the one of
hazard rate estimation (when the data are uncensored) as s coincides with the hazard rate of T
when the Markov process is defined by Xt = 1T≥t .

In the literature, numerous estimators are proposed to deal with (at least) one of these two
frameworks. We may cite wavelet estimators, Kernel estimators, maximum likelihood estimators,
procedures based on L2 contrasts, and a piecewise constant estimator based on a device inspired
from [Bir06]. Non-asymptotic studies seem, however, to be more scarce. We may cite [BC05,
BC08, Pla09, AD10, RB06] for procedures based on (penalized) L2 contrasts, [vdG95, DR02] for
maximum likelihood estimators, and [BB09] for a piecewise constant estimator whose partition
is suitably selected from the data.

1.4. A generalized procedure, a new probabilistic tool, and new risk bounds. We
propose in this paper to consider a general setup that will make it possible the simultaneous
study of the three frameworks.

We shall measure the risk of our estimators by means of a (possibly random) Hellinger-type
distance h adapted to the statistical setting. In framework 1, h is the usual Hellinger distance,
in framework 2,

h2(f, g) =
1

2

∫ ∞

0

(√
f(t)−

√
g(t)

)2
(
1

n

n∑

i=1

1Xi≥t

)
dt,

and in framework 3,

h2(f, g) =
1

2

∫ ∞

0

(√
f(t)−

√
g(t)

)2
(
1

n

n∑

i=1

1
X

(i)
t−=1

)
dt.

The quality of an estimator ŝ is therefore assessed by h2(s, ŝ): the smaller h2(s, ŝ), the better
the estimator. Note that this Hellinger-type distance puts more weight on regions of R where
estimation seems easier.

As explained in Section 1.2, we shall estimate an approximation TE(f, g) of h
2(s, f)−h2(s, g).

The resulting estimator will then be defined as a minimizer, or more precisely as an approximate
minimizer of γ(f) = supg∈S T (f, g) where T (f, g) estimates TE(f, g). Similarly to framework 1
controlling the Hellinger-type risk of a ρ-estimator requires to control the deviations of a centered
empirical process T (f, g)−TE(f, g). This process becomes however unbounded in frameworks 2
and 3. We shall carry out a result to control these deviations and use it to study the theoretical
performances of ρ-estimators. More precisely, we shall establish a risk bound akin to the one
(1) obtained in density estimation by [BB16]. Actually, in density estimation, our estimation
term RS(f, n) is slightly smaller. Moreover, this bound is valid in frameworks 2 and 3 without
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any additional assumption on these statistical settings. This new risk bound being very similar
to (1), all the rates obtained by [BB16] for ρ-estimators in density estimation under qualitative
assumptions can be transferred in frameworks 2 and 3 (up to a minor improvement).

1.5. On maximum likelihood estimation. A ρ-estimator ŝ is defined as a solution of a min-
imax problem, which seems, unfortunately, be numerically difficult to solve in general. It turns
out that this optimization problem may sometimes reduce to that of log likelihood maximization
(which is thus more easier to solve).

This phenomenon can be explained by the local behaviour of the estimator T (f, g). Indeed,
when f and g are very close densities in framework 1, T (f, g) roughly behaves as the difference
of L(g) − L(f) where L(·) denotes the log-likelihood. This behaviour was exploited in density
estimation in Section 5 of [BBS17], and Sections 2.6, and 3.4 of [Sar16], to make a connection
between ρ- and maximum likelihood estimation (see also the numerical simulations in [Sar16]).

When T is moreover a convex-concave function, as it is the case in the present paper in our
three different statistical settings, ρ-estimators mainly reduce to that of maximum likelihood ones
when the models are convex (up to a minor modification in the definition of the log likelihood
if S does not only consist of densities in framework 1). We recover, in particular, a result of Su
Weijie included very recently in [BB17] in the context of framework 1.

It is worthwhile to notice that these two estimation methods differ in general. In particular,
a maximum likelihood estimator may be very sensitive to a small model error measured by the
Hellinger distance, as it was already mentioned in Section 1.2. Moreover, maximum likelihood
estimation may fail in models where ρ-estimation works (as it is the case for example for the
model S defined in (2)).

1.6. Practical estimation. In practice, the model S is often chosen according to the data,
and should therefore theoretically considered as random. In this paper, we will also be able to
control the risks of ρ-estimators for random models. As a corollary, we may consider models S
consisting of estimators, in which case the procedure amounts to performing estimator selection.
The numerical complexity of this selection rule is roughly of the order of the square of the
number of estimators. It may therefore be implemented in practice when this number is not too
large.

Estimator selection may be an alternative way to build, in practice, estimators with nice
theoretical properties on models S where the computation of ρ-estimators seems be numerically
intractable. The idea is to proceed in two steps. We decompose the model S as a union
S =

⋃
m∈M Sm of convex models Sm. We maximize the log likelihood on Sm to get a ρ-

estimator ŝm and then select among them.

Here, we shall consider the model Sℓ,r consisting of non-negative piecewise polynomial func-
tions of degree at most r based on at most ℓ pieces. Although maximum likelihood estimators
do not exist on Sℓ,r, ρ-estimators do exist, and we may even control their Hellinger-type risks.
Unfortunately, we do not know how to build these ρ-estimators in practice. As explained above,
a solution is to consider for each (finite) partition m of R into intervals, the model Sℓ,r,m ⊂ Sℓ,r
consisting of functions which are polynomial on each interval I of m. Then, Sℓ,r =

⋃
m∈M Sℓ,r,m

where the union is taken over all partitions m of R into at most ℓ intervals. We may then build
in practice for each m ∈ M the maximum likelihood estimator ŝm on Sℓ,r,m. Selecting among
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all the estimators ŝm is theoretically feasible but does not yield a practical procedure as M
is infinite. This is the reason why, we shall rather consider a finite (but very large) collection

M̂ ⊂ M of partitions depending on the data, and carry out a new procedure to select among

the estimators ŝm, m ∈ M̂. Although the large cardinality of M̂, dynamic programming makes
it possible the computation of the selected estimator in practice, at least when n is not too large
(the numerical complexity significantly increases with n). We study the selected estimator from
a theoretical and practical point of view. We first prove an oracle inequality, and then carry
out a small numerical study in which we compare this procedure with a selection rule based on
maximum likelihood.

We finally explain how we can adapt our procedure to build an estimator with nice statistical
properties when s belongs, or is close to, the more general model Sr = ∪∞

ℓ=1Sℓ,r. The risk
bound we get corresponds to the one we would obtain for the best estimator of the family
{ŝℓ,r, ℓ ≥ 1} where ŝℓ,r denotes the ρ-estimator built on Sℓ,r (up to slightly modifications). This
best estimator, is of course, unknown in practice as the best choice of ℓ depends on the unknown
function s. This procedure explains therefore how to choose ℓ from the data, or in other terms,
how to build an estimator adaptive with respect to ℓ. Interestingly, this estimator can be built
in practice, when n is small enough (even if the computation of a single estimator ŝℓ,r seems be
numerically intractable).

1.7. Organization of the paper. We carry out in Section 2 the general statistical setting
that encompasses the three different frameworks. We then explain our estimation procedure
for deterministic models and relate it to the maximum likelihood one. In Section 3, we present
the probabilistic tool that enables us to control the risk of ρ-estimators, as well as the required
assumptions on models S. We then present our main theorem on the theoretical performances of
ρ-estimators. In Section 4, we deal with random models and estimator selection as explained in
Section 1.6. Section 5is devoted to numerical simulations. The proofs are deferred to Section 6.

2. The ρ-estimation method

2.1. Statistical setting and notations. We consider an abstract probability space (Ω, E ,P )
on which are defined the random variables appearing in the different frameworks. We associate
to each framework, and each borel set A ∈ B(R) two random variables N(A) and M(A). More
precisely, we set in density estimation,

N(A) =
1

n

n∑

i=1

1A(Xi), M(A) = µ(A),

and in hazard rate estimation,

N(A) =
1

n

n∑

i=1

1A(Xi)1Di=1, M(A) =
1

n

n∑

i=1

∫

A
1Xi≥t1[0,+∞)(t) dt.

In framework 3, we define the jump time of the ith process

T
(i)
1,0 = inf

{
t > 0, X

(i)
t− = 1, X

(i)
t = 0

}
,
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and consider

N(A) =
1

n

n∑

i=1

1
T

(i)
1,0∈A

1(0,+∞)(T
(i)
1,0), M(A) =

1

n

n∑

i=1

∫

A
1
X

(i)
t−=1

1(0,+∞)(t) dt.

These formulas define two random measures N and M on (R,B(R)) such that

E[N(A)] = E

[∫

A
s(t) dM(t)

]
for all A ∈ B(R).

Our aim is to estimate s from the observation of the random measures N and M .

As explained in the introduction, we shall evaluate the quality of the estimators by using an
Hellinger-type loss. This Hellinger-type distance h can be written simultaneously in the three
different statistical settings as

h2(f, g) =
1

2

∫

R

(√
f(t)−

√
g(t)

)2
dM(t),

for all non-negative measurable functions f , and g which are integrable with respect to the
measure M .

We now introduce some notations that will be used all along the paper. We define R+ =
[0,+∞), and set for x, y ∈ R, x ∧ y = min(x, y). The positive part of a real valued function f
is denoted by f+ and its negative part by f−. The distance between a point x and a set A in
a metric space (E, d) is denoted by d(x,A) = infy∈A d(x, y). We denote the cardinal of a finite
set A by |A|. We set log+ x = max{log x, 1} for all x > 0. The notations c, c′, C,C ′, . . . are for
the constants. These constants may change from line to line.

2.2. Heuristics. Let S = L1
+(R, µ) be the cone of non-negative Lebesgue integrable functions

in frameworks 1 and 3, and S be the cone of measurable non-negative functions which are
locally integrable with respect to the Lebesgue measure µ in framework 2. Let now S be a
(deterministic) subset of S. Such set will be named model. Our aim is to build an estimator ŝ
with values in S such that h(s, ŝ) is as small as possible.

Consider two two arbitrary functions f, g of S and the model S = {f, g}. As explained in the
introduction, we begin by defining an approximation TE(f, g) of h

2(s, f)− h2(s, g).

Let ψ be the real-valued function defined for x ≥ 0 by ψ(x) =
√
x−1√
x+1

, and ψ(+∞) = 1. For

f, g ∈ S, we set

TE(f, g) =

∫

R

ψ

(
g(x)

f(x)

)
s(x) dM(x)− 1

4

∫

R

(g(x)− f(x)) dM(x).

In this definition, and throughout the paper, we use the conventions 0/0 = 1 and x/0 = ∞
for all x > 0. The quantity TE(f, g) is unknown in practice as it involves s, but can easily be
estimated by

T (f, g) =

∫

R

ψ

(
g(x)

f(x)

)
dN(x)− 1

4

∫

R

(g(x)− f(x)) dM(x).

Some computations show:
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Lemma 1. For all f, g ∈ S,
1

3
h2(s, f)− 3h2(s, g) ≤ TE(f, g) ≤ 3h2(s, f)− 1

3
h2(s, g).(3)

In particular, if TE(f, g) is non-negative, then h2(s, g) ≤ 9h2(s, f). Conversely, if TE(f, g) is
non-positive, then h2(s, f) ≤ 9h2(s, g). In other words, the sign of TE(f, g) allows us to know
which function among f, g is the closest of s (up to a multiplicative constant).

For more general sets S, and f ∈ S, we are interested in evaluating h2(s, f)− h2(s, S). The
smaller this number, the better f . As TE(f, g) is roughly of the order of h2(s, f) − h2(s, g),
it is natural to approximate h2(s, f) − h2(s, S) by γE(f) = supg∈S TE(f, g) and to study the
properties of the minimizers of γE .

We deduce from the above lemma that for all f ∈ S,

1

3
h2(s, f)− 3h2(s, S) ≤ γE(f) ≤ 3h2(s, f)− 1

3
h2(s, S).

Minimizing γE over S yields a function f̄ ∈ S (assuming such a function exists) such that,

1

3
h2(s, f̄)− 3h2(s, S) ≤ γE(f̄) ≤ inf

f∈S
γE(f) ≤ 3 inf

f∈S
h2(s, f)− 1

3
h2(s, S) =

8

3
h2(s, S).

Therefore, h2(s, f̄) ≤ 17h2(s, S), which means that f̄ ∈ S is, up to a multiplicative constant,
the closest function of s.

The main interest of γE(f) with respect to h2(s, f) − h2(s, S) lies in the fact that it can be
estimated in practice by γ(f) = supg∈S T (f, g). It remains to minimize this criterion to define
our estimator as described below.

2.3. The procedure. Let for f, g ∈ S,

T (f, g) =

∫

R

ψ

(
g(x)

f(x)

)
dN(x)− 1

4

∫

R

(g(x)− f(x)) dM(x).(4)

Let S be a model and for f ∈ S, γ(f) = supg∈S T (f, g). Any function ŝ ∈ S satisfying

γ(ŝ) ≤ inf
f∈S

γ(f) + 1/n(5)

is called ρ-estimator.

Remark 1. Since S is not necessarily countable, ŝ may not be measurable in general, which
means that it is slightly abusive to say that ŝ is an estimator. Moreover, bounding the risk
h2(s, ŝ) of the ρ-estimator requires the use of the outer probability measure P ⋆ and the outer
expectation E⋆. We refer for instance to Chapter 1.2 of [VDVW96] for the definitions and the
properties of P ⋆, E⋆. However, in the examples of models S described in Section 3.2, we shall
see that there exists a deterministic, countable and dense subset S̄count ⊂ S in the metric space
(L1

+(R,M), h) such that γ(f) = supg∈S̄count
T (f, g) and inff∈S γ(f) = inff∈S̄count

γ(f). For such
models S, ŝ can be chosen in a measurable way, the outer probability measure P ⋆ can be replaced
by P , and the outer expectation E⋆ by E.

Remark 2. As explained in the above heuristics, the present procedure depends on two key
ingredients. First, we need to approximate h2(s, f)−h2(s, g) by a quantity TE(f, g) that satisfies
an inequality akin to (3). Second, we need a random variable T (f, g) that can be computed



10 MATHIEU SART

in practice and that is close enough to TE(f, g) (for more details about the meaning of “close
enough”, we refer to Section 3.1). There may exist other choices of TE(f, g) and T (f, g) that met
these criteria and for which the estimator ŝ defined by (5) would perform similarly. For the sake
of simplicity, we stick throughout the paper to our particular definition of TE(f, g) and T (f, g).
When f and g are supposed to be densities in framework 1, TE(f, g) becomes

∫
R
ψ(g/f)s dµ.

We then recover an approximation of h2(s, f)− h2(s, g) that appears in [BB17].

Remark 3. Minimizing γ to derive a good estimator based on T (f, g) is not the only solution.
We could, for instance, mimic the definition of T -estimators of [Bir06], or draw inspiration
from [Sar14]. This would lead to the criteria ℘1 and ℘2 defined for f ∈ S by

℘1(f) = sup
g∈S

T (f,g)≥0

h2(f, g), and ℘2(f) = sup
g∈S

{
αh2(f, g) + T (f, g)

}
,

where α is a fixed number α ∈ (0, 1/2). The estimator s̃i of the i
th procedure would be defined

as a minimizer of ℘i over S, or more precisely, as any element s̃i ∈ S such that

℘i(s̃i) ≤ inf
f∈S

℘i(f) + 1/n.

It actually turns out that our main result in Section 3 (Theorem 4) remains true for the two
estimators s̃1 and s̃2 (this requires, however, to modify the proofs, and to adapt the constants
in the risk bounds. These constants may depend on α for the second procedure). We do not
develop these points to keep this paper a reasonable size.

2.4. Connection with the maximum likelihood estimator. In the context of framework 1
(density estimation), if the functions of S are densities, we may maximize the log likelihood on S
to define the celebrated maximum likelihood estimator. When S is a subset of S = L1

+(R, µ),
the functions f of S may not be densities, and we need to extend this definition. We propose
to define L(f) by

L(f) =

∫

R

log f dN −
∫

R

f dM for all f ∈ S,(6)

and to call maximum likelihood estimator any estimator maximizing L on S. In the above
formula, and throughout the paper, the convention log 0 = −∞ is used. This definition coincides
with the usual one in framework 1 when S consists of densities. Moreover, L is the log likelihood
in frameworks 2 and 3, see, for instance, equation (3.2) of [Ant89] (where it is used that s is the
Aalen’s multiplicative intensity of a counting process).

It turns out that ρ-estimators and maximizers of L coincide with probability 1 for numerous
models S of interest. To explain this phenomenon, remark that T (f, g) also writes

T (f, g) =

∫

R

tanh (log g − log f) dN − 1

4

∫

R

(g − f) dM for all f, g ∈ S.

As tanh(x) ≃ x/4 when x ≃ 0, we deduce that if s̃ maximizes L and g ≃ s̃,

T (s̃, g) ≃ 1

4

(∫

R

log g dN −
∫

R

log s̃ dN

)
− 1

4

(∫

R

g dM −
∫

R

s̃ dM

)

≃ 1

4
(L(g)− L(s̃)) .
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Thereby, T (s̃, g) is likely non-positive. Under suitable properties of S, this result does not only
occur when g ≃ s̃, but also for all g ∈ S, which implies that γ(s̃) = 0. In particular, s̃ is a
ρ-estimator.

Theorem 1. Suppose that S is a convex subset of S. Let X be a subset of R such that {x ∈
R, f(x) 6= 0} ⊂ X for all f ∈ S. Define

LX (f) =
∫

X
log f dN −

∫

X
f dM for all f ∈ S,

and suppose that supg∈S LX (g) 6∈ {−∞,+∞}.
If there exists s̃ ∈ S such that LX (g) ≤ LX (s̃) for all g ∈ S, then γ(s̃) = 0 and s̃ is a ρ-

estimator. Conversely, assume that there exists a ρ-estimator ŝ ∈ S such that γ(ŝ) = 0. Then,
for all g ∈ S, LX (g) ≤ LX (ŝ), and ŝ maximizes LX over S.

When X = R, LX = L, which means that results on maximum likelihood estimators may be
derived from that of ρ-estimators and vice versa. We recover a result of Su Weijie included very
recently in [BB17] in framework 1. Using sets X not equal to R may be of interest to maintain
a connection between these two approaches in models where the maximum likelihood estimator
does not exist, as explained below.

We consider the convex model S in framework 1 defined by

S =
{
f1(0,+∞), f is a non-increasing function of S on R

}
.(7)

When the random variables Xi are positive, which in particular holds true µ a.s. if s does belong
to S, the maximum likelihood estimator exists on S and is known as the Grenander estimator,
see [Gre56]. We deduce from the above theorem with X = R that this estimator is, in this case, a
ρ-estimator. When some of the random variables Xi are non-positive, L(g) = −∞ for all g ∈ S,
and we cannot maximize L over S to design an estimator. However, the ρ-estimation approach
works and still coincides with the maximum likelihood one, up to some minor modifications.
Indeed, in this case, the preceding theorem can be used with X = (0,+∞). Then, LX (f) takes
the form

LX (f) =
1

n

∑

i∈{1,...,n}
Xi>0

log f(Xi)−
∫ ∞

0
f(t) dt for all f ∈ S.

Let s̃ be the Grenander estimator based on the random variables X1, . . . ,Xn that are positive.
This estimator maximizes the map

f 7→ 1

n0

∑

i∈{1,...,n}
Xi>0

log f(Xi)−
∫ ∞

0
f(t) dt

over f ∈ S, where n0 is the number of positive random variables among X1, . . . ,Xn. One can
verify that the estimator that maximizes LX over S, and which is thus the ρ-estimator on S,
is ŝ = (n0/n)s̃. Note that

∫
R
ŝ dµ = n0/n, which means that the ρ-estimator is not a density

unless that the observations Xi are all positive.

One may wonder whether it is relevant to estimate s by an estimator that is not a density.
The following well-known lemma claims that it is always possible to transform an estimator into
a density and relate the risks of these two estimators.
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Lemma 2. Let, in density estimation, f be a non-zero function of S and

g(x) =
f(x)∫

R
f(t) dt

for all x ∈ R.

Then,

h2(s, g) ≤ 2h2(s, f).

However, the constant 2 cannot be improved in general, and h2(s, g) may be larger than
h2(s, f). Moreover, as we shall see in Section 3.3, the ρ-estimator ŝ = (n0/n)s̃ satisfies the
following additional property: h2(s1(0,+∞) , ŝ) tends a.s. to 0 when n goes to +∞ whenever s is
non-increasing on (0,+∞). By the way, we may specify the rate of convergence, see Section 3.5.
This result means that ŝ will consistently estimate s on (0,+∞). This phenomenon cannot
occur for density estimators with values in S when the probability P (X < 0) is positive.

3. Risk bounds of ρ-estimators

3.1. An exponential inequality. We recall that the definition of ρ-estimators is based on the
minimization of a criterion γ on S. This criterion γ uses the approximation T (f, g) ≃ TE(f, g)
where f, g ∈ S as explained in Section 2.2. Bounding above the risk of the ρ-estimator requires
to bound above the error due to the approximation of TE by T .

We introduce for any bounded function ϕ ∈ S, the random variable

Z(ϕ) =

∫

R

ϕ(x) dN(x) −
∫

R

ϕ(x)s(x) dM(x).

This variable is centered in each of the different statistical settings. Note that Z(ϕ) measures
the approximation error of TE(f, g) by T (f, g) when ϕ = ψ(g/f). The aim of the theorem below
is to control the fluctuations of Z(ϕ).

Theorem 2. Let F ⊂ S be a set of functions ϕ such that |ϕ(x)| ≤ 1 for all ϕ ∈ F , x ∈ R.
Assume that for all t ∈ (0, 1), the sets {x ∈ R, ϕ+(x) > t} and {x ∈ R, ϕ−(x) > t} are unions
of at most d intervals (d ≥ 1). Let, for ϕ ∈ F ,

υ(ϕ) =

∫

R

ϕ2(x)s(x) dM(x).

Then, there exists an event which holds true with probability larger than 1− e−nξ and on which:
for all ϕ ∈ F ,

|Z(ϕ)| ≤ C

{√
υ(ϕ) log+(1/υ(ϕ))

(
d log+(n/d)

n
+ ξ

)
+
d log+(n/d)

n
+ ξ

}
.(8)

Moreover, for all ε ∈ (0, 1],

|Z(ϕ)| ≤ ευ(ϕ) + C ′
ε

{
d log2+(n/d)

n
+ ξ log+(1/ξ)

}
.(9)

In the above inequalities, C is a universal constant while C ′
ε only depends on ε.
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In this theorem, and throughout the paper, we use the convention that the empty set ∅ is an
interval. In framework 1, Z(ϕ) and υ(ϕ) merely writes

Z(ϕ) =
1

n

n∑

i=1

(ϕ(Xi)− E[ϕ(Xi)]) and υ(ϕ) = E[ϕ2(X1)].

In framework 2, Z(ϕ) and υ(ϕ) take the form

Z(ϕ) =
1

n

n∑

i=1

(
ϕ(Xi)1Di=1 −

∫ Xi

0
ϕ(t)s(t) dt

)
, υ(ϕ) =

1

n

n∑

i=1

∫ Xi

0
ϕ2(t)s(t) dt.

In framework 3,

Z(ϕ) =
1

n

n∑

i=1

(
ϕ(T

(i)
1,0)1T (i)

1,0<∞ −
∫ +∞

0
ϕ(t)1

X
(i)
t−=1

s(t) dt

)
, υ(ϕ) =

1

n

n∑

i=1

∫ +∞

0
ϕ2(t)1

X
(i)
t−=1

s(t) dt.

In each of these two latter frameworks, υ(ϕ) plays the role of a moment of order 2, as in density
estimation (with the noticeable difference that υ(ϕ) is now random). Note that we do not require

that
∫ Xi

0 ϕ(t)s(t) dt and
∫ +∞
0 ϕ(t)1

X
(i)
t−=1

s(t) dt are bounded almost surely.

In this theorem, we measure the complexity of the collection F by using the notion of “union
of intervals”. This notion is general enough to control the risks of ρ-estimators in numerous
models S of interest. It is however possible to weaken this assumption in framework 1. Indeed,
the proof of the theorem is based on a uniform control of Z(1A) where A spans a collection of
the form

At = {{x ∈ R, ϕ+(x) > t} , ϕ ∈ F} ∪ {{x ∈ R, ϕ−(x) > t} , ϕ ∈ F} .(10)

In density estimation, this uniform control follows from Vapnik-Chervonenkis inequalities for
relative deviation. We may therefore deal with any class F for which these inequalities apply.
Actually, we may prove:

Corollary 1. Consider framework 1 and an at most countable set F ⊂ S of functions ϕ such
that |ϕ(x)| ≤ 1 for all x ∈ R, ϕ ∈ F . Let for t ∈ (0, 1), At be the collection defined by (10),
and SAt(n) be the Vapnik-Chervonenkis shatter coefficient defined by

SAt(n) = max
x1,...,xn∈R

|{{x1, . . . , xn} ∩A,A ∈ At}| .

Suppose that there exists σ2 ∈ (0, 1] such that supϕ∈F E[ϕ2(X1)] ≤ σ2. Then, there exists a
universal constant C such that

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ C


σ

√
supt∈(0,1) log+ |SAt(2n)| log+(1/σ)

n
+

supt∈(0,1) log+ |SAt(2n)|
n


 .

In the literature, several papers study this expectation under different assumptions on F ,
see [GK06], Chapter 13 of [BLM13] and [Bar16]. Our result can be compared to Inequality (2.8)
of [Bar16]. Indeed, suppose that F is weak VC-major with dimension d in the sense of Defini-
tion 2.3 of [Bar16]. Then, At is Vapnik-Chervonenkis and Sauer’s lemma implies

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ C ′

[
σ

√
d log+(n/d) log+(1/σ)

n
+
d log+(n/d)

n

]
,
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where C ′ is a numerical number. If we put aside the constant C ′, the main difference between
this inequality and the one of [Bar16] lies in the position of the logarithmic term log+(1/σ): it
is here involved inside the square root while it is outside in [Bar16].

Theorem 2 is well tailored for bounding the risk of a ρ-estimator. Indeed, when ϕ = ψ(g/f),
the random variable υ(ϕ) can be related to the Hellinger distances between s, f and g:

Lemma 3. For all f, g ∈ S,
∫

R

ψ2(g/f)s dM ≤ 3
(
h2(s, f) + h2(s, g)

)
.

Under suitable assumptions on the collection F = {ψ(f/g), f, g ∈ S}, Inequality (9) roughly
says that with high probability (and ε = 1/18):

|T (f, g)− TE(f, g)| ≤
1

6

(
h2(s, f) + h2(s, g)

)
+DS(n) for all f, g ∈ S.(11)

The term DS(n) depends on the probability of the event on which (11) is true and the complexity
of S. The approximation T (f, g) ≃ TE(f, g) is then accurate enough to control the risk of the
ρ-estimator ŝ. It indeed suffices to mimic the computations done in Section 2.2: we deduce
from (3), that for all f, g ∈ S,

1

6
h2(s, f)− 19

6
h2(s, g) −DS(n) ≤ T (f, g) ≤ 19

6
h2(s, f)− 1

6
h2(s, g) +DS(n).

Therefore,

1

6
h2(s, f)− 19

6
h2(s, S)−DS(n) ≤ γ(f) ≤ 1

6
h2(s, f)− 19

6
h2(s, S) +DS(n),

and hence,

1

6
h2(s, ŝ)− 19

6
h2(s, S)−DS(n) ≤ γ(ŝ)

≤ inf
f∈S

γ(f) + 1/n

≤ 19

6
inf
f∈S

h2(s, f)− 1

6
h2(s, S) +DS(n) + 1/n.

Finally, the risk of a ρ-estimator ŝ is bounded above by

h2(s, ŝ) ≤ 37h2(s, S) + 12DS(n) + 6/n.

It remains to explain the assumptions to put on the model S to make inequality (11) more
precise and rigorous.

3.2. Assumptions on models. We shall be able to control the risks of ρ-estimators for mod-
els S satisfying the assumption below.

Assumption 1. There exists S̄ ⊂ S such that for all t > 0, f ∈ S̄, g ∈ S the set

{x ∈ R, g(x) > tf(x)}
is a union of at most dS(f) ≥ 1 intervals.
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This assumption is satisfied for numerous models of interest. We carry out below three
examples. The first model is the collection Pℓ,0 of piecewise constant functions defined by

Pℓ,0 =





ℓ∑

j=1

aj1Kj
, (aj)1≤j≤ℓ ∈ Rℓ

+, Kj is an interval of R of finite length



 .(12)

More generally, we may consider the set of (non-negative) piecewise polynomial functions defined
for r ≥ 1 by

Pℓ,r =





ℓ∑

j=1

Pj1Kj
, Pj is a polynomial function of degree at most r, which is(13)

non-negative on an interval Kj of R and is such that Pj1Kj
∈ S

}
.

We may also consider the slight variant:

Pℓ,r,+ =





ℓ∑

j=1

(Pj)+1Kj
, Pj is a polynomial function of degree at most r,(14)

such that (Pj)+1Kj
∈ S, and Kj is an interval of R

}
.

We may also deal with the collection Fk of piecewise monotone functions defined for k ≥ 1 by

Fk =





k∑

j=1

fj1Kj
,where Kj is an interval of R, fj ∈ S is monotone on Kj



 .(15)

Note that unimodal functions belong to Fk as soon as k ≥ 2.

Proposition 3. Assumption 1 is fulfilled with:

• S = Pℓ,r, S̄ ⊂ Pℓ,r and for all f ∈ S̄, dS(f) = (r + 2)(2ℓ+ 1).
• S = Pℓ,r,+, S̄ ⊂ Pℓ,r,+ and for all f ∈ S̄, dS(f) = 4(3r + 1)(2ℓ+ 1).
• S = Fk, S̄ ⊂ ∪∞

ℓ=1Pℓ,0 and for all f ∈ Pℓ,0, dS(f) = 2(k + ℓ+ 1).

Two additional models S satisfying this assumption may be found in [BB16]: the collection of
non-negative piecewise concave-convex functions, and the collection of non-negative log-concave
functions.

When Assumption 1 is met for a model S, it also holds for any model S′ ⊂ S with S̄′ ⊂ S̄.
As an illustration, consider a (non-empty) collection m of disjoint intervals of R that are right-
closed and not-reduced to a singleton. Let Pcont(m) be the model of non-negative continuous
piecewise affine functions defined by

Pcont(m) =

{∑

K∈m
PK1K , PK ∈ S is a non-negative affine function

such that x 7→
∑

K∈m
PK(x)1K (x) is continuous on R

}
.

As Pcont(m) ⊂ P|m|,1, Assumption 1 is fulfilled with S = Pcont(m), S̄ ⊂ P|m|,1, and dS =
3(2|m| + 1). Note that Theorem 1 applies as Pcont(m) is convex and shows that ρ-estimators



16 MATHIEU SART

on Pcont(m) coincide with maximizers of LX with X =
⋃

K∈mK (to see that supg∈S LX (g) is
finite, we refer to Lemma 4 in Section 4.2).

Remark: when S corresponds to one of the models defined above, we may always choose the
ρ-estimator in a measurable way. For instance, if S = Pℓ,0, we may apply the end of Section 2.3

with the countable set S̄count = Pℓ,0count defined by

Pℓ,0count =





ℓ∑

j=1

aj1Kj
, (aj)1≤j≤ℓ ∈ Qℓ

+,Kj is an interval of finite length with endpoints in Q



 .

If S is defined by (15), we may use S̄count =
⋃∞

ℓ=1

(
Fk ∩ Pℓ,0count

)
.

3.3. Main theorem. We now state our main result.

Theorem 4. Let S be a model such that Assumption 1 is satisfied with S̄ ⊂ S. Then, any
ρ-estimator ŝ built on S satisfies for all ξ > 0,

P ⋆

[
h2(s, ŝ) ≥ inf

f∈S̄

{
c1h

2(s, f) + c2
dS(f)

n
log2+

(
n

dS(f)

)
+ c3ξ log+(1/ξ)

}]
≤ e−nξ,(16)

and thus

E⋆
[
h2(s, ŝ)

]
≤ inf

f∈S̄

{
c1E

[
h2(s, f)

]
+ c′2

dS(f)

n
log2+

(
n

dS(f)

)}
.(17)

In the above inequalities, c1, c2, c
′
2, c3 are universal positive constants.

Remark 1. The only risk bounds we are aware of that are written in terms of Hellinger
distance h in frameworks 2 and 3 are those of [BB09] for a piecewise constant estimator whose
partition is selected from the data. We refer to their Theorem 5, Proposition 8 and 9. They
estimate s on a (deterministic) interval I and assume that

∫
I s(t) dt is finite. This integrate

deteriorates their risk bound and thus the theoretical performances of their estimator. Moreover,
in hazard rate estimation,

∫∞
0 s(t) dt = ∞, which implies that their estimation interval I must

be of finite length, while our theorem makes it possible the estimation of s on the whole line R.

It is very common in the literature to restrict the estimation of a hazard rate to a deterministic
interval I of finite length on which the survival function t 7→ P (X ≥ t) is lower bounded by a
positive constant (see [BC05, BC08, Pla09, AD10]). Note that the interval I may depend on the
data in practice. Moreover, the lower bound on the survival function may influence the rates of
convergence of the estimators (when it decreases with n) as soon as the loss does not favour the
regions of I where the estimation is easier.

Remark 2. When s ∈ S̄, the risk of the ρ-estimator built on S is bounded by

E⋆
[
h2(s, ŝ)

]
≤ C

dS(s)

n
log2+

(
n

dS(s)

)
.

The rate of estimation of s becomes then parametric (up to a logarithmic term). When s 6∈ S̄,
the estimator automatically achieves the best trade-off between the bias (approximation) term
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h2(s, f) and the variance (complexity) term (dS(f)/n) log
2
+ (n/dS(f)):

E⋆
[
h2(s, ŝ)

]
≤ CR(s) with R(s) = inf

f∈S̄

{
E
[
h2(s, f)

]
+
dS(f)

n
log2+

(
n

dS(f)

)}
.(18)

It remains to compute R(s) to deduce (an upper bound of) the rate of convergence of the ρ-
estimator when s ∈ S. This rate is often non-parametric, and may therefore be much slower
than the rate we would obtain if s does belong to S̄ (see Section 3.5 for an example).

This phenomenon (faster rate of convergence when s ∈ S̄) has already been put forward
in [BB16] for ρ-estimators in density estimation (see their Theorem 2) and has been named
superminimaxity. Our theorem improves their result in the sense that our approximation term
involves a smaller exponent in the logarithmic term. Moreover, we show that superminimaxity
is not specific to density estimation but also occurs in frameworks 2 and 3.

Remark 3. The right-hand side of (17) is of the same form in each framework. The only
difference lies in the Hellinger loss h. Note that in frameworks 2 and 3, E

[
h2(s, f)

]
is smaller

than the (square of the) Hellinger distance in density estimation:

E
[
h2(s, f)

]
≤ 1

2

∫

R

(√
s−

√
f
)2

dµ.

This means that it suffices to bound the right-hand side of (17) in density estimation to auto-
matically derive a bound on E⋆

[
h2(s, ŝ)

]
in frameworks 2 and 3.

Remark 4. It follows from a crude application of the triangular inequality and from (17) that

E⋆
[
h2(s, ŝ)

]
≤ C inf

g∈S

{
E
[
h2(s, g)

]
+R(g)

}
.

If we know how to bound R(g) for g ∈ S, this inequality says that the risk of the ρ-estimator
is not only controlled when s does belong to S but also when there exists g ∈ S such that
s ≃ g, that is when s is close to S. In other words, the Hellinger risk of the ρ-estimator cannot
substantially increase when s does not belong to S but is close to S. Such a result may be
interpreted as a robustness property.

Remark 5. When the assumptions of Theorem 1 are met with X = R, a maximum likelihood
estimator is a ρ-estimator. Its Hellinger risk is therefore bounded by (16) and (17). In particular,
the maximum likelihood estimator inherits the robustness property described in the preceding
remark. It is worth mentioning that such a result is not true for more general models S, as shown
by the following toy example in density estimation borrowed from Section 2.3 of [Bir06]. Let
S = {θ−11[0,θ], θ > 0}. Then, Assumption 1 holds with dS(f) = 1, S̄ = S, and the ρ-estimator ŝ
built on S is measurable and satisfies

E
[
h2(s, ŝ)

]
≤ C

[
h2(s, S) +

log2 n

n

]
.

We believe that the log2 n/n term is suboptimal. However, if

s = (1− 2n−1)1[0,1/10] + 2n−11[9/10,1] ,
then h2(s, S) ≤ 5/(4n) for n ≥ 4 and thus E

[
h2(s, ŝ)

]
≤ C ′ log2 n/n for some constant C ′. Now,

if s̃ designs the maximum likelihood estimator, E
[
h2(s, s̃)

]
> 0.38, which does not tend to 0

when n goes to infinity (see [Bir06] for the computations leading to the upper bound of h2(s, S)
and the lower bound on E

[
h2(s, s̃)

]
). We may also refer to [Sar16] for numerical simulations
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highlighting the interest of such a robustness property for an estimation procedure closely related
to the present one.

Remark 6. When the criterion γ vanishes at a point ŝ, which typically happens when ŝ
maximizes LX , the constant c1 appearing in front of the bias term h2(s, f) in Theorem 4 can be
improved:

Proposition 5. Let S be a model such that Assumption 1 is satisfied with S̄ ⊂ S. Suppose that
there exists ŝ ∈ S such that γ(ŝ) = 0.

Then, (16) and (17) hold for all ε > 0 with c1 = c1,ε, c2 = c2,ε, c
′
2 = c′2,ε such that c1,ε ≥ 9

and limε→0 c1,ε = 9.

The constant c1 = c1,ε may therefore be made as close as 9 as wished. We do not know to
what extent this result can be improved. We only know that c1 = c1,ε cannot be smaller than 2
as shown by the following elementary example.

Proposition 6. Consider framework 1, p ∈ (0, 1), ε ∈ (0, 1) and observations X1, . . . ,Xn with
density

s := sp,ε = pε−11[0,ε] + (1− p)1[1,2].
Let m = {[0, 1], [1, 2]}, and S be the model of piecewise constant densities defined by

S =
{
a1[0,1] + (1− a)1[1,2] , a ∈ [0, 1]

}
.(19)

Since S is convex, the ρ-estimator ŝ coincides with the maximum likelihood estimator defined by

ŝ =

(
1

n

n∑

i=1

1[0,1](Xi)

) 1[0,1] +( 1

n

n∑

i=1

1[1,2](Xi)

) 1[1,2],
and vanishes γ: γ(ŝ) = 0. Moreover, for all η ∈ (1, 2), there exist p, ε such that

lim
n→+∞

h2(sp,ε, ŝ) ≥ ηh2(sp,ε, S) almost surely.

Note that the constant 2 is optimal for the particular model (19) as it follows from (2.8)
of [BR06] that

E
[
h2(sp,ε, ŝ)

]
≤ h2(sp,ε, s̄) +

1

2n
with s̄ =

(∫

[0,1]
sp,ε dµ

) 1[0,1] +(∫
[1,2]

sp,ε dµ

) 1[1,2],
and Lemma 2 of [BB09] asserts that h2(sp,ε, s̄) ≤ 2h2(sp,ε, S). However, we do not know whether
this constant is optimal for more general convex models S.

Remark 7. In framework 1, we do not suppose that S consists of densities. This gives to
ρ-estimators an additional property as we briefly mentioned in Section 2.4. Indeed, consider a
class F of densities, an interval I of R, and the model S = {f1I , f ∈ F} . We define the random
measures N ′ and M ′ by N ′(A) = N(A ∩ I), M ′(A) = M(A ∩ I) for all A ∈ B(R). Note that
E[N ′(A)] =

∫
A s1I dM ′. Since the functions of S vanish outside I, we may replace N , M in

the procedure of Section 2.3 by N ′, M ′. This would not change the estimator, or the empirical
process to control. In particular, if Assumption 1 is fulfilled with S̄ ⊂ S, the ρ-estimator satisfies
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for all ξ > 0,

P ⋆

[
h2(s1I , ŝ1I ) ≥ inf

f∈S̄

{
c1h

2(s1I , f1I ) + c2
dS(f)

n
log2+

(
n

dS(f)

)
+ c3ξ log+(1/ξ)

} ]
≤ e−nξ.

Thereby, when all functions of S vanish outside a common interval I, the ρ-estimator actually
estimates the restriction of s to I (that may not be a density).

3.4. A first illustration of Theorem 4. Let Pℓ,0 be the collection of step functions defined
by (12). Then, the ρ-estimator ŝ built on Pℓ,0 satisfies in the three statistical settings

E
[
h2(s, ŝ)

]
≤ C

{
E
[
h2(s,Pℓ,0)

]
+
ℓ

n
log2+

(n
ℓ

)}
.(20)

The first term E
[
h2(s,Pℓ,0)

]
can be interpreted as an approximation term that is small if s is

close to a step function of Pℓ,0. When s does belong to Pℓ,0, the bound becomes

E
[
h2(s, ŝ)

]
≤ C

ℓ

n
log2+

(n
ℓ

)
.

This result is, in general, slightly suboptimal as it is possible to do better in density estimation.
Indeed, Pℓ,0 being VC subgraph (of dimension proportional to ℓ), we derive from Theorem 12
of [BBS17],

E
[
h2(s, ŝ)

]
≤ C ′

{
h2(s,Pℓ,0) +

ℓ

n
log+

(n
ℓ

)}
,

where C ′ is universal. The logarithmic term in this inequality is mandatory, in view of results on
minimax lower bounds (Proposition 2 of [BM98]). We conjecture that it is possible to improve
the exponent in the logarithmic term in (20) in frameworks 2 and 3.

3.5. Risks of ρ-estimators for piecewise monotone functions. Let (L2(R,ME), d2) be
the metric space of square integrable functions on R with respect to the measure ME defined by
ME(A) = E[M(A)] for all A ∈ B(R). Let S be a model satisfying the assumptions of Theorem 4.
We know from (18) that the ρ-estimator ŝ satisfies

E⋆
[
h2(s, ŝ)

]
≤ CR(s) with R(s) = inf

f∈S̄

{
1

2
d22(

√
s, f) +

dS(f)

n
log2+

(
n

dS(f)

)}
,(21)

where C is universal. It then remains to bound above R(s) to control the risk of ŝ.

As pointed out by Remark 2 of Section 3.3, a similar result to our Theorem 4 has already
been established by [BB16] in density estimation. In this framework, the only difference between
our inequality (21) and their risk bound lies in the exponent of the logarithmic term. Thereby,
many bounds on R(s) can be deduced from their results. Dealing with the other statistical
settings requires now little supplementary work. To avoid redundancy and to keep this paper a
reasonable size, we restrict ourselves to one example of model S.

Let S = Fk be the collection of piecewise monotone functions on at most k pieces defined
by (15). It follows from Proposition 3 that

R(s) ≤ C ′ inf
ℓ≥1

[
inf

f∈Fk∩Pℓ,0

{
1

2
d22(

√
s, f) +

k + ℓ

n
log2+

(
n

k + ℓ

)}]
,

where C ′ is universal.
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We now need to introduce some notations. We define for any interval K and function f ,

VK(f) = sup
x∈K

f(x)− inf
x∈K

f(x).

Let Mk be the family gathering all the collections m of at most k disjoint intervals of R. Define
for m ∈ Mk,

F(m) =

{∑

K∈m
fK1K , where fK ∈ S is monotone on K

}
.

Note that Fk =
⋃

m∈Mk
F(m). We define for m ∈ Mk and f ∈ F(m) of the form f =∑

K∈m fK1K ,

Lm(f) =
∑

K∈m

[
ME(K)V 2

K (fK)
]1/3

.

In this equality, we use the convention +∞× 0 = 0 when ME(K) = +∞. For f ∈ Fk, we set

L(f) = inf
m∈Mk

Lm(f).

The result is the following.

Corollary 2. There exists a measurable ρ-estimator on Fk, (k ≥ 1) and any measurable ρ-
estimator ŝ on Fk satisfies

E
[
h2(s, ŝ)

]
≤ C inf

f∈Fk

{
d22
(√
s, f
)
+ L(f)

(
log2 n

n

)2/3

+
k log2 n

n

}
.(22)

In particular, if s does belong to Fk, then f =
√
s also belongs to Fk and hence,

E
[
h2(s, ŝ)

]
≤ C

[
L
(√
s
)( log2 n

n

)2/3

+
k log2 n

n

]
.(23)

In the preceding inequalities, C is a universal constant.

We now make more explicit the above inequality (23) when k = 2 and s is unimodal. We
distinguish the cases according to the different frameworks.

Consider framework 1 or 3. Then,ME(K) is equal or smaller than the Lebesgue measure µ(K)
of K. Therefore, if s has support included into an interval of length Lsupp,

L(
√
s) ≤ 2L1/3

supp‖s‖1/3∞ ,

where ‖s‖∞ = supx∈R s(x), and the bound (23) becomes

E
[
h2(s, ŝ)

]
≤ C ′

[
L1/3
supp‖s‖1/3∞

(
log2 n

n

)2/3

+
log2 n

n

]
.

In framework 2, suppose that X has finite expectation: E[X] < ∞. Then, for all interval
K ⊂ [0,+∞),

ME(K) ≤
∫ ∞

0
P (X ≥ t) dt

≤ E[X].
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Therefore,

L(
√
s) ≤ 2 (E(X))1/3 ‖s‖1/3∞ .

The risk of the ρ-estimator ŝ is then bounded above by

E
[
h2(s, ŝ)

]
≤ C ′

[
(E(X))1/3 ‖s‖1/3∞

(
log2 n

n

)2/3

+
log2 n

n

]
.

Note that we do not require that the support of s be of finite length.

4. Selecting among estimators

It is often difficult in practice to find a global minimum of γ and thus to build ρ-estimators on
non-convex models S. In this section, we propose new criteria based both on estimator selection
and T (f, g), that are more numerically friendly.

4.1. Random models. Let Ŝ be a possibly random model, that is a model that may depend

on the data. Mathematically, this means that Ŝ maps Ω to the set of subsets of S. We may
build a ρ-estimator on Ŝ in the same way as we would do if the model were deterministic. More
precisely, we define γ2(f) for f ∈ Ŝ by

γ2(f) = sup
g∈Ŝ

T (f, g),

where T is given by (4). We say that ŝ is a ρ-estimator built on the random model Ŝ if it satisfies

γ2(ŝ) ≤ inf
g∈Ŝ

γ2(g) + 1/n.

The following theorem generalizes Theorem 4 to random models Ŝ.

Theorem 7. Suppose that Assumption 1 is satisfied with S = Ŝ and a possibly random sub-

set S̄ =
¯̂
S ⊂ S. For all ξ > 0, the ρ-estimator ŝ built on the random model Ŝ satisfies

P ⋆

[
h2(s, ŝ) ≥ c inf

f∈Ŝ∩ ¯̂
S

{
h2(s, f) +

dŜ(f)

n
log2+

(
n

dŜ(f)

)
+ ξ log+ (1/ξ)

}]
≤ e−nξ.

In particular,

E⋆
[
h2(s, ŝ)

]
≤ CE⋆

[
inf

f∈Ŝ∩ ¯̂
S

{
h2(s, f) +

dŜ(f)

n
log2+

(
n

dŜ(f)

)}]
.

In the above inequalities, c and C are universal constants.

We may use random models to address the problem of estimator selection as explained below.
Let Λ be an at most countable set, and let for each λ ∈ Λ, ŝλ be an estimator of s. Building
a ρ-estimator on the model Ŝ = {ŝλ, λ ∈ Λ} yields an estimator of the form ŝ = ŝλ̂, that is a
particular estimator of the family. The risk of this selected estimator ŝλ̂ is then bounded above
by the following corollary, which immediately ensues from Theorem 7.
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Corollary 3. Let Λ be an at most countable set and let {ŝλ, λ ∈ Λ} be a collection of estimators.
Suppose that there exists a deterministic model S satisfying Assumption 1 such that S̄ ⊂ S, and
such that each estimator ŝλ has values in S̄. Building a ρ-estimator on the random model
Ŝ = {ŝλ, λ ∈ Λ} amounts to selecting an estimator among {ŝλ, λ ∈ Λ}: the ρ-estimator is of the
form ŝ = ŝλ̂ and satisfies for all ξ > 0,

P

[
h2(s, ŝλ̂) ≥ c inf

λ∈Λ

{
h2(s, ŝλ) +

dS(ŝλ)

n
log2+

(
n

dS(ŝλ)

)
+ ξ log+ (1/ξ)

}]
≤ e−nξ.

In particular,

E
[
h2(s, ŝλ̂)

]
≤ CE

[
inf
λ∈Λ

{
h2(s, ŝλ) +

dS(ŝλ)

n
log2+

(
n

dS(ŝλ)

)}]
(24)

≤ C inf
λ∈Λ

E

[
h2(s, ŝλ) +

dS(ŝλ)

n
log2+

(
n

dS(ŝλ)

)]
.

In the above inequalities, c and C are universal constants.

We now give an illustrative example. We consider ℓ ≥ 1, r ≥ 0 and an at most countable
collection {ŝλ, λ ∈ Λ} of non-negative piecewise polynomial estimators of degree at most r based
on at most ℓ pieces. In other words, each ŝλ has values into Pℓ,r. The model S = Pℓ,r satisfies
Assumption 1 with S̄ = S and dS = (r + 2)(2ℓ + 1) (see the first point of Proposition 3).
Therefore, the selected estimator ŝλ̂ satisfies

E
[
h2(s, ŝλ̂)

]
≤ C ′

{
inf
λ∈Λ

E
[
h2(s, ŝλ)

]
+

(r + 1)ℓ log2+ (n/(ℓ(r + 1)))

n

}
,(25)

for some universal constant C ′. The risk of the selected estimator ŝλ̂ is therefore bounded
above, up to the multiplicative constant C ′ and an estimation term of the order of (r +
1)ℓ log2+ (n/(ℓ(r + 1))) /n, by the risk of the best estimator of the family.

This risk bound is always worse than the one we would obtain for a ρ-estimator ŝ built on
the model S = Pℓ,r:

E
[
h2(s, ŝ)

]
≤ C ′′

{
E
[
h2(s,Pℓ,r)

]
+

(r + 1)ℓ log2+ (n/(ℓ(r + 1)))

n

}
,(26)

where C ′′ is universal (see Theorem 4). The interest of ŝλ̂ is practical: the construction of ŝ seems
to be numerically difficult whereas the selected estimator ŝλ̂ can be computed in a reasonable
amount of time as soon as Λ is finite and not too large.

4.2. Selecting among a special collection of piecewise polynomial estimators. As we
see in (25), we should take Λ as large as possible to improve on the theoretical performances of
the selected estimator. In this section, we propose to define a very large collection of piecewise
polynomial ρ-estimators {ŝλ, λ ∈ Λ}. Despite the large cardinality of Λ, we shall explain that
it is possible to tackle the problem of estimator selection in practice.
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We need to introduce the following notations. We consider a (possibly random) subset Î ⊂
{1, . . . , n} and real-valued random variables (Yi)i∈Î so that the measure N writes

N(A) =
1

n

∑

i∈Î
1A(Yi) for all A ∈ B(R).

More precisely, we define in framework 1, Î = {1, . . . , n}, Yi = Xi, in framework 2, Î = {i ∈
{1, . . . , n}, Di = 1}, Yi = Xi, and in framework 3, Î = {i ∈ {1, . . . , n}, T (i)

1,0 < ∞}, Yi = T
(i)
1,0.

Note that the random variables (Yi)i∈Î are distinct almost surely, which enables us to order

them: Y(1) < Y(2) < · · · < Y(n̂) where n̂ = |Î | ≤ n.

Let now M be the class of finite (non-empty) collections m of disjoint intervals K of R that
are right-closed and not reduced to a singleton. Let r ≥ 0, m ∈ M and

Pr(m) =

{∑

K∈m
fK1K , for all K ∈ m, fK1K ∈ S,

and fK is a polynomial function of degree at most r} .
We may compute a piecewise polynomial ρ-estimator ŝm on the convex model Pr(m):

Lemma 4. Let m ∈ M and for K ∈ m,

Pr(K) = {f1K , f is a polynomial function of degree at most r such that f1K ∈ S } .
Then, supf∈Pr(K) LK(f) is finite and achieved at a point ŝK . Moreover, ŝm =

∑
K∈m ŝK max-

imizes LX over Pr(m) where X =
⋃

K∈mK. It is a ρ-estimator on the model S = Pr(m) that
vanishes γ.

When
⋃

K∈mK = R, or more precisely when all the (Yi)i∈Î lie in
⋃

K∈mK, ŝm is also the
maximum likelihood estimator on the model Pr(m).

We define M̂0 = {∅} and ŝ∅ = 0. When n̂ ≥ 2, we define the collection M̂ that gathers all
the partitions m of [Y(1), Y(n̂)] of the form

m =
{
[Y(1), Y(n1)], (Y(n1), Y(n2)], (Y(n2), Y(n3)], . . . , (Y(nk), Y(n̂)]

}
,

where k ≥ 0 and 1 < n1 < n2 · · · < nk < n̂ with the convention that m = {[Y(1), Y(n̂)]} when
k = 0. We set for ℓ ∈ {1, . . . , n̂− 1},

M̂ℓ =
{
m ∈ M̂, |m| = ℓ

}
.

We consider a random variable ℓ̂ with values in {0, . . . ,max{n̂−1, 0}}. The aim of this section

is to explain how we can select, in practice, an estimator among the family {ŝm, m ∈ M̂ℓ̂}. Note
that we must suppose in general that ℓ̂ is random since n̂ is also random in frameworks 2 and 3.

The simplest solution would be to use the selection rule described in Section 4.1. Unfortu-

nately, the numerical complexity of this procedure depends heavily on |M̂ℓ̂|, which is usually
very large and makes the procedure numerically intractable in practice. We propose in this
section an alternative way that improves on its numerical cost.
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We define for m ∈ M̂, K ∈ m and mK ∈ M̂, the partition mK ∨K of K by

mK ∨K =
{
K ′ ∩K, K ′ ∈ mK , K

′ ∩K 6= ∅
}
.(27)

We now consider some positive real number L and define the criterion γ3 for m ∈ M̂ℓ̂ by

γ3(ŝm) =
∑

K∈m
sup

m′∈M̂
ℓ̂

{
T (ŝm1K , ŝm′1K ) − L(r + 1)

|m′ ∨K| log2+ (n/(r + 1))

n

}
.(28)

The selected estimator is then any estimator ŝm̂ of the collection {ŝm, m ∈ M̂ℓ̂} minimizing γ3:

γ3(ŝm̂) = min
m∈M̂

ℓ̂

γ3(ŝm).(29)

Note that the above minimum is achieved since M̂ℓ̂ is finite.

Theorem 8. There exists a universal constant L0 such that if L ≥ L0, any estimator ŝm̂
minimizing (29) satisfies for all ξ > 0, and probability larger than 1− e−nξ,

h2(s, ŝm̂) ≤ C

{
inf

m∈M̂
ℓ̂

h2(s, ŝm) + L
(r + 1)ℓ̂ log2+(n/(r + 1))

n
+ ξ log+(1/ξ)

}
.(30)

In particular,

E
[
h2(s, ŝm̂)

]
≤ C ′E

[
inf

m∈M̂
ℓ̂

{
h2(s, ŝm)

}
+ L

(r + 1)ℓ̂ log2+(n/(r + 1))

n

]
.(31)

In the above inequalities, C and C ′ are universal constants.

This inequality (31) is akin to the one (25) obtained for the first selection rule (we only slightly
loose on the variance term). The procedure described in this section is definitely more complex,
but has a decisive advantage: it can be implemented in practice thanks to dynamic programming
(at least when n̂ is not too large, since the numerical complexity on the algorithm significantly
increases with n̂). For more informations on this algorithm, we refer to [Kan92] and Section 4.2
of [CR04] (see also the Appendix of [Sar14] for a quite similar optimization problem).

When |Î| ≤ 1, which may occur in frameworks 2 and 3, then ℓ̂ = 0, ŝm̂ = ŝ∅ = 0, and

M̂0 = {∅}. The probability of this event is αn−1(n − nα + α) where α = P (T ≥ C) in
framework 2 and α = P (T1,0 = +∞) in framework 3. It is likely small (unless that T , C,
or T1,0 depend on n). However, if this event realizes, inequality (30) becomes straightforward
and useless. Actually, in that case, T (0, f) ≤ 1/n for all f ∈ S. Thereby, although that ŝm̂ = 0
looks very poor, it is the ρ-estimator on any model S. In particular, a quick glance at the proof
of Theorem 4 shows that for all ξ > 0, there exists an event which holds true with probability
larger than 1− e−nξ and on which: for all ℓ ≥ 1,

h2(s, ŝm̂)1|Î |≤1 ≤ C

{
h2(s,Pℓ,r) +

(r + 1)ℓ log2+ (n/(ℓ(r + 1)))

n
+ ξ log+(1/ξ)

}
,

where C is universal.

When n̂ is too large, the procedure becomes unfortunately numerically intractable and we

do not know how to select an estimator among {ŝm, m ∈ M̂ℓ̂} in a reasonable amount of
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time. However, we may find a way to cope if we reduce the collection M̂ℓ̂ as follows. Let

G ⊂ {2, . . . , n̂ − 1} such that |G| ≥ ℓ̂− 1 and

NG,ℓ̂ =
{
(1, n1, . . . , nℓ̂−1, n̂), (n1, . . . , nℓ̂−1) ∈ G ℓ̂−1, n1 < n2 < · · · < nℓ̂−1

}
.

We then define M̂G,0 = {∅} and the collection M̂G,ℓ̂ when ℓ̂ ∈ {1, . . . , n̂} of partitions m of the

form

m =
{
[Y(1), Y(n1)], (Y(n1), Y(n2)], (Y(n2), Y(n3)], . . . , (Y(nℓ̂−1)

, Y(n̂)]
}
,

where (1, n1, n2, . . . , nℓ̂−1, n̂) belongs to NG,ℓ̂ with the convention that m = [Y(1), Y(n̂)] when

ℓ̂ = 1. We may then select an estimator among {ŝm, m ∈ M̂G,ℓ̂} by adapting the preceding

procedure. More precisely, the selection rule is defined by (28) and (29) where M̂ℓ̂ is replaced

by M̂G,ℓ̂. The performance of the resulting estimator is then given by (30) and (31), where M̂ℓ̂ is

once more replaced by M̂G,ℓ̂. From a theoretical point of view, we should take G large, typically

G = {2, . . . , n̂ − 1}. However, from a practical point of view, reducing the cardinality of the
set G makes faster the construction of the estimator. The choice of G is therefore a compromise
between the theoretical properties of the estimator and its time construction.

Since ŝm is a maximum likelihood estimator, it is natural to compare our estimator ŝm̂ to the

one ŝm̃ that maximizes the log likelihood L(ŝm) over m ∈ M̂ℓ̂. Numerical simulations carried
out in Section 5 suggest that our estimator may perform better (provided that L is suitably
chosen, see the next section). We do not know theoretical results for the maximum likelihood
estimator ŝm̃. However, if Mℓ is a deterministic collection of partitions m such that |m| = ℓ,
then results concerning the maximum likelihood estimator defined as a maximizer of m 7→ L(ŝm)
over m ∈ Mℓ may be found in the literature. We refer to Theorem 3.2 of [Cas99] (when r = 0)
and Theorem 2 of [BBM99] (when r ≥ 0) for upper-bounds of the Hellinger risk of this estimator
in density estimation. Note that they put some restriction either on s, or on the minimal length
of the intervals K of the partitions m ∈ Mℓ. Besides, contrary to ours, their upper-bounds
involve the Kullback Leibler divergence.

4.3. Selecting among a special collection of piecewise polynomial estimators: a cal-
ibration free approach. Although the procedure described in the preceding section can be
implemented in practice (if n̂ is not too large), and that the estimator possesses nice statisti-
cal properties, it remains an important practical issue: the choice of L. This parameter, is,
indeed, involved in the construction of the estimator and a bad choice of L may deteriorate its
performances.

A simple solution to avoid this pitfall, is to proceed as follows. We consider a (non-empty, but
at most countable) collection L of positive numbers. For each L ∈ L, we may use the procedure
described in the preceding section with the parameter L in (28) to select an estimator among the

collection {ŝm, m ∈ M̂ℓ̂}. The selected estimator is written ŝm̂L
to emphasize that it depends

on L. We now use the procedure of Section 4.1 to select an estimator among the collection
{ŝm̂L

, L ∈ L}.
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We apply Theorem 7 with Ŝ =
¯̂
S = {ŝm̂L

, L ∈ L}. The resulting estimator ŝ = ŝm̂
L̂
satisfies

for all ξ > 0 and probability larger than 1− e−nξ,

h2(s, ŝ) ≤ C

[
inf
L∈L

{
h2(s, ŝm̂L

)
}
+

(r + 1)ℓ̂ log2+ (n/(r + 1))

n
+ ξ log+ (1/ξ)

]
,

where C is a universal constant. If L contains at least one number L larger than L0, we derive
from (30),

h2(s, ŝ) ≤ C ′E


 inf
m∈M̂

ℓ̂

{
h2(s, ŝm)

}
+max


1, inf

L∈L,
L≥L0

L


 ℓ̂(r + 1) log2+ (n/(r + 1))

n
+ ξ log+(1/ξ)


 ,

where C ′ is a universal constant.

Interestingly, this estimator ŝ does not depend on the particular choice of a calibration pa-
rameter L but rather on a collection L. The larger L, the better the risk bound. However, the
numerical complexity of the whole procedure increases with the size of L.

4.4. Building an adaptive piecewise polynomial estimator. In Section 4.2, our aim was

to find a good partition m of size ℓ̂, that is a partition for which the piecewise polynomial
estimator ŝm of degree at most r based on m is close to the target unknown function s. The

idea was to select an estimator among the collection {ŝm, m ∈ M̂ℓ̂}. Note that this estimator

depends on the preliminary choice of ℓ̂. We explain in this section how to avoid this dependency,
that is, how to choose ℓ̂ from the data.

We set M̂0,lower = ∅ and ŝ∅ = 0. When n̂ ≥ 2, we define for k ∈ {1, . . . , n̂ − 1} the

collection M̂k,lower of partitions m ∈ M̂ whose cardinal is at most k:

M̂k,lower =
{
m ∈ M̂, |m| ≤ k

}
=

k⋃

ℓ=1

M̂ℓ.

We consider a random variable k̂ with values in {0, . . . ,max{n̂− 1, 0}} and adapt the procedure

of Section 4.2 to select an estimator among {ŝm, m ∈ M̂k̂,lower}.

We consider some L > 0 and set for m ∈ M̂k̂,lower,

γ4(ŝm) =
∑

K∈m
sup

m′∈M̂
k̂,lower

{
T (ŝm1K , ŝm′1K ) − L(r + 1)

|m′ ∨K| log2+ (n/(r + 1))

n

}
.

The selected ŝm̂ is any estimator of the family satisfying

γ4(ŝm̂) + 2L(r + 1)
|m̂| log2+ (n/(r + 1))

n
(32)

= inf
m∈M̂

k̂,lower

{
γ4(ŝm) + 2L(r + 1)

|m| log2+ (n/(r + 1))

n

}
.
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Theorem 9. There exists a universal constant L0 such that if L ≥ L0, any estimator ŝm̂
satisfying (32) satisfies for all ξ > 0, and probability larger than 1− e−nξ,

h2(s, ŝm̂) ≤ C inf
m∈M̂

k̂,lower

{
h2(s, ŝm) + L

(r + 1)|m| log2+(n/(r + 1))

n
+ ξ log+(1/ξ)

}
.

In particular,

E
[
h2(s, ŝm̂)

]
≤ C ′E

[
inf

m∈M̂
k̂,lower

{
h2(s, ŝm) + L

(r + 1)|m| log2+ (n/(r + 1))

n

}]
.(33)

In the above inequalities, C and C ′ are universal constants.

Note that this risk bound improves when k̂ grows up. We may even set k̂ = n̂, in which case

M̂k̂,lower = M̂. This selection rule provides better theoretical results than the preceding one

since (33) implies

E
[
h2(s, ŝm̂)

]
≤ C ′E

[
inf

1≤ℓ≤k̂

{
inf

m∈M̂ℓ

{
h2(s, ŝm)

}
+ L

(r + 1)ℓ log2+(n/(r + 1))

n

}]
.

The right-hand side of this inequality corresponds to the bound (31) achieved by the estimator

of Section 4.2 when the choice of ℓ̂ is the best possible among {1, . . . , k̂}. The main difference

between the two procedures is that the present one does not depend on ℓ̂ any more (but only

on k̂). Moreover, it turns out that the right-hand side of (33) can be put in a more convenient

form when k̂ = n̂:

Lemma 5. Let ξ > 0 and L ≥ 1. There exists a universal constant C such that with probability
larger than 1− e−nξ,

inf
m∈M̂

{
h2(s, ŝm) + L

(r + 1)|m| log2+ (n/(r + 1))

n

}

≤ C inf
ℓ≥1

{
h2(s,Pℓ,r) + L

(r + 1)ℓ log2+ (n/(r + 1))

n
+ ξ log+(1/ξ)

}
.

In particular,

E

[
inf

m∈M̂

{
h2(s, ŝm) + L

(r + 1)|m| log2+ (n/(r + 1))

n

}]
≤ C ′E

[
inf
ℓ≥1

{
h2(s,Pℓ,r)

+L
(r + 1)ℓ log2+ (n/(r + 1))

n

}]
,

where C ′ is universal.

Therefore, when k̂ = n̂, and L ≥ max{1, L0}, the estimator ŝm̂ satisfies

E
[
h2(s, ŝm̂)

]
≤ C ′′E

[
inf
ℓ≥1

{
h2(s,Pℓ,r) + L

ℓ(r + 1) log2+(n/(r + 1))

n

}]
,

≤ C ′′ inf
ℓ≥1

R(ℓ),
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where C ′′ is a universal constant and where

R(ℓ) = E
[
h2(s,Pℓ,r)

]
+ L

ℓ(r + 1) log2+(n/(r + 1))

n
.

This term R(ℓ) can be interpreted as an upper-bound of the risk of the ρ-estimator built on Pℓ,r,
barely worse than the one given by Theorem 4 and that is written in (26).

Remark. As in Section 4.2, we could compare this estimator with the one that maximizes a

penalized log-likelihood criterion of the form m 7→ L(ŝm)− pen(m) over m ∈ M̂k̂,lower. We do

not know theoretical results for this estimator, but refer to [RMG10] for a numerical study. It
is, however, rather difficult to numerically compare this estimator with ours due to calibration
issues in the penalties.

5. Numerical simulations

We consider framework 1, r = 0, ℓ ∈ {1, . . . , n}, and the (random) collection M̂ℓ consisting in

partitions of [X(1),X(n)] of size ℓ. For each m ∈ M̂ℓ, we consider the usual histogram estimator
defined by

ŝm =
∑

K∈m

N(K)

µ(K)
with N(K) =

1

n

n∑

i=1

1K (Xi).

Note that this estimator is the ρ-estimator and the maximum likelihood estimator on the random
model P0(m). We carry out in this section a numerical study to compare two selection rules
described in Section 4.2.

• The first procedure is based on the likelihood. We select the partition m̂(1,ℓ) ∈ M̂ℓ by
maximizing the map

m 7→ L(ŝm) =
1

n

n∑

i=1

log ŝm(Xi) over m ∈ M̂ℓ.

• The second procedure is based on the ρ-estimation method. We consider a set A con-
sisting of 300 equally spaced points over [0, 3], and define

L =

{
a

log2 n
, a ∈ A

}
.

For each L ∈ L, we use the procedure of Section 4.2 specified in (28) and (29) to get

a partition m̂L ∈ M̂ℓ. We then use the procedure of Section 4.1 to select an estimator
among {sm̂L

, L ∈ L} as explained in Section 4.3. This leads to a selected partition of

the form m̂L̂ ∈ M̂ℓ that will be denoted in the sequel by m̂(2,ℓ).

We consider four densities s:

Example 1. s is the density of a Normal distribution

s(x) =
1√
2π
e−x2/2 for all x ∈ R.
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Example 2. s is the density of a log Normal distribution

s(x) =
1

x
√
2π
e−

1
2
log2 x1(0,+∞)(x) for all x ∈ R.

Example 3. s is the density of an exponential distribution

s(x) = e−x1[0,+∞) for all x ∈ R.

Example 4. s is the density of a mixture of uniform distributions

s(x) =
1

2
× 31[0,1/3] + 1

8
× 31[1/3,2/3] + 3

8
× 31[2/3,1] for all x ∈ R.

We simulate Nrep samples (X1, . . . ,Xn) according to a density s defined above, and com-
pute, in each of these samples the two selected estimators. Let, for k ∈ {1, 2} and i ∈
{1, . . . , Nrep}, ŝ(i)m̂(k,ℓ) be the value of the estimator corresponding to the kth procedure and the

ith sample. We estimate the risk E
[
h2(s, ŝm̂(k,ℓ))

]
of the estimator by

R̂(k, ℓ) =
1

Nrep

Nrep∑

i=1

h2
(
s, ŝ

(i)

m̂(k,ℓ)

)
.

We estimate the probability that the two procedures yield the same estimator by

P̂equal(ℓ) =
1

Nrep

Nrep∑

i=1

1m̂(2,ℓ,i)=m̂(1,ℓ,i)

Results are summarized in Figures 1 (when n = 50) and 2 (when n = 100).

Ex 1 Ex 2 Ex 3 Ex 4 Ex 1 Ex 2 Ex 3 Ex 4

R̂(1, 2) 0.057 0.078 0.064 0.052 R̂(1, 5) 0.062 0.063 0.061 0.060

R̂(2, 2) 0.057 0.080 0.065 0.051 R̂(2, 5) 0.059 0.062 0.059 0.060
R̂(2,2)

R̂(1,2)
1.00 1.02 1.02 0.99 R̂(2,5)

R̂(1,5)
0.95 0.98 0.98 1.00

P̂equal(2) 0.76 0.75 0.80 0.78 P̂equal(5) 0.27 0.33 0.32 0.39

R̂(1, 3) 0.052 0.056 0.053 0.048 R̂(1, 6) 0.067 0.068 0.066 0.065

R̂(2, 3) 0.047 0.055 0.052 0.047 R̂(2, 6) 0.065 0.067 0.065 0.065
R̂(2,3)

R̂(1,3)
0.91 0.98 0.97 0.99 R̂(2,6)

R̂(1,6)
0.97 0.99 0.99 1.00

P̂equal(3) 0.63 0.64 0.66 0.57 P̂equal(6) 0.28 0.33 0.33 0.37

R̂(1, 4) 0.057 0.058 0.056 0.054 R̂(1, 7) 0.071 0.072 0.071 0.070

R̂(2, 4) 0.052 0.055 0.053 0.053 R̂(2, 7) 0.070 0.072 0.070 0.071
R̂(2,4)

R̂(1,4)
0.92 0.94 0.95 0.98 R̂(2,7)

R̂(1,7)
0.99 1.00 1.00 1.00

P̂equal(4) 0.32 0.40 0.40 0.43 P̂equal(7) 0.32 0.36 0.35 0.41

Figure 1. Risks for simulated data with n = 50, Nrep = 10000.

Numerically, we observe in these examples that the two estimators ŝm̂(1,ℓ) and ŝm̂(2,ℓ) perform
similarly. Their risks are close and the estimators may even coincide. In Example 4, s does
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Ex 1 Ex 2 Ex 3 Ex 4 Ex 1 Ex 2 Ex 3 Ex 4

R̂(1, 2) 0.055 0.074 0.056 0.035 R̂(1, 5) 0.038 0.038 0.037 0.033

R̂(2, 2) 0.056 0.076 0.057 0.034 R̂(2, 5) 0.035 0.034 0.035 0.033
R̂(2,2)

R̂(1,2)
1.03 1.02 1.02 0.98 R̂(2,5)

R̂(1,5)
0.92 0.94 0.95 1.00

P̂equal(2) 0.63 0.60 0.70 0.80 P̂equal(5) 0.15 0.18 0.17 0.23

R̂(1, 3) 0.034 0.042 0.037 0.023 R̂(1, 6) 0.041 0.040 0.039 0.037

R̂(2, 3) 0.033 0.042 0.036 0.024 R̂(2, 6) 0.039 0.040 0.038 0.037
R̂(2,3)

R̂(1,3)
0.96 1.00 0.98 1.01 R̂(2,6)

R̂(1,6)
0.95 0.97 0.98 1.00

P̂equal(3) 0.71 0.63 0.63 0.57 P̂equal(6) 0.10 0.15 0.11 0.19

R̂(1, 4) 0.036 0.035 0.034 0.028 R̂(1, 7) 0.044 0.043 0.043 0.40

R̂(2, 4) 0.032 0.034 0.032 0.028 R̂(2, 7) 0.043 0.043 0.042 0.40
R̂(2,4)

R̂(1,4)
0.90 0.96 0.94 0.98 R̂(2,7)

R̂(1,7)
0.96 0.99 0.98 1.00

P̂equal(4) 0.29 0.39 0.35 0.33 P̂equal(7) 0.09 0.11 0.11 0.16

Figure 2. Risks for simulated data with n = 100, Nrep = 1000.

belong to P3,0 and the fractions R̂(2, ℓ)/R̂(1, ℓ) are very close to 1. In the other examples, s is
not piecewise constant, and the superior robustness properties of the second procedure may be

useful. The fractions R̂(2, ℓ)/R̂(1, ℓ) suggest indeed that the second procedure improves the risk
of the first one by a few percent, at least when the size ℓ of the partitions is well adapted to the

underlying density, that is when ℓ corresponds to the smallest values of R̂(1, ℓ) and R̂(2, ℓ).

6. Proofs

6.1. Proof of Lemma 1. Let
√
q = (

√
f +

√
g)/2. Then,

1

2

∫

R

√
g −√

f
√
q

(√
s−√

q
)2

dM =
1

2

∫

R

√
g −√

f
√
q

s dM +
1

2

∫

R

(√
g −

√
f
)√

q dM

−
∫

R

(√
g −

√
f
)√

s dM.

Note that

h2(s, g) − h2(s, f) =
1

2

∫

R

(g − f) dM +

∫

R

√
s
(√

f −√
g
)
dM.

Therefore,

1

2

∫

R

√
g −√

f
√
q

(√
s−√

q
)2

dM =
1

2

∫

R

√
g −√

f
√
q

s dM +
1

2

∫

R

(√
g −

√
f
)√

q dM

−1

2

∫

R

(g − f) dM + h2(s, g)− h2(s, f)

= TE(f, g) + h2(s, g) − h2(s, f).(34)
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Now,

1

2

∫

R

√
g −√

f
√
q

(√
s−√

q
)2

dM =

∫

R

√
g −√

f√
f +

√
g

(√
s−

√
f +

√
g

2

)2

dM

≤
∫

R

(√
s−

√
f +

√
g

2

)2

dM

≤ 1

4

∫

R

((√
s−

√
f
)
+
(√
s−√

g
))2

dM.

By using the inequality (x+ y)2 ≤ (1 + α)x2 + (1 + α−1)y2,

1

2

∫

R

√
g −√

f
√
q

(√
s−√

q
)2

dM ≤ 1 + α

4

∫

R

(√
s−

√
f
)2

dM +
1 + α−1

4

∫

R

(√
s−√

g
)2

dM

≤ 1 + α

2
h2(s, f) +

1 + α−1

2
h2(s, g).

We now plug this inequality into (34) to get

TE(f, g) ≤
3 + α

2
h2(s, f)− 1− α−1

2
h2(s, g).

The right-hand side of (3) follows from this inequality with α = 3. As to the left-hand side, note
that we also have (setting α = 3, and exchanging the role of f and g),

TE(g, f) ≤ 3h2(s, g)− 1

3
h2(s, f).

Yet, TE(f, g) = −TE(g, f) and hence TE(f, g) ≥ 1
3h

2(s, f)− 3h2(s, g) as wished. �.

6.2. Proof of Theorem 1. In each of the frameworks described in Section 1, the measure N

can be put of the form N(A) = n−1
∑

i∈Î 1A(Yi) where Î ⊂ {1, . . . , n}, and where Yi are

suitable real-valued random variables. For instance, in framework 1, Î = {1, . . . , n}, Yi =

Xi, in framework 2, Î = {i ∈ {1, . . . , n},Di = 1}, Yi = Xi, and in framework 3, Î = {i ∈
{1, . . . , n}, T (i)

1,0 <∞}, Yi = T
(i)
1,0.

Set Ĵ = {i ∈ Î , Yi ∈ X}. Then, for f, g ∈ S, T (f, g) and LX (f) take the form

T (f, g) =
1

n

∑

j∈Ĵ
ψ

(
g(Yj)

f(Yj)

)
− 1

4

∫

X
(g(x) − f(x)) dM(x)

LX (f) =
1

n

∑

j∈Ĵ
log f(Yj)−

∫

X
f(x) dM(x).

The proof is straightforward if Ĵ = ∅ since then 4T (f, g) = LX (g) − LX (f) and 4γ(f) =

supg∈S LX (g) − LX (f). We suppose from now on that Ĵ 6= ∅.

Claim 1. Let S̄ = {f ∈ S, LX (f) 6= −∞} and f̄ ∈ S̄. Then, the signs of supg∈S̄ T (f̄ , g) and

supg∈S̄ LX (g) − LX (f̄) are equal.
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Proof. Let S̄1 =
{
g ∈ S̄, g = f̄ , N a.s

}
and S̄2 = S̄ \ S̄1.

When g ∈ S̄1,

T (f̄ , g) = −1

4

∫

X

(
g(x) − f̄(x)

)
dM(x)

=
1

4

(
LX (g)− LX (f̄)

)
.

Therefore, supg∈S̄1
T (f̄ , g) and supg∈S̄1

LX (g)− LX (f̄) have same sign.

Suppose now that supg∈S̄2
LX (g)−LX (f̄) is non-positive. Let g ∈ S̄2, u ∈ [0, 1] and ζ = g− f̄ .

Note that f̄ + uζ = (1 − u)f̄ + ug ∈ S and thus LX (f̄ + uζ) − LX (f̄) ≤ 0. Moreover, for all

j ∈ Ĵ , f̄(Yj) + uζ(Yj) ≥ min{f̄(Yj), g(Yj)} > 0. Thereby, LX (f̄ + uζ) 6= −∞ and f̄ + uζ ∈ S̄.
Actually, f̄ + uζ belongs to S̄2 as soon as u 6= 0.

We introduce the real-valued map ℘1 for u ∈ [0, 1] by

℘1(u) = LX (f̄ + uζ)− LX (f̄)

=
1

n

∑

j∈Ĵ
log

(
f̄(Yj) + uζ(Yj)

f̄(Yj)

)
− u

∫

X
ζ(x) dM(x).

We now define ℘2 for u ∈ [0, 1] by

℘2(u) = 4T (f̄ , f̄ + uζ)

=
4

n

∑

j∈Ĵ

ψ

(
f̄(Yj) + uζ(Yj)

f̄(Yj)

)
− u

∫

X
ζ(x) dM(x).

Some computations show that ℘1 and ℘2 are twice differentiable on [0, 1] and

℘1(0) = ℘2(0) = 0

℘′
1(0) = ℘′

2(0) =
1

n

∑

j∈Ĵ

ζ(Yj)

f̄(Yj)
−
∫

X
ζ(x) dM(x)

℘′′
1(0) = ℘′′

2(0) = − 1

n

∑

j∈Ĵ

(
ζ(Yj)

f̄(Yj)

)2

.

Therefore, ℘′′
1(0) and ℘

′′
2(0) are always negative.

We recall that ℘1(u) is non-positive for all u ∈ [0, 1] as previously explained. In particular,
℘′
1(0) ≤ 0. The above computations show the existence of u1 ∈ (0, 1] such that ℘2(u) ≤ 0 for

all u ∈ [0, u1]. Note that the function u 7→ ψ
(
1 + uζ(Yj)/f̄(Yj)

)
for j ∈ Ĵ is concave, whatever

f̄(Yj) and ζ(Yj). Therefore ℘2 is concave, which implies that ℘2 is non-positive on [0, 1]. In
particular, ℘2(1) = T (f̄ , g) ≤ 0. As g ∈ S̄2 is arbitrary, supg∈S̄2

T (f̄ , g) is non-positive.

Similar arguments show that if supg∈S̄2
T (f̄ , g) is non-positive, then supg∈S̄2

LX (g)−LX (f̄) ≤ 0.

�

Let s̃ ∈ S such that LX (s̃) ≥ LX (g) for all g ∈ S and LX (s̃) 6= −∞. The above claim then
shows that T (s̃, g) ≤ 0 for all g ∈ S such that LX (g) 6= −∞. Choose now g ∈ S such that
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LX (g) = −∞. Define for u ∈ [0, 1], fu = (1 − u)s̃ + ug ∈ S and note that f1 = g. If u ∈ [0, 1),
L(fu) 6= −∞ and thus T (s̃, fu) ≤ 0. The continuity of the map u ∈ [0, 1] 7→ T (s̃, fu) ensures
that T (s̃, g) ≤ 0. Finally, γ(s̃) = 0.

Conversely, let ŝ be a ρ-estimator satisfying γ(ŝ) = 0. We begin by proving that LX (ŝ) 6= −∞.
Consider g ∈ S such that LX (g) 6= −∞ and define for u ∈ [0, 1], fu = (1− u)ŝ+ ug ∈ S,

℘3(u) = T (ŝ, fu)

=
1

n

∑

j∈Ĵ
ψ

(
(1− u)ŝ(Yj) + ug(Yj)

ŝ(Yj)

)
− 1

4

∫

X
(fu(x)− ŝ(x)) dM(x).

When j ∈ Ĵ , g(Yj) > 0. Therefore, if Ĵ ′ =
{
j ∈ Ĵ , ŝ(Yj) = 0

}
and u ∈ (0, 1],

℘3(u) =
|Ĵ ′|
n

+
1

n

∑

j∈Ĵ\Ĵ ′

ψ

(
(1− u)ŝ(Yj) + ug(Yj)

ŝ(Yj)

)
− 1

4

∫

X
(fu(x)− ŝ(x)) dM(x).

Therefore, if Ĵ 6= ∅ choosing u > 0 small enough leads to ℘3(u) > |Ĵ ′|/(2n) > 0, which is

impossible as γ(ŝ) = 0. Therefore, Ĵ ′ = ∅ and LX (ŝ) 6= −∞. The claim then asserts that for all
g ∈ S such that L(g) 6= −∞, LX (g) ≤ LX (ŝ). This inequality being true if LX (g) = −∞, the
proof is complete. �

6.3. Proof of Theorem 2. We introduce the random measure Ms defined by

Ms(A) =

∫

A
s(t) dM(t) for all A ∈ B(R).

Note that E [N(A)] = E [Ms(A)] for all A ∈ B(R).
The lemma below shows that a bound on Z(ϕ) can be derived from results on deviations of

random variables N(A)− E[N(A)] and Ms(A)− E[Ms(A)].

Lemma 6. Let F be a collection of functions of S such that |ϕ| ≤ 1 for all ϕ ∈ F . Consider a
collection A ⊂ B(R) of measurable sets such that

A ⊃
⋃

t∈(0,1)
{{x ∈ R, ϕ+(x) ≥ t}, ϕ ∈ F} ∪ {{x ∈ R, ϕ−(x) ≥ t}, ϕ ∈ F}.

Suppose that there exist α, β and an event on which: for all A ∈ A,

|N(A)− E[N(A)]| ≤
√
α

n

(√
N(A) +

√
E[N(A)]

)
+
β

n
.(35)

|Ms(A)− E[Ms(A)]| ≤
√
α

n

(√
Ms(A) +

√
E[Ms(A)]

)
+
β

n
.(36)

Then, on this event, for all ϕ ∈ F ,

|Z(ϕ)| ≤ C

{√
α

n
υ(ϕ) log+(1/υ(ϕ)) +

α+ β

n

}
.

The constant C appearing in the preceding inequality is universal.
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The proof of this result is delayed to Section 6.4 below. It remains to verify that inequal-
ities (35) and (36) hold true in our different statistical settings. This is the purpose of the
following lemma whose proof is deferred to Section 6.5.

Lemma 7. Let A be an at most countable collection of measurable subsets of R and SA(n) be
the Vapnik-Chervonenkis shatter coefficient defined by

SA(n) = max
x1,...,xn∈R

|{{x1, . . . , xn} ∩A,A ∈ A}| .

Let ξ > 0. There exist a universal constant c and an event Ωξ such that P [Ωξ] ≥ 1 − e−nξ and
on which (35) holds for all A ∈ A with α = c[log+ |SA(2n)|+ nξ] and β = 0.

Let for d ≥ 1, Id be the class of unions of at most d intervals with endpoints in Q∪{−∞,+∞}.
Then, Id is at most countable,

log+

∣∣∣SId
(2n)

∣∣∣ ≤ 4d log+(n/d),(37)

and (36) holds true on Ωξ for all A ∈ Id with α = β = c′[d log+(n/d)+nξ] where c
′ is a universal

constant.

To prove Theorem 2, note that Lemma 7 implies that (35) and (36) hold true for the col-
lection Id with α = β = c′′[d log+(n/d) + nξ]. Let now Id be the class of unions of at most d
intervals, that is

Id =





d⋃

j=1

Ij , Ij is a (possibly empty) interval of R



 .

Then, for all ǫ > 0, A ∈ Id, there exists Ā ∈ Id such that

|N(A)−N(Ā)| ≤ ǫ and |Ms(A)−Ms(Ā)| ≤ ǫ.

Thereby, (35) and (36) hold withA = Id (up to a modification of β). Lemma 6 finally implies (8).

We then deduce (9) from some elementary computations. As x 7→ x log+(1/x) is non-
decreasing, we have for all x ≤ y, x log+(1/x)y ≤ y2 log+(1/y). Moreover, when x ≥ y,
log+(1/x) ≤ log+(1/y) and hence x log+(1/x)y ≤ x log+(1/y)y. Thereby, for all x, y > 0,

x log+(1/x)y ≤ max{x, y}y log+(1/y)
≤ (x+ y)y log+(1/y).

We thus obtain for all ε > 0,

2
√
x log+(1/x)y ≤ ε(x+ y) + ε−1y log+(1/y)

≤ εx+ Cεy log+(1/y),

where Cε depends on ε. By using this result with x = υ(ϕ) and y = (d/n) log+(n/d).

2

√
υ(ϕ) log+(1/υ(ϕ))

(
d log+(n/d)

n

)
≤ ευ(ϕ) + Cε

(
d log+(n/d)

n

)
log+

(
1

d log+(n/d)
n

)

≤ ευ(ϕ) + Cε
d log2+(n/d)

n
.
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Similarly,

2
√
υ(ϕ) log+(1/υ(ϕ))ξ ≤ ευ(ϕ) + Cεξ log+(1/ξ).

Therefore,

2

√
υ(ϕ) log+(1/υ(ϕ))

(
d log+(n/d)

n
+ ξ

)
≤ 2ευ(ϕ) + Cε

[
d log2+(n/d)

n
+ ξ log+(1/ξ)

]
,

and (9) follows from (8). �

6.4. Proof of Lemma 6. Without lost of generality, we may assume that the functions ϕ of F
are non-negative. We suppose moreover that we are on an event on which (35) and (36) hold
true. Let for t ∈ (0, 1), At = {x ∈ R, ϕ(x) ≥ t}. Then, for all x ∈ R,

ϕ(x) =

∫ 1

0
1At (x) dt,

ϕ2(x) = 2

∫ 1

0
t1At (x) dt.

Let ε > 0. We have,

|Z(ϕ)| − ευ(ϕ) =

∣∣∣∣
∫ 1

0
(N(At)−Ms(At)) dt

∣∣∣∣− 2ε

∫ 1

0
tMs(At) dt

≤
∫ 1

0
{|N(At)−Ms(At)| − 2εtMs(At)} dt.(38)

We now bound above |N(At)−Ms(At)| − 2εtMs(At) and this requires some elementary but
tedious computations. The result is summarized in the claim below whose proof is postponed
after the present one.

Claim 2. For all t ∈ (0, 1) and ε > 0,

|N(At)−Ms(At)| − 2εtMs(At) ≤
329α + 70β

16n
+

19α

2nεt
.

We derive from (38) that for all η ∈ (0, 1],

|Z(ϕ)| − ευ(ϕ) ≤
∫ η

0
|N(At)−Ms(At)| dt+

∫ 1

η

(
329α + 70β

16n
+

19α

2nεt

)
dt

≤
∫ η

0
|N(At)−Ms(At)| dt+

329α + 70β

16n
+

19α

2nε
log (1/η) .(39)

We need to bound above the integral appearing in the right-hand side of this inequality. We
have,

∫ η

0
|N(At)−Ms(At)| dt ≤

∫ η

0
|N(At)− E[N(At)]| dt+

∫ η

0
|Ms(At)− E[Ms(At)]| dt.(40)

By using (35) and the inequalities xy ≤ x2 + 1/4y2, (x+ y)2 ≤ 2x2 + 2y2,

N(At)− E[N(At)] ≤
1

2
(N(At) + E[N(At)]) +

α+ β

n
,
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and thus

N(At) ≤ 3E[N(At)] + 2
α+ β

n
.

By plugging this inequality into (35),

|N(At)− E[N(At)]| ≤
√
α

n

√
E[N(At)] +

√
α

n

√
3E[N(At)] + 2

α+ β

n
+
β

n

≤ (1 +
√
3)

√
α

n

√
E[N(At)] +

√
2α+

√
2αβ + β

n

≤ (1 +
√
3)

√
α

n

√
E[N(At)] + 2.2

α + β

n
.(41)

The constant 2.2 above comes from the inequality 2
√
xy ≤ x + y and the bound 1 + 1/

√
2 ≤√

2 + 1/
√
2 ≤ 2.2. Similarly,

|Ms(At)− E[Ms(At)]| ≤ (1 +
√
3)

√
α

n

√
E[Ms(At)] + 2.2

α+ β

n

≤ (1 +
√
3)

√
α

n

√
E[N(At)] + 2.2

α + β

n
.

We now derive from (40) that,
∫ η

0
|N(At)−Ms(At)| dt ≤ 2(1 +

√
3)

√
α

n

∫ η

0

√
E[N(At)] dt+ 4.4

α + β

n

≤ 2(1 +
√
3)

√
α

n

√
η

√∫ η

0
E[N(At)] dt+ 4.4

α + β

n
.

Now, E[N(At)] ≤ E[N(R)] ≤ 1 in our frameworks and thus,
∫ η

0
|N(At)−Ms(At)| dt ≤ 2(1 +

√
3)

√
α

n
η + 4.4

α+ β

n
.

Plugging this last inequality into (39) finally shows that there exists a universal constant C such
that for all ε > 0, η ∈ (0, 1],

|Z(ϕ)| ≤ ευ(ϕ) + C

{
α+ β

n
+

√
α

n
η +

α

nε
log(1/η)

}
.

By choosing suitably ε, we deduce,

|Z(ϕ)| ≤ 2
√
C

√
α

n

(
√
υ(ϕ) log(1/η) +

√
C

2
η

)
+C

α+ β

n
.

It remains to set η2 = min{υ(ϕ), 1} to prove the lemma. �

Proof of Claim 2. As E[N(At)] = E[Ms(At)],

|N(At)−Ms(At)| − εtMs(At) ≤ |N(At)− E[N(At)]|+ |E[Ms(At)]−Ms(At)| − εtMs(At).
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By using (35) and (36),

|N(At)−Ms(At)| − εtMs(At) ≤
√
α

n

(√
N(At) +

√
E[N(At)]

)
+

√
α

n

(√
Ms(At) +

√
E[Ms(At)]

)

−εtMs(At) +
2β

n

≤
√
α

n

√
N(At) +

√
α

n

√
Ms(At) + 2

√
α

n

√
E[Ms(At)]

−εtMs(At) +
2β

n
.

By using the relation 2
√
xy ≤ ax+ a−1y for all a > 0,

√
α

n

√
Ms(At) ≤ εt

2
Ms(At) +

α

2εnt

2

√
α

n

√
E[Ms(At)] ≤ εt

4
E[Ms(At)] +

4α

εnt
.

Therefore,

|N(At)−Ms(At)| − εtMs(At) ≤
√
α

n

√
N(At) +

εt

4
[E[Ms(At)]− 2Ms(At)] +

2β

n
+

9α

2nεt
.

By noticing that for all u > 0,
√
α

n

√
N(At) ≤

u

2
N(At) +

α

2nu
,

we deduce,

|N(At)−Ms(At)| − εtMs(At) ≤
u

2
N(At) +

εt

4
[E[Ms(At)]− 2Ms(At)] +

2β

n
+

9α

2nεt
+

α

2nu
.

We suppose from now on that εt < 1/2. Then,

|N(At)−Ms(At)| − εtMs(At) ≤
u

2
N(At) +

1

8
(E[Ms(At)]− 2Ms(At))+ +

2β

n
(42)

+
9α

2nεt
+

α

2nu
.

We choose u according to the sign of N(At)−Ms(At):

• If N(At) ≥Ms(At), we set u = 2εt/(1 + 2εt). In this case,

(1 + εt)/(1 − u/2) = 1 + 2εt.(43)

• If N(At) < Ms(At), we set u = 2εt/(1 − 2εt). In this case,

(1− εt)/(1 + u/2) = 1− 2εt.(44)

When N(At) ≥Ms(At), we deduce from (42),

(1− u/2)N(At)− (1 + εt)Ms(At) ≤
1

8
(E[Ms(At)]− 2Ms(At))+ +

2β

n
+

9α

2nεt
+

α

2nu
.
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Therefore, using (43) and 1/(1 − u/2) ≤ 2,

N(At)− (1 + 2εt)Ms(At) ≤ 1

1− u/2

[
1

8
(E[Ms(At)]− 2Ms(At))+ +

2β

n
+

9α

2nεt
+

α

2nu

]

≤ 1

4
(E[Ms(At)]− 2Ms(At))+ +

4β

n
+

9α

nεt
+

α

nu
.(45)

When N(At) < Ms(At), (42) yields

(1− εt)Ms(At)− (1 + u/2)N(At) ≤
1

8
(E[Ms(At)]− 2Ms(At))+ +

2β

n
+

9α

2nεt
+

α

2nu
.

Therefore, by using (44) and 1/(1 + u/2) ≤ 1,

(1− 2εt)Ms(At)−N(At) ≤ 1

1 + u/2

[
1

8
(E[Ms(At)]− 2Ms(At))+ +

2β

n
+

9α

2nεt
+

α

2nu

]

≤ 1

8
(E[Ms(At)]− 2Ms(At))+ +

2β

n
+

9α

2nεt
+

α

2nu
.(46)

In both cases, we have

|N(At)−Ms(At)| − 2εtMs(At) ≤
1

4
(E[Ms(At)]− 2Ms(At))+ +

4β

n
+

9α

nεt
+

α

nu
.

Since 1/u ≤ 1 + 1/(2εt),

|N(At)−Ms(At)| − 2εtMs(At) ≤
1

4
(E[Ms(At)]− 2Ms(At))+ +

α+ 4β

n
+

19α

2nεt
.(47)

It remains to bound above E[Ms(At)]− 2Ms(At). Yet, (36) claims that

E [Ms(At)]−Ms(At) ≤
√
α

n

(√
Ms(At) +

√
E[Ms(At)]

)
+
β

n
.

By using √
α

n

(√
Ms(At) +

√
E[Ms(At)]

)
≤ 3α

2n
+

1

3
(Ms(At) + E[Ms(At)]) ,

we deduce

E [Ms(At)]− 2Ms(At) ≤
9α+ 6β

4n
.

By putting this inequality into (47), we finally obtain when εt < 1/2,

|N(At)−Ms(At)| − 2εtMs(At) ≤
25α + 70β

16n
+

19α

2nεt
.

Since ε 7→ |N(At)−Ms(At)| − 2εtMs(At) is non-increasing, we deduce when εt ≥ 1/2 that

|N(At)−Ms(At)| − 2εtMs(At) ≤
25α+ 70β

16n
+

19α

n

≤ 329α + 70β

16n
.

As a straightforward consequence, we get for all εt > 0,

|N(At)−Ms(At)| − 2εtMs(At) ≤
329α + 70β

16n
+

19α

2nεt
,

which proves the claim �
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6.5. Proof of Lemma 7.

6.5.1. Proof of (35). The proof of (35) is based on Vapnik-Chervonenkis inequalities for
relative deviation (see, for instance page 24 of [DL12]). We recall them below:

Theorem 10. Let Z1, . . . , Zn be n independent and identically distributed variables with values
in a space X . Let A′ be an at most countable collection of measurable sets. Define the empirical
measure νn(A

′) = n−1
∑n

i=1 1A′ (Zi), ν(A
′) = E[µn(A

′)] and the Vapnik-Chervonenkis shatter
coefficient

SA′(n) = max
z1,...,zn∈X

∣∣{{z1, . . . , zn} ∩A′, A′ ∈ A′}∣∣ .

Then, for all t > 0,

P

(
sup
A′∈A′

ν(A′)− νn(A
′)√

ν(A′)
≥ t

)
≤ 4SA′(2n)e−nt2/4

P

(
sup
A′∈A′

νn(A
′)− ν(A′)√
νn(A′)

≥ t

)
≤ 4SA′(2n)e−nt2/4.

This implies in particular:

P

(
sup
A′∈A′

∣∣∣
√
νn(A′)−

√
ν(A′)

∣∣∣ ≥ t

)
≤ 8SA′(2n)e−nt2/4.(48)

Assume that we are within framework 1. Then, the random measure N is the empirical
measure of X1, . . . ,Xn. Now (48) with A′ = A,

t2 =
4

n

(
log 8 + log+ |SA(2n)|+ nξ

)

shows that (35) holds true with probability larger than 1− e−nξ, α = nt2, β = 0.

The proof in frameworks 2 and 3 is very similar since N is an empirical measure for suitable
random variables with values in X = R × {0, 1}: Zi = (Xi, 1Di=1) in framework 2 and Zi =

(T
(i)
1,01T (i)

1,0<∞, 1T (i)
1,0<∞) in framework 3. We apply (48) with A′ = {A× {1}, A ∈ A}. Note that

the Vapnik-Chervonenkis shatter coefficient SA′(2n) can be upper bounded by

|SA′(2n)| ≤ max
x1,...,x2n∈R

|{{x1, . . . , x2n} ∩A,A ∈ A}|

≤ |SA(2n)| .
We end the proof as in framework 1. �

6.5.2. Proof of (37). It follows from Lemma 1 of [BB16] that the Vapnik-Chervonenkis di-

mension of Id is at most 2d. By using Sauer’s lemma (see [Sau72]), we deduce

∣∣∣SId
(2n)

∣∣∣ ≤
2d∑

j=0

Cj
2n.
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By using a classical inequality (see, for instance, exercise 2.14 of [BLM13]), we deduce when
d ≤ n,

∣∣∣SId
(2n)

∣∣∣ ≤ (en/d)2d ,

and when d ≥ n,
∣∣∣SId

(2n)
∣∣∣ ≤ e2d.

This implies (37). �

6.5.3. Proof of (36). Note that there is nothing to prove in framework 1 asMs is deterministic.
We define Vi(t) = 1Xi≥t1[0,+∞)(t) in framework 2 and Vi(t) = 1

X
(i)
t−=1

1(0,+∞)(t) in framework 3.

Then, Ms is of the form

Ms(A) =
1

n

n∑

i=1

∫

A
s(t)Vi(t) dt for all A ∈ B(R).

We need the proposition below whose proof is delayed to Sections 6.5.5 and 6.5.6.

Proposition 11. For all k ≥ 1, i ∈ {1, . . . , n} and A ∈ B(R),

E

[(∫

A
s(t)Vi(t) dt

)k
]
≤ k!E [Ms(A)] .

There exist independent random variables Z1, . . . , Zn such that Ms is of the form

Ms(A) =
1

n

n∑

i=1

fA(Zi) with fA(Zi) =

∫

A
s(t)Vi(t) dt.

The core of the proof is based on the exponential inequality given by Corollary 6.9 of [Mas07].
The aim of the lemma below is to show that its assumptions are satisfied. Its proof is postponed
after the present one.

Lemma 8. For all δ > 0, there exists a collection Cδ of functions of the form fA with A ∈ Id.
The cardinality of this set can be bounded by log |Cδ| ≤ c1d log+(1/δ

2), where c1 is a universal

constant. Moreover, for all A ∈ Id, there exist fA1 , fA2 ∈ Cδ such that fA1 ≤ fA ≤ fA2 and such
that for all k ≥ 1,

E

[
(fA2(Z1)− fA1(Z1))

k
]
≤ k!

2
δ2.

Set for δ > 0, Bδ = Cδ ∪ {−f, f ∈ Cδ}. Note that

log |Bδ| ≤ log 2 + log |Cδ| ≤ c2d log+(1/δ
2),

where c2 is a universal constant. We set H(δ) = c2d log+(1/δ
2) and for σ ∈ (0, 1],

E =
√
n

∫ σ

0

√
H(u) ∧ n du+ 2(1 + σ)H(σ).
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By differentiation,

σ
√

log(e/σ) =

∫ σ

0

(
√

log(e/u) − 1

2
√

log(e/u)

)
du

≥
∫ σ

0

√
log+(1/u) du− σ/2.

There exists therefore a universal constant c3 such that

E ≤ c3

[
σ
√
nd log+(1/σ

2) + d log+(1/σ
2)

]
.(49)

Consider ξ > 0 and define J as the (possibly empty) set of non-negative integers j such that 2−j ≥
d/(2n). Let, for j ∈ J , xj = 2 log(j + 1) + 1 + nξ, Aj =

{
A ∈ Id, 2

−j−1 ≤ E[Ms(A)] ≤ 2−j
}
.

The assumptions of Corollary 6.9 of [Mas07] are satisfied with F =
{
fA,−fA, A ∈ Aj

}
, σ2 =

2−j+1, b = 1, and H(δ) = c2d log+(1/δ
2). Consequently, there exists an event Ωj such that

P (Ωj) ≥ 1− e−xj and on which: for all A ∈ Aj ,

n |Ms(A)− E[Ms(A)]| ≤ c4
[
E + σ

√
nxj + xj

]
,

where c4 is universal. Therefore,

|Ms(A)− E[Ms(A)]| ≤ c5

[
σ

√
d log+(1/σ

2) + xj
n

+
d log+(1/σ

2) + xj
n

]
.

As σ2 ≤ 4E[Ms(A)], and σ
2 ≥ d/n, we get

|Ms(A)− E[Ms(A)]| ≤ c6

[
√

E[Ms(A)]

√
d log+(n/d) + xj

n
+
d log+(n/d) + xj

n

]
.

Note that xj ≤ c7
(
log+(n/d) + nξ

)
and hence,

|Ms(A)− E[Ms(A)]| ≤ c8

[
√

E[Ms(A)]

√
d log+(n/d) + nξ

n
+
d log+(n/d) + nξ

n

]
.

Let now A =
{
A ∈ Id, E[Ms(A)] ≤ d/(2n)

}
. We apply Corollary 6.9 of Massart with F ={

fA,−fA, A ∈ A
}
, b = 1, σ2 = min{d/n, 2}. We deduce that there exists an event Ω′ such that

P (Ω′) ≥ 1− (1/2)e−nξ and on which: for all A ∈ A,

|Ms(A)− E[Ms(A)]| ≤ c5

[
σ

√
d log+(1/σ

2) + nξ + log 2

n
+
d log+(1/σ

2) + nξ + log 2

n

]
,

≤ c9

[
σ

√
d log+(n/d) + nξ

n
+
d log+(n/d) + nξ

n

]
.

Since σ ≤
√
d/n ≤

√
(d log+(n/d) + nξ)/n,

|Ms(A)− E[Ms(A)]| ≤ c10

[
d log+(n/d) + nξ

n

]
.
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As a straightforward consequence, the following inequality also holds for A ∈ A:

|Ms(A)− E[Ms(A)]| ≤ c10

[
√

E[Ms(A)]

√
d log+(n/d) + nξ

n
+
d log+(n/d) + nξ

n

]
.

Now, note that Id =
⋃

j∈J Aj∪A, which shows that inequality (36) holds on the event Ω′⋂(∩j∈J
Ωj

)
with α = c11

(
d log+(n/d) + nξ

)
. Moreover,

P




Ω′⋂


⋂

j∈J
Ωj






c
 ≤ P

[
Ω′c]+

∑

j∈J
P
[
Ωc
j

]

≤ e−nξ

2
+

∞∑

j=1

e−nξ

j2e

≤ e−nξ.

�

6.5.4. Proof of Lemma 8. First of all, we only need to prove the lemma when δ is smaller
than 1, what we shall do in the sequel.

We endow Id with the distance dist defined for A1, A2 ∈ Id by

dist(A1, A2) = E [Ms(A1∆A2)] where A1∆A2 = (A1 \ A2) ∪ (A2 \ A1).

Note that dist(A1, A2) can also be written as

dist(A1, A2) =

∫

R

|1A1 (t)− 1A2 (t)| f(t) dt,

where f(t) = s(t)E[V1(t)] is a non-negative function satisfying
∫
R
f(t) dt ≤ 1.

We introduce the real valued function F defined by

F (x) =

∫ x

−∞
f(t) dt for all x ∈ R.

Since F is a continuous non-decreasing function such that F (R) ⊂ [0, 1], there exist an even
integer ℓ ∈ [2, 4d/δ2 + 2], and ℓ numbers (x1, x2, . . . , xℓ−1, xℓ) ∈ {−∞} × Qℓ−2 × {+∞} such
that

max
1≤i≤ℓ−1

{F (xi+1)− F (xi)} ≤ δ2/(4d).

Note that we may suppose that ℓ ≥ d. Let X = {x1, x2, . . . , xℓ}, and Idis be the collection of
union of at most d closed intervals whose endpoints belong to X . To avoid any ambiguity, we
recall that [xk,+∞) and (−∞, xk] are closed intervals.

When k ≤ ℓ/2, choosing k disjoint closed intervals whose endpoints belong to X amounts to
choosing 2k numbers among X . When k > ℓ/2, we cannot find k disjoint closed intervals with
endpoints in X . The cardinality of Idis is therefore bounded by

|Idis| ≤
d∑

k=0

C2k
ℓ .
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Standard arguments (see, for instance, exercise 2.14 of [BLM13]) show that |Idis| ≤ (ℓe/d)d .
Using now that ℓ ≤ 4d/δ2 + 2 , we derive that

log |Idis| ≤ c1d log+(1/δ
2)

for a suitable universal constant c1.

For each set A ∈ Id, we now show that there exist A1, A2 ∈ Idis such that fA1 ≤ fA ≤ fA2

and dist(A1, A2) ≤ δ2/2. Let A ∈ Id be written as A =
⋃d

k=1Ak where Ak is an interval whose

endpoints are ak ≤ bk. For each k ∈ {1, . . . , d}, there exist a
(1)
k , a

(2)
k , b

(1)
k , b

(2)
k ∈ X such that

a
(1)
k ≤ ak ≤ a

(2)
k , b

(1)
k ≤ bk ≤ b

(2)
k ,

and

F
(
a
(2)
k

)
− F

(
a
(1)
k

)
≤ δ2/(4d), F

(
b
(2)
k

)
− F

(
b
(1)
k

)
≤ δ2/(4d).

Define the closed intervals

A
(1)
k =

{
x ∈ R, a

(2)
k ≤ x ≤ b

(1)
k

}
, A

(2)
k =

{
x ∈ R, a

(1)
k ≤ x ≤ b

(2)
k

}
.

Then, A1 =
⋃d

k=1A
(1)
k and A2 =

⋃d
k=1A

(2)
k belong to Idis and satisfy fA1 ≤ fA ≤ fA2 . Moreover,

A2∆A1 ⊂
d⋃

k=1

[a
(1)
k , a

(2)
k ) ∪ (b

(1)
k , b

(2)
k ],

and hence,

dist(A1, A2) ≤
d∑

k=1

∫

[a
(1)
k

,a
(2)
k

)∪(b(1)
k

,b
(2)
k

]
f(t) dt

≤
d∑

k=1

(
F
(
a
(2)
k

)
− F

(
a
(1)
k

)
+ F

(
b
(2)
k

)
− F

(
b
(1)
k

))

≤
d∑

k=1

(
δ2/(4d) + δ2/(4d)

)

≤ δ2/2.

Now,

E

[
(fA2(Z1)− fA1(Z1))

k
]
= E



(∫

A2\A1

V1(t)s(t) dt

)k

 .

We deduce from Proposition 11,

E

[
(fA2(Z1)− fA1(Z1))

k
]
≤ k!E [Ms(A2 \ A1)] .

Yet, E [Ms(A2 \ A1)] = dist(A1, A2) ≤ δ2/2, which completes the proof with Cδ = {fA, A ∈
Idis}. �
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6.5.5. Proof of Proposition 11 in framework 2. Remark that for all a ∈ R,
∫ ∞

a
s(t)P (X ≥ t) dt =

∫ ∞

a
f(t)P (C ≥ t) dt

≤
(∫ ∞

a
f(u) du

)
P (C ≥ a)

≤ P (T ≥ a)P (C ≥ a)

≤ P (X ≥ a).(50)

We define for k ≥ 1,

Jk =

∫

u1,...,uk∈A
u1<u2<···<uk




k∏

j=1

s(uj)


P (X ≥ uk) du1 du2 . . . duk.

We have,

E

[(∫

A
s(u)1X≥u du

)k
]

= E



∫

Ak

k∏

j=1

s(uj)1X≥uj
du1 du2 . . . duk




=

∫

Ak




k∏

j=1

s(uj)


P (X ≥ max{u1, . . . , uk}) du1 du2 . . . duk

= k!Jk.

Now,

Jk ≤
∫

u1,...,uk−1∈A
u1<u2<···<uk−1




k−1∏

j=1

s(uj)



(∫ ∞

uk−1

s(uk)P (X ≥ uk) duk

)
du1 du2 . . . duk−1.

By using (50) with a = uk−1,

Jk ≤
∫

u1,...,uk−1∈A
u1<u2<···<uk−1




k−1∏

j=1

s(uj)


P (X ≥ uk−1) du1 du2 . . . duk−1

≤ Jk−1.

By induction, Jk ≤ J1 = E[Ms(A)]. �

6.5.6. Proof of Proposition 11 in framework 3.

Claim 3. Let t > 0,Ft = σ(Xv , v ≤ t) be the σ-algebra generated by the family of random
variables Xv, v ∈ [0, t]. Let B be an event Ft-measurable. Let µB be the measure defined for all
measurable set A ∈ B(R) by

µB(A) = P (B and T1,0 ∈ A) .

Then, for µ-almost all u > t,

dµB
du

(u) = P (B and Xu− = 1) s(u).(51)
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Proof. First of all, µB is absolutely continuous with respect to the Lebesgue measure and admits
therefore a Radon-Nikodym derivative. We now aim to show that this derivative is given by (51)
for almost all u > t.

Let Zh(u) be the random variable giving the number of jumps of the Markov process in
[u− h, u+ h]. Then, P (Zh(u) ≥ 2) = o(h) when h→ 0. We deduce,

µB([u, u+ h]) = P (B,Zh(u) = 1, T1,0 ∈ [u, u+ h]) + o(h).

When Zh(u) = 1, T1,0 ∈ [u, u+ h] is equivalent to Xu− = 1 and Xu+h = 0. This yields

µB([u, u+ h]) = P (B,Zh(u) = 1,Xu− = 1, Xu+h = 0) + o(h)

= P (B,Xu− = 1, Xu+h = 0) + o(h)

= P (B,Xu− = 1)P (Xu+h = 0 | B,Xu− = 1) + o(h).

As B is Ft-measurable and u > t,

µB([u, u + h]) = P (B,Xu− = 1)P (Xu+h = 0 | Xu− = 1) + o(h)

= P (B,Xu− = 1)
P (Xu− = 1,Xu+h = 0)

P (Xu− = 1)
+ o(h).(52)

Now,

P (Xu− = 1,Xu+h = 0) = P (Xu− = 1,Xu+h = 0, Zh(u) = 1) + o(h)

= P (T1,0 ∈ [u, u+ h], Zh(u) = 1) + o(h)

= P (T1,0 ∈ [u, u+ h]) + o(h).

Finally, by plugging this inequality into (52),

µB([u, u+ h]) = P (B,Xu− = 1)
P (T1,0 ∈ [u, u+ h])

P (Xu− = 1)
+ o(h)

= P (B,Xu− = 1)
hf(u)

P (Xu− = 1)
+ o(h)

= hP (B,Xu− = 1)s(u) + o(h),

which proves (51). �

We now return to the proof of Proposition 11. Without loss of generality, we may suppose
that A ⊂ [0,+∞). Define for k ≥ 1,

Jk =

∫

u1,...,uk∈A
u1<u2<···<uk




k∏

j=1

s(uj)


P (Xu1− = 1, . . . ,Xuk− = 1) du1 du2 . . . duk.
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We have,

E

[(∫

A
s(u)1Xu−=1 du

)k
]

= E



∫

Ak

k∏

j=1

s(uj)1Xuj−
=1 du1 du2 . . . duk




=

∫

Ak




k∏

j=1

s(uj)


P (Xu1− = 1, . . . ,Xuk− = 1) du1 du2 . . . duk

= k!Jk.

Yet,

Jk ≤
∫

u1,...,uk−1∈A
u1<u2<···<uk−1




k−1∏

j=1

s(uj)



(∫ ∞

uk−1

s(uk)P (Xu1− = 1, . . . ,Xuk− = 1) duk

)
du1 du2 . . . duk−1.

Let B =
[
Xu1− = 1, . . . ,Xuk−1− = 1

]
∈ Fuk−1

. Then,
∫ ∞

uk−1

s(uk)P (Xu1− = 1, . . . ,Xuk− = 1) duk =

∫ ∞

uk−1

dµB
du

(u) du

= µB([uk−1,+∞))

= P
(
Xu1− = 1, . . . ,Xuk−1− = 1 and T1,0 ≥ uk−1

)

≤ P
(
Xu1− = 1, . . . ,Xuk−1− = 1

)
.

Therefore, Jk ≤ Jk−1 and by induction Jk ≤ J1 = E[Ms(A)]. �

6.6. Proof of Corollary 1. The proof follows closely the one of Theorem 2. Suppose without
loss of generality that the functions ϕ are non negative. Consider ε > 0 and η ∈ (0, 1). According
to (38), for all ϕ ∈ F , and t ∈ (0, 1), there exists At ∈ At such that

|Z(ϕ)| ≤ εσ2 +

∫ 1

0
{|N(At)− E[N(At)]| − 2εtE[N(At)]} dt

≤ εσ2 +

∫ η

0
|N(At)− E[N(At)]| dt+

∫ 1

η
{|N(At)− E[N(At)]| − 2εtE[N(At)])} dt.

Therefore,

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ εσ2 +

∫ η

0
E

[
sup

At∈At

|N(At)− E[N(At)]|
]
dt(53)

+

∫ 1

η
E

[
sup

At∈At

{|N(At)− E[N(At)]| − 2εtE[N(At)]}
]
dt.

Let now ξ > 0. As (35) holds true for all A ∈ At, on an event Ωξ,t such that P [Ωξ,t] ≥ 1− e−nξ,
with α = c[log+ |SAt(2n)|+ nξ], β = 0, we deduce from Claim 2 that for all At ∈ At.

|N(At)− E[N(At)]|−2εtE[N(At)] ≤ C

{
log+ |SAt(2n)|+ nξ

n
+

log+ |SAt(2n)|+ nξ

nεt

}
on Ωξ,t.
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Moreover, we derive from (41), that for all At ∈ At,

|N(At)− E[N(At)]| ≤ C

[√
log+ |SAt(2n)|+ nξ

n

√
E[N(At)] +

log+ |SAt(2n)|+ nξ

n

]
on Ωξ,t.

In these two inequalities, C is a universal constant.

We may integrate theses inequalities with respect to ξ to get

E

[
sup

At∈At

{|N(At)− E[N(At)]| − 2εtE[N(At)]}
]
≤ 2C

[
log+ |SAt(2n)|

n
+

log+ |SAt(2n)|
nεt

]

and

|N(At)− E[N(At)]| ≤ 2C

[√
log+ |SAt(2n)|

n

√
E[N(At)] +

log+ |SAt(2n)|
n

]
.

Set Γ = supt∈(0,1) log+ |SAt(2n)| . We may plug the two latter inequalities into (53) to get

E

[
sup
ϕ∈F

|Z(ϕ)|
]
≤ εσ2 + 2C

√
Γ

n

∫ η

0

√
E[N(At)] dt+ 2C

Γ

n
+ 2C

Γ log(1/η)

nε

≤ εσ2 + 2C

√
Γ

n
η + 2C

Γ

n
+ 2C

Γ log(1/η)

nε
.

It remains to choose ε and η to prove the corollary, as it was done at the end of the proof of
Theorem 2. �

6.7. Proof of Lemma 3. Let
√
q = (

√
f +

√
g)/2. Then,

∫

R

ψ2

(
g

f

)
s dM =

1

4

∫

R

(√
g −√

f
√
q

)2

s dM

=
1

4

∫

R

(√
g −

√
f
)2 s

q
dM

=
1

4

∫

R

(√
g −

√
f
)2(√s

q
− 1 + 1

)2

dM

≤ 1

2

∫

R

(√
g −

√
f
)2(√s

q
− 1

)2

dM +
1

2

∫

R

(√
g −

√
f
)2

dM

≤ 1

2

∫

R

(√
g −√

f
)2

q

(√
s−√

q
)2

dM + h2(f, g)

≤ 2

∫

R

(√
s−√

q
)2

dM + h2(f, g)

≤ 1

4

∫

R

((√
s−

√
f
)
+
(√
s−√

g
))2

dM + h2(f, g)

≤ 1

2

∫

R

(√
s−

√
f
)2

dM +
1

2

∫

R

(√
s−√

g
)2

dM + h2(f, g)

≤ h2(s, f) + h2(s, g) + h2(f, g)

We complete the proof by using h2(f, g) ≤ 2h2(s, f) + 2h2(s, g). �
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6.8. Proof of Proposition 3

Proof of Assumption 1 for S = Pℓ,r. Let f, g ∈ Pℓ,r. There exist two partitions m1,m2 of R into
intervals such that |m1| ≤ 2ℓ+1 and |m2| ≤ 2ℓ+1 and such that f (respectively g) is polynomial
on each element K1 ∈ m1 (respectively K2 ∈ m2). Let

m = {K1 ∩K2, (K1,K2) ∈ m1 ×m2, K1 ∩K2 6= ∅} .
Then, m is a partition of R into intervals such that |m| ≤ |m1| + |m2| ≤ 4ℓ + 2. Moreover, we
may write f and g as

f =
∑

K∈m
PK1K and g =

∑

K∈m
QK1K ,

where PK and QK are non-negative polynomial functions of degree at most r. Let RK =
PK − tQK . Now,

{x ∈ R, g(x) > tf(x)} =
⋃

K∈m
{x ∈ K, RK(x) > 0} .

Let X be the set gathering the zeros of RK . If X = ∅, then RK is either positive, or negative
on R and the set {x ∈ K, RK(x) > 0} is either empty or the interval K. If X = R, then
RK = 0 and {x ∈ K, RK(x) > 0} = ∅. Suppose now that X 6= ∅ and X 6= R. We may write
X = {b1, . . . , bk} with b1 < b2 < · · · < bk and k ≤ r. We set b0 = −∞ and bk+1 = +∞. For
all j ∈ {0, . . . , k}, RK is either positive or negative on (bj , bj+1), and its sign changes with j.
Therefore, the set {x ∈ K, RK(x) > 0} is a union of at most k/2 + 1 intervals.

Finally, for all K ∈ m, {x ∈ K, RK(x) > 0} is always a union of at most r/2 + 1 intervals,
which implies that {x ∈ R, g(x) > tf(x)} is a union of at most (r/2 + 1)(4ℓ+ 2) intervals. �

Proof of Assumption 1 for S = Pℓ,r,+. Let f, g ∈ Pℓ,r,+. As in the preceding proof, there exists
a partition m such that |m| ≤ 4ℓ+ 2 and on which

f =
∑

K∈m
(PK)+1K and g =

∑

K∈m
(QK)+1K ,

where PK and QK are polynomial functions on K of degree at most r. Now,

{x ∈ R, g(x) > tf(x)} =
⋃

K∈m
{x ∈ K, (PK(x))+ > t(QK(x))+} .

Let AK = {x ∈ K,PK(x) > 0}, BK = {x ∈ K,QK(x) > 0}, RK = PK − tQK . Then,

{x ∈ R, g(x) > tf(x)} =
⋃

K∈m
{x ∈ AK , PK(x) > t(QK(x))+}

=
⋃

K∈m
JK ,

where

JK = {x ∈ AK ∩BK , RK(x) > 0} ∪ (AK \BK) .

If PK = 0, then JK = ∅. If RK = 0, then PK = tQK , AK = BK and thus JK = ∅. If now
QK = 0, then RK = PK and JK = AK . In this case, we deduce from the same arguments as
the ones developed in the preceding proof that JK is a union of at most r/2 + 1 intervals.
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We now assume that PK , QK and RK are not equal to 0. Let X be the set gathering the
zeros of the three polynomial functions PK , QK and RK . If X = ∅, the signs of PK , QK and RK

do not vary on K and JK may thus be either empty or the interval K. Suppose now that
X 6= ∅. Since PK , QK and RK are of degree at most r, and are not equal to 0, |X | ≤ 3r. We
may write as X = {b1, . . . , bk} with b1 < b2 < · · · < bk. We define b0 = −∞ and bk+1 = +∞.
For all j ∈ {0, . . . , k}, the signs of PK , QK and RK are constant on (bj , bj+1). Therefore, the
sets {x ∈ AK ∩BK , RK(x) > 0} and {x ∈ AK \BK , PK(x) > 0} are unions of at most 3r + 1
intervals. The set JK is hence a union of at most 6r + 2 intervals.

Finally, {x ∈ R, g(x) > tf(x)} =
⋃

K∈m JK is a union of at most (4ℓ+2)(6r+2) intervals. �

Proof of Assumption 1 for S = Fk. Let f ∈ Fk and g ∈ Fk ∩ Pℓ,0. Let m1 be a partition of R
into intervals such that |m1| ≤ 2k + 1 and such that f is monotone on each interval of m1.
Similarly, let m2 be a partition of R into intervals such that |m2| ≤ 2ℓ+1 such that g is constant
on each interval of m2. Set m = {K1 ∩K2, (K1,K2) ∈ m1 ×m2, K1 ∩K2 6= ∅}. Then, m is
a partition of R into intervals such that |m| ≤ |m1| + |m2| ≤ 2k + 2ℓ + 2. Moreover, for all
K ∈ m, f is monotone on K and g is constant on K. Now,

{x ∈ R, g(x) > tf(x)} =
⋃

K∈m
{x ∈ K, g(x) > tf(x)} .

As f is monotone on K and g is constant, the set {x ∈ K, g(x) > tf(x)} is a (possibly empty)
interval. Therefore, {x ∈ R, g(x) > tf(x)} is a union of at most |m| intervals. �

6.9. Proof of Theorem 4. Let for d ≥ 1,

ϑ(d) =
d

n
log2+

(n
d

)
.

We need to prove that there exists an event Ωξ such that P (Ωξ) ≥ 1 − e−nξ and on which any
ρ-estimator ŝ built on S satisfies

h2(s, ŝ) ≤ inf
f∈S̄

{
c1h

2(s, f) + c2ϑ(dS(f)) + c3ξ log+(1/ξ)
}
.(54)

We introduce the following notations. Let for d ≥ 1, Id be the class of unions of at most d
intervals. Let f, g ∈ S. Suppose that there exists d ≥ 1 such that for all t > 0, the
set {x ∈ R, g(x) > tf(x)} belongs to Id. Then, dg(f) stands for any number d such that
{x ∈ R, g(x) > tf(x)} belongs to Id (for all t > 0). If the preceding assumption does not
hold, we set dg(f) = +∞.

We define for d ≥ 2,

Gd = {ψ(g/f), g ∈ S, f ∈ S, dg(f) = d− 1} .
We shall apply Theorem 2 to the class F = Gd.

We begin with the following elementary claim:

Claim 4. We have,

• For all J ∈ Id, R \ J ∈ Id+1.
• For all non-increasing sequence (Jn)n≥1 of Id,

⋂
n≥1 Jn belongs to Id.
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The set Gd enjoys the following properties:

Claim 5. The functions ϕ ∈ Gd satisfy |ϕ| ≤ 1. Moreover, for all t ∈ (0, 1), ϕ ∈ Gd,
{x ∈ R, ϕ+(x) > t} ∈ Id−1 and {x ∈ R, ϕ−(x) > t} ∈ Id.

Proof. Let ϕ ∈ Gd written as ϕ = ψ(g/f). Then,

{x ∈ R, ϕ+(x) > t} = {x ∈ R, ψ+(g(x)/f(x)) > t}
= {x ∈ R, f(x) 6= 0, ψ+(g(x)/f(x)) > t} ∪ {x ∈ R, f(x) = 0, g(x) > 0}
= {x ∈ R, f(x) 6= 0, g(x) > uf(x)} ∪ {x ∈ R, f(x) = 0, g(x) > 0} ,

where u = ψ−1(t). Therefore,

{x ∈ R, ϕ+(x) > t} = {x ∈ R, g(x) > uf(x)} ∈ Id−1,

as dg(f) = d− 1. Now, note that ψ−(x) = ψ+(1/x). Hence,

{x ∈ R, ϕ−(x) > t} = {x ∈ R, ψ+(f(x)/g(x)) > t} .
By exchanging the role of f and g in the above computations, we derive

{x ∈ R, ϕ−(x) > t} = {x ∈ R, f(x) > ug(x)}
= {x ∈ R, g(x) < (1/u)f(x)} .

By using the first point of Claim 4, for all n ≥ 1,

{x ∈ R, g(x) ≤ (1/u+ 1/n)f(x)} ∈ Id.
Yet,

{x ∈ R, g(x) < (1/u)f(x)} =
∞⋂

n=1

{x ∈ R, g(x) ≤ (1/u+ 1/n)f(x)} .

The second point of Claim 4 ensures that {x ∈ R, g(x) < (1/u)f(x)} belongs to Id, which com-
pletes the proof. �

The lemma below is at the core of the proof of Theorem 4.

Lemma 9. For all ξ > 0, there exists an event Ωξ such that P (Ωξ) ≥ 1 − e−nξ and on which:
for all ε ∈ (0, 1/9), f, g ∈ S,

T (f, g) ≤ 3(1 + ε)h2(s, f)− 1− 9ε

3
h2(s, g) + c1ϑ(dg(f)) + c2ξ log+(1/ξ).(55)

In the above inequality, c1 and c2 only depend on ε. Besides, we use the conventions ϑ(+∞) =
+∞ when dg(f) = ∞.

Proof. Let d ≥ 2. Theorem 2 shows the existence of an event Ωξ(d) such that P [Ωξ(d)] ≥ 1−e−nξ

and on which: for all ε > 0, ϕ ∈ Gd of the form ϕ = ψ(g/f), with f, g ∈ S,
|Z(ϕ)| ≤ ευ(ϕ) + c

[
ϑ (dg(f) + 1) + ξ log+(1/ξ)

]
.

In this inequality, c only depends on ε. Since

ϑ1(dg(f) + 1) ≤ 2ϑ1(dg(f)),

we get

|Z(ϕ)| ≤ ευ(ϕ) + 2cϑ (dg(f)) + cξ log+(1/ξ).
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Let Ωξ =
⋂∞

d=2Ωξ+(2 log(1+d))/n(d). Then,

P [(Ωξ)
c] ≤

∞∑

d=2

P
[(
Ωξ+(2 log(1+d))/n(d)

)c] ≤
∞∑

d=2

e−nξ

(1 + d)2
≤ e−nξ.

Moreover, on Ωξ: for all f, g ∈ S, ϕ = ψ(g/f) such that dg(f) <∞,

|Z(ϕ)| ≤ ευ(ϕ) + 2cϑ(dg(f)) + c

[(
ξ +

2 log(1 + dg(f))

n

)
log+

(
1

ξ +
2 log(1+dg(f))

n

)]

≤ ευ(ϕ) + 2cϑ(dg(f)) +
2c log(1 + dg(f))

n
log+

(
n

2 log(1 + dg(f))

)
+ cξ log+(1/ξ)

≤ ευ(ϕ) + c′ϑ(dg(f)) + cξ log+(1/ξ),(56)

where c′ only depends on ε. This last inequality remains true when dg(f) = ∞ using the
convention ϑ(+∞) = +∞.

Now, it follows from (3) that for all f, g ∈ S,

T (f, g) ≤ 3h2(s, f)− 1

3
h2(s, g) + Z(ψ(g/f)).(57)

Therefore, we deduce from Lemma 3 and from (56) that on Ωξ: for all f, g ∈ S,

T (f, g) ≤ 3(1 + ε)h2(s, f)− 1− 9ε

3
h2(s, g) + c′ϑ1(dg(f)) + cξ log+(1/ξ),

which proves (55) with c1 = c′ and c2 = c. �

We now finish the proof of Theorem 4. Assumption 1 says that we can define dg(f) by
dg(f) = dS(f) for all f ∈ S̄, g ∈ S. Lemma 9 implies that on Ωξ: for all f ∈ S̄, g ∈ S,

T (f, g) ≤ 3(1 + ε)h2(s, f)− 1− 9ε

3
h2(s, g) + c1ϑ(dS(f)) + c2ξ log+(1/ξ).(58)

Thus, for all f ∈ S̄,

γ(f) ≤ 3(1 + ε)h2(s, f)− 1− 9ε

3
h2(s, S) + c1ϑ(dS(f)) + c2ξ log+(1/ξ).(59)

By using T (f, g) = −T (g, f), we deduce from (58) that for all f ∈ S̄, g ∈ S,

1− 9ε

3
h2(s, g)− 3(1 + ε)h2(s, f)− c1ϑ(dS(f))− c2ξ log+(1/ξ) ≤ T (g, f).

Any ρ-estimator ŝ satisfies on Ωξ: for all f ∈ S̄,

1− 9ε

3
h2(s, ŝ)− 3(1 + ε)h2(s, f)− c1ϑ(dS(f))− c2ξ log+(1/ξ) ≤ T (ŝ, f)(60)

≤ γ(ŝ)

≤ γ(f) + 1/n.

Using now (59) and 1/n ≤ ϑ(dS(f)), we deduce when ε ∈ (0, 1/9),

h2(s, ŝ) ≤ inf
f∈S̄

{
c1,εh

2(s, f)− h2(s, S) + c2,εϑ(dS(f)) + c2,εξ log+(1/ξ)
}

with c1,ε = 18
1 + ε

1 − 9ε
,
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and with c2,ε depending only on ε. We now choose ε arbitrarily among (0, 1/9) to prove the
theorem. �

6.10. Proof of Proposition 5. It follows from Lemma 9 that there exists an event Ωξ such

that P (Ωξ) ≥ 1− e−nξ and on which: for all f ∈ S̄,

1− 9ε

3
h2(s, ŝ)− 3(1 + ε)h2(s, f)− c1ϑ(dS(f))− c2ξ log+(1/ξ) ≤ T (ŝ, f),

where c1, c2 depend only on ε. Now γ(ŝ) = 0 and hence T (ŝ, f) ≤ 0. This leads to

h2(s, ŝ) ≤ c1,εh
2(s, f) + c2,ε

[
ϑ(dS(f)) + ξ log+(1/ξ)

)
], with c1,ε = 9

1 + ε

1− 9ε
.

�

6.11. Proof of Proposition 6. The maximum likelihood estimator ŝ converges almost surely
to

s̄1 = p1[0,1] + (1− p)1[1,2].
Therefore h2(sp,ε, ŝ) converges a.s. to h

2(sp,ε, s̄1). Define now

s̄2 =
pε

pε+ 1− p
1[0,1] + 1− p

pε+ 1− p
1[1,2] ∈ S.

We may verify that

h2(sp,ε, s̄1) = p(1−√
ε) and h2(sp,ε, s̄2) = 1−

√
1− p(1− ε).

For all η ∈ (1, 2), there exist p, ε such that h2(sp,ε, s̄1)/h
2(sp,ε, s̄2) > η, and thus,

lim
n→+∞

h2(sp,ε, ŝ) ≥ ηh2(sp,ε, s̄2) ≥ ηh2(sp,ε, S) almost surely.

�

6.12. Proof of Theorem 7. Let ε ∈ (0, 1/9). Lemma 9 asserts the existence of an event Ωξ

such that P (Ωξ) ≥ 1− e−nξ and on which: for all f ∈ ¯̂
S, g ∈ Ŝ,

T (f, g) ≤ 3(1 + ε)h2(s, f)− 1− 9ε

3
h2(s, g) + c1ϑ(dŜ(f)) + c2 log+(1/ξ)ξ.(61)

As T (g, f) = −T (f, g), we also have,

T (g, f) ≥ 1− 9ε

3
h2(s, g)− 3(1 + ε)h2(s, f)− c1ϑ(dŜ(f))− c2 log+(1/ξ)ξ.(62)

In the above inequalities, c1, c2 only depend on ε. Therefore, we deduce from (62) that on Ωξ:

for all f ∈ Ŝ ∩ ¯̂
S,

1− 9ε

3
h2(s, ŝ)− 3(1 + ε)h2(s, f)− c1ϑ(dŜ(f))− c2 log+(1/ξ)ξ ≤ T (ŝ, f)

≤ γ2(ŝ)

≤ γ2(f) + 1/n.(63)
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By using (61), and 1/n ≤ ϑ(dŜ(f)),

γ2(f) ≤ 3(1 + ε)h2(s, f)− 1− 9ε

3
inf
g∈Ŝ

{h2(s, g)} + 2c1ϑ(dŜ(f)) + c2 log+(1/ξ)ξ

≤ 3(1 + ε)h2(s, f) + 2c1ϑ(dŜ(f)) + c2 log+(1/ξ)ξ.

Plugging this last inequality into (63) leads to the result. �

6.13. Proofs of Theorems 8 and 9. The two procedures carried out in Sections 4.2and 4.4
are particular cases of a more general selection rule we now describe. Theorems 8 and 9 follow
from Theorem 12 below. Their proofs are given in Sections 6.13.2 and 6.13.3.

We consider an arbitrary (possibly random) set Λ̂. For each λ ∈ Λ̂, we consider an estimator ŝλ
with values in S. Our aim is to select an estimator among the collection {ŝλ, λ ∈ Λ̂}.

We consider for each λ ∈ Λ̂ a (possibly random) model Ŝλ ⊂ S. We associate to each λ ∈ Λ̂,

ĝ ∈ Ŝλ, two penalty terms pen1,λ(ĝ) and pen2(λ). We finally define the criterion γ5 by

γ5(ŝλ) = sup
ĝ∈Ŝλ

[
T (ŝλ, ĝ)− pen1,λ(ĝ)

]
.

The selected estimator ŝλ̂ is then any estimator among {ŝλ, λ ∈ Λ̂} satisfying

γ5(ŝλ̂) + 2pen2(λ̂) ≤ inf
λ∈Λ̂

{γ5(ŝλ) + 2pen2(λ)}+ 1/n.

The risk of this estimator is bounded above as follows.

Theorem 12. We assume that there exist two real valued maps, ∆ ≥ 0 on Λ̂, and d ≥ 1 on S
such that

dŝλ(ĝ) ≤ d(ĝ) + ∆(λ) for all λ ∈ Λ̂, ĝ ∈ Ŝλ.(64)

We suppose that there exist a (possibly random) model Ŝ ⊂ ⋂λ∈Λ̂ Ŝλ and a map pen1 on Ŝ such
that

pen1,λ(ĝ) ≤ pen1(ĝ) + pen2(λ) for all ĝ ∈ Ŝ, λ ∈ Λ̂.(65)

There exists a universal constant L1 such that if for all λ ∈ Λ̂, ĝ ∈ Ŝλ, f̂ ∈ Ŝ,

pen1,λ(ĝ) ≥ L1
d(ĝ)

n
log2+

(
n

d(ĝ)

)
(66)

pen1(f̂) ≥ L1
d(f̂)

n
log2+

(
n

d(f̂)

)

pen2(λ) ≥ L1
∆(λ)

n
log2+

(
n

∆(λ)

)
,

then, for all ξ > 0,

P ⋆

[
h2(s, ŝλ̂) ≥ c

(
inf
λ∈Λ̂

{
h2(s, ŝλ) + pen2(λ)

}
+ inf

ĝ∈Ŝ

{
h2(s, ĝ) + pen1(ĝ)

}
+ ξ log+(1/ξ)

)]
≤ e−nξ.

In the above inequality, c is a universal constant and the convention 0× log+(n/0) = 0 is used
when ∆(λ) = 0.



54 MATHIEU SART

Remark: we recall that the notation dg(f) appearing in (64) is defined at the beginning of
the proof of Theorem 4.

6.13.1. Proof of Theorem 12. Let ε ∈ (0, 1/9). We deduce from Lemma 9 and from the

equality T (g, f) = −T (f, g) that there exists an event Ωξ such that P (Ωξ) ≥ 1 − e−nξ and on
which: for all f, g ∈ S, such that dg(f) < +∞,

T (f, g) ≤ 3(1 + ε)h2(s, f)− 1− 9ε

3
h2(s, g) + c1ϑ(dg(f)) + c2ξ log+(1/ξ)(67)

T (g, f) ≥ 1− 9ε

3
h2(s, g)− 3(1 + ε)h2(s, f)− c1ϑ(dg(f))− c2ξ log+(1/ξ),(68)

where c1, c2 only depend on ε.

Let λ ∈ Λ̂ and ĝ ∈ Ŝλ. Note that we may use (67) with f = ŝλ, g = ĝ and dŝλ(ĝ) = d(ĝ)+∆(λ)

(we may always increase dŝλ(ĝ)). We get for all λ ∈ Λ̂, ĝ ∈ Ŝλ,

T (ŝλ, ĝ) ≤ 3(1 + ε)h2(s, ŝλ)−
1− 9ε

3
h2(s, ĝ) + c1ϑ (d(ĝ) + ∆(λ)) + c2ξ log+(1/ξ)

≤ 3(1 + ε)h2(s, ŝλ) + c1ϑ(d(ĝ) + ∆(λ)) + c2ξ log+(1/ξ)

≤ 3(1 + ε)h2(s, ŝλ) + c1ϑ(d(ĝ)) + c1ϑ(∆(λ)) + c2ξ log+(1/ξ).

In this inequality, we use the convention explained in the theorem when ∆(λ) = 0. If L1 is large
enough,

T (ŝλ, ĝ) ≤ 3(1 + ε)h2(s, ŝλ) + pen1,λ(ĝ) + pen2(λ) + c2ξ log+(1/ξ),

and hence

γ5(ŝλ) ≤ 3(1 + ε)h2(s, ŝλ) + pen2(λ) + c2ξ log+(1/ξ).(69)

We derive from (68) with g = ŝλ, f = ĝ,

T (ŝλ, ĝ) ≥
1− 9ε

3
h2(s, ŝλ)− 3(1 + ε)h2(s, ĝ)− c1ϑ (d(ĝ) + ∆(λ))− c2ξ log+(1/ξ).

Therefore, using this inequality with λ = λ̂, we get for all ĝ ∈ Ŝλ̂,

1− 9ε

3
h2(s, ŝλ̂) ≤ T (ŝλ̂, ĝ) + 3(1 + ε)h2(s, ĝ) + c1ϑ(d(ĝ) + ∆(λ̂)) + c2ξ log+(1/ξ)

≤ T (ŝλ̂, ĝ)− pen1,λ̂(ĝ) + 3(1 + ε)h2(s, ĝ) + c1ϑ(d(ĝ)) + pen1,λ̂(ĝ)

+c1ϑ(∆(λ̂)) + c2ξ log+(1/ξ).

If L1 is large enough, pen1,λ̂(ĝ) ≥ 2ϑ(d(ĝ)), pen2(λ̂) ≥ 4c1ϑ(∆(λ̂)), pen1,λ̂(ĝ) ≥ 4/n, and hence,

1− 9ε

3
h2(s, ŝλ̂) ≤ T (ŝλ̂, ĝ)− pen1,λ̂(ĝ) + 3(1 + ε)h2(s, ĝ) +

3

2
pen1,λ̂(ĝ) +

1

2
pen2(λ̂)

+ c2ξ log+(1/ξ)− 1/n.

This inequality being true for all ĝ ∈ Ŝλ̂, we get

1− 9ε

3
h2(s, ŝλ̂) ≤ γ5(ŝλ̂) +

1

2
pen2(λ̂) + inf

ĝ∈Ŝ
λ̂

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1,λ̂(ĝ)

}

+ c2ξ log+(1/ξ) − 1/n.
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In particular, as Ŝ ⊂ Ŝλ̂,

1− 9ε

3
h2(s, ŝλ̂) ≤ γ5(ŝλ̂) +

1

2
pen2(λ̂) + inf

ĝ∈Ŝ

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1,λ̂(ĝ)

}

+ c2ξ log+(1/ξ)− 1/n.

We deduce from (65),

1− 9ε

3
h2(s, ŝλ̂) ≤ γ5(ŝλ̂) + 2pen2(λ̂) + inf

ĝ∈Ŝ

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1(ĝ)

}

+ c2ξ log+(1/ξ) − 1/n.

By using the definition of λ̂ and (69), we deduce that for all λ ∈ Λ̂,

1− 9ε

3
h2(s, ŝλ̂) ≤ γ5(ŝλ) + 2pen2(λ) + inf

ĝ∈Ŝ

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1(ĝ)

}
+ 2c2ξ log+(1/ξ)

≤ 3(1 + ε)h2(s, ŝλ) + 3pen2(λ) + inf
ĝ∈Ŝ

{
3(1 + ε)h2(s, ĝ) +

3

2
pen1(ĝ)

}

+ 2c2ξ log+(1/ξ).

It remains to take the infimum over λ ∈ Λ̂ to finish the proof. �

6.13.2. Proof of Theorem 8. We shall apply the selection rule developed in Section 6.13 to

pick out an estimator among {ŝλ, λ ∈ Λ̂} = {ŝm, m ∈ M̂ℓ̂}. For this purpose, we need to explain

the values of the different parameters involved in the procedure. We set Ŝ = {ŝm, m ∈ M̂ℓ̂},
and for m ∈ M̂ℓ̂,

Ŝm =

{∑

K∈m
ŝmK

1K , mK ∈ M̂ℓ̂

}
.

Note that the assumption Ŝ ⊂ ⋂
m∈M̂

ℓ̂

Ŝm of Theorem 12 is fulfilled. We define for m ∈ M̂ℓ̂,

K ∈ m and mK ∈ M̂ℓ̂, the partition mK ∨ K of K by (27). A function ĝ ∈ Ŝm of the form

ĝ =
∑

K∈m ŝmK
1K is piecewise constant. In the sequel, m(ĝ) designs a partition of M̂ of the

form

m(ĝ) =
⋃

K∈m
mK ∨K,

with minimal length that is such that

|m(ĝ)| = inf

{∑

K∈m
|mK ∨K|, ĝ =

∑

K∈m
ŝmK

1K} .

Let S̄ =
⋃∞

k=1Pk,r and note that Ŝm ⊂ S̄ for all m ∈ M̂ℓ̂. Let f ∈ S̄ and k ≥ 1 be the smallest
integer for which f ∈ Pk,r. It follows from Proposition 3 that one may define dP

ℓ̂∨k,r
(f) =

(r + 2)(2(ℓ̂ ∨ k) + 1). In particular, for all m ∈ M̂ℓ̂ and f ∈ S̄, we may set since ŝm ∈ Pℓ̂,r,

dŝm(f) = (r + 2)(2 inf
k≥1

Pk,r∋f
(ℓ̂ ∨ k) + 1).
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We now define d for f ∈ S̄ and ∆ for m ∈ M̂ℓ̂ by

d(f) = (r + 2)(2 inf
k≥1

Pk,r∋f
k + 1), ∆(m) = 2ℓ̂(r + 2).

We define d arbitrarily when f 6∈ S̄. Note that (64) is satisfied. We now define L0 = 6L1 and

the penalties for L ≥ L0, m ∈ M̂ℓ̂ and ĝ ∈ Ŝm by

pen1,m(ĝ) = L
(r + 1)|m(ĝ)| log2+(n/(r + 1))

n
, pen2(m) = L

(r + 1)ℓ̂ log2+(n/(r + 1))

n
.

The first penalty satisfies the lower bound (66) since

d(ĝ) ≤ (r + 2)(2|m(ĝ)|+ 1) ≤ 6(r + 1)|m(ĝ)| for all ĝ ∈ Ŝm.

It remains to define pen1(ĝ) for ĝ ∈ Ŝ = {ŝm, m ∈ M̂ℓ̂}. We need the claim below whose proof
is deferred after the present proof.

Claim 6. For all m,m′ ∈ M̂, |m(ŝm′)| ≤ |m|+ |m′|.

It then follows that for all m,m′ ∈ M̂ℓ̂,

pen1,m(ŝm′) ≤ L
(r + 1)ℓ̂ log2+(n/(r + 1))

n
+ pen2(m).

The penalty defined by

pen1(ŝm′) = L
(r + 1)ℓ̂ log2+(n/(r + 1))

n

satisfies therefore (65).

Note now that the selection rules described in Sections 6.13 and 4.2 coincide. Theorem 12
controls the risk of the selected estimator: for all ξ > 0, with probability larger than 1− e−nξ,

h2(s, ŝm̂) ≤ C

(
inf

m∈M̂
ℓ̂

{
h2(s, ŝm) + pen2(m)

}
+ inf

m∈M̂
ℓ̂

{
h2(s, ŝm) + pen1(ŝm)

}
+ ξ log+(1/ξ)

)
.

where C is a universal constant.

It remains to use the definition of the penalty terms to finish the proof. �

Proof of Claim 6. We have,

|m(ŝm′)| ≤
∑

K∈m
|m′

K ∨K|

≤
∑

K∈m

∣∣{K ∩K ′,K ′ ∈ m,K ∩K ′ 6= ∅
}∣∣

≤
∣∣{K ∩K ′, (K,K ′) ∈ m×m′,K ∩K ′ 6= ∅

}∣∣ .

Since m and m′ are partitions into intervals, we deduce that |m(ŝm′)| ≤ |m|+ |m′|. �



ESTIMATING A DENSITY, A HAZARD RATE, AND A TRANSITION INTENSITY 57

6.13.3. Proof of Theorem 9. The proof is almost the same than the one of Theorem 8. The
modifications are very mild, and this is the reason why we only specify the values of the different
parameters involved in the procedure of Section 6.13:

Ŝ = {ŝm, m ∈ M̂k̂,lower}

Ŝm =

{∑

K∈m
ŝmK

1K , mK ∈ M̂k̂,lower

}
for all m ∈ M̂k̂,lower

pen1(ŝm) = pen2(m) = L
(r + 1)|m| log2+(n/(r + 1))

n
for all m ∈ M̂k̂,lower.

�

6.14. Proof of Lemma 4. Note that if K ∩ {Y(1), . . . , Y(n̂)} = ∅ then,

LK(f) = −
∫

K
f(t) dM(t),

and the supremum supf∈Pr(K) LK(f) is achieved at ŝK = 0 and equals 0. We now suppose that

K ∩ {Y(1), . . . , Y(n̂)} 6= ∅.
Let V be the Radon–Nikodym derivative of M with respect to the Lebesgue measure µ.

Then, V = 1 in framework 1, V (t) = n−1
∑n

i=1 1Xi≥t1[0,+∞)(t) in framework 2 and V (t) =

n−1
∑n

i=1 1X(i)
t−=1

1(0,+∞)(t) in framework 3. Let k be the largest integer of {1, . . . , n̂} such

that Y(k) belongs to K and K ′ = K ∩ (−∞, Y(k)]. There exists some α > 0 such that (Y(k) −
α, Y(k)) ⊂ K ′. Moreover, we can choose α small enough to get V (t) ≥ 1/n for all t ∈ (Y(k) −
α, Y(k)).

Let now f ∈ Pr(K). Then, LK(f) takes the form

LK(f) =
1

n

∑

i∈Î
(log f(Yi)) 1K (Yi)−

∫

K
f(t)V (t) dt,

and is bounded above by

LK(f) ≤ log+

(
sup
t∈K ′

f(t)

)
− 1

n

∫ Y(k)

Y(k)−α
f(t) dt.

We endow the linear space consisting of polynomial functions of degree at most r with the two
following norms:

‖f‖1 =
∫ Y(k)

Y(k)−α
|f(t)| dt, ‖f‖∞ = sup

t∈K ′

|f(t)| .

There exists C such that ‖f‖∞ ≤ C‖f‖1 for all f ∈ Pr(K). Now,

LK(f) ≤ log+ (C‖f‖1)−
‖f‖1
n

.

The continuous map LK tends therefore to −∞ when ‖f‖1 → +∞, which proves the existence
of ŝK .
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For the second part of the lemma, we use Theorem 1 to deduce that T (ŝK , fK) ≤ 0 for all
fK ∈ Pr(K). If f ∈ Pr(m) is of the form f =

∑
K∈m fK ,

T (ŝm, f) =
∑

K∈m
T (ŝK , fK) ≤ 0.

Thus, γ(ŝm) = 0 and ŝm is a ρ-estimator on Pr(m). �

6.15. Proof of Lemma 5. The following claim will be useful in the sequel.

Claim 7. Let ξ > 0, η ≥ 0, r ≥ 0, and m, m′ be two finite (non-empty) collections of disjoint
intervals of R. There exists an event Ωξ that only depends on ξ such that P (Ωξ) ≥ 1−e−nξ, and
on which the following holds: for all piecewise polynomial estimators ŝm ∈ Pr(m), ŝm′ ∈ Pr(m

′)
such that |m′| ≤ 2|m|+ 1 and such that T (ŝm, ŝm′) ≥ −η,

h2(s, ŝm′) ≤ C

{
h2(s, ŝm) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ) + η

}
,

where C is universal.

Proof. Let ε = 1/18. We deduce from Lemma 9 that there exists an event Ωξ that only depends

on ξ such that P (Ωξ) ≥ 1− e−nξ and on which:

T (ŝm, ŝm′) ≤ 3(1 + ε)h2(s, ŝm)− 1− 9ε

3
h2(s, ŝm′) + c1ϑ(dŝm′

(ŝm)) + c2ξ log+(1/ξ),(70)

where c1 and c2 are universal constants. Now, ŝm and ŝm′ belong to Pr(m
′′) where

m′′ =
{
K ∩K ′, (K,K ′) ∈ m×m′, K ∩K ′ 6= ∅

}
.

Yet, |m′′| ≤ |m|+ |m′| ≤ 3|m|+ 1. Thereby, ŝm and ŝm′ belong to P3|m|+1,r and it follows from
Proposition 3 that we may set

dŝ′m(ŝm) = (r + 2)(2(3|m| + 1) + 1).

We now bound above ϑ(dŝ′m(ŝm)) in (70), and then use T (ŝm, ŝm′) ≥ −η to get the result. �

We recall thatM stands for the class of finite (non-empty) collections m of disjoint intervals K
of R that are right-closed and not reduced to a singleton. Let m ∈ M and ŝm be the ρ-estimator
defined in Lemma 4. This estimator is of the form

ŝm =
∑

K∈m
ŝK where ŝK maximizes LK over Pr(K).

The claim below shows the existence of a partitionm′ ∈ M̂ and a ρ-estimator ŝm′ which performs
as well as ŝm.

Claim 8. Let ξ > 0, m ∈ M and ŝm be the ρ-estimator defined above. There exist an event Ωξ

that only depends on ξ such that P (Ωξ) ≥ 1−e−nξ, a partition m′ ∈ M̂ such that |m′| ≤ 4|m|−3,
and a piecewise polynomial ρ-estimator ŝm′ defined as in Lemma 4 such that on Ωξ:

h2(s, ŝm′) ≤ C

{
h2(s, ŝm) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,

where C is universal.
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Proof. We first suppose that
{
K ∩ {Y(1), . . . , Y(n̂)},K ∈ m

}
= {Y(1), . . . , Y(n̂)}.

Letm1 =
{
K ∈ m, {Y(1), . . . , Y(n̂)} ∩K 6= ∅

}
. Then,m1 6= ∅ and we may writem1 = {Kj , j ∈ {1, . . . , ℓ}}

where 1 ≤ ℓ ≤ |m| and where Kj is an interval with endpoints aj , bj satisfying a1 < b1 ≤ a2 <
b2 < . . . . When K ∈ m does not belong to m1, ŝK = 0 and hence

ŝm =

ℓ∑

j=1

ŝKj
.

For each j ∈ {1, . . . , ℓ}, we set αj = min
{
Y(i), Y(i) ∈ Kj

}
, βj = max

{
Y(i), Y(i) ∈ Kj

}
. We define

for j ∈ {2, . . . , ℓ − 1}, J2j = (βj , αj+1] and for j ∈ {2, . . . , ℓ}, J2j−1 = (αj , βj ]. If β1 = Y(1), we
set J1 = ∅, J2 = [β1, α2] and if β1 > Y(1), J1 = [Y(1), β1], J2 = (β1, α2]. Note that J2j−1 ⊂ Kj

for all j ∈ {1, . . . , ℓ}. The collection m′ = {Jj , j ∈ {1, . . . , 2ℓ− 1}} defines a partition belonging

to M̂ such that |m′| ≤ 2ℓ− 1. We define the ρ-estimator

ŝm′ =

ℓ∑

j=1

ŝJ2j−1 +

ℓ−1∑

j=1

ŝJ2j ,

where ŝA maximizes LA over Pr(A) for all non-empty interval A with the convention that ŝ∅ = 0
when A = ∅. We now consider

s̃m′ =

ℓ∑

j=1

ŝJ2j−1 .

Note that s̃m′ also belongs to the random model Pr(m
′) and hence T (ŝm′ , s̃m′) ≤ 0. We deduce

from Claim 7 that there exists an event Ωξ such that P (Ωξ) ≥ 1− e−nξ and on which:

h2(s, ŝm′) ≤ C

{
h2(s, s̃m′) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,(71)

where C is universal.

Now, for all j ∈ {1, . . . , ℓ}, such that J2j−1 6= ∅,
T
(
ŝJ2j−1 , ŝKj

1J2j−1

)
≤ 0,(72)

since ŝJ2j−1 maximizes LJ2j−1 over Pr(J2j−1) and that ŝKj
1J2j−1 ∈ Pr(J2j−1). When J2j−1 = ∅,

T
(
ŝJ2j−1 , ŝKj

1J2j−1

)
= 0, and thus (72) also holds. We define

A =

ℓ⋃

j=1

J2j−1.

We deduce from (72) that T (s̃m′1A , ŝm1A) ≤ 0. Therefore,

T (s̃m′ , ŝm) = T (s̃m′1A , ŝm1A) + T (0, ŝm1Ac )

≤ 0 + T (0, ŝm1Ac )

≤
∫

Ac

ψ (ŝm/0) dN,
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where we recall the conventions ψ(0/0) = ψ(1) = 0, ψ(x/0) = ψ(∞) = 1 for all x > 0. Let

B =
⋃ℓ

j=1Kj. Note that ŝm vanishes outside B and thus, as |ψ| ≤ 1,

T (s̃m′ , ŝm) ≤
∫

B∩Ac

ψ (ŝm/0) dN ≤ N(B ∩Ac).(73)

Now,

N(B ∩Ac) = N(B)−
ℓ∑

j=1

N((αj , βj ])

= N(B)−
ℓ∑

j=1

N([αj , βj ]) +

ℓ∑

j=1

N({αj})

= N(B)−
ℓ∑

j=1

N(Kj) +
ℓ∑

j=1

N({αj})

=
ℓ∑

j=1

N({αj}).

In each of the frameworks, N({αj}) ≤ 1/n. We then deduce from (73) that

T (s̃m′ , ŝm) ≤ ℓ/n.

We deduce from Claim 7 with η = ℓ/n ≤ |m|/n that on Ωξ:

h2(s, s̃m′) ≤ C ′
{
h2(s, ŝm) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,

where C ′ is universal. By plugging this inequality into (71), we derive that

h2(s, ŝm′) ≤ C ′′
{
h2(s, ŝm) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,

where C ′′ is universal, which proves the claim when
{
K ∩ {Y(1), . . . , Y(n̂)},K ∈ m

}
= {Y(1), . . . , Y(n̂)}.

If this equality does not hold, we define the set X gathering the Y(i) that do not belong to⋃
K∈mK. Then, there exist k ∈ {1, . . . , |m| + 1} and k disjoint intervals I1, . . . , Ik that are

right-closed and not reduced to a singleton such that

X =
k⋃

j=1

Ij ∩
{
Y(1), . . . , Y(n̂)

}
,

and such that K ∩ Ij = ∅ for all K ∈ m, j ∈ {1, . . . , k}. If mnew = m
⋃∪k

j=1Kj, and if ŝmnew is

a ρ-estimator on Pr(mnew) defined as in Lemma 4, T (ŝm, ŝmnew) ≥ 0 and hence

h2(s, ŝmnew) ≤ C ′′′
{
h2(s, ŝm) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
.(74)

Moreover, {
K ∩ {Y(1), . . . , Y(n̂)},K ∈ mnew

}
= {Y(1), . . . , Y(n̂)},
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and we may thus apply the same arguments as before by replacing m by mnew to get m′ ∈ M̂
such that |m′| ≤ 2|mnew| − 1 ≤ 4|m| − 3 and such that

h2(s, ŝm′) ≤ C ′′′′
{
h2(s, ŝmnew) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
.(75)

Putting (74) and (75) together ends the proof. �

We return to the proof of Lemma 5. Note that the event Ωξ appearing in Claim 8 is defined
in Lemma 9. Since ŝm is a ρ-estimator on the model Pr(m), it follows from Theorem 4 that on
the same event Ωξ:

h2(s, ŝm) ≤ C ′
{
h2(s,Pr(m)) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,

where C ′ is universal. We deduce from the last claim that there exist m′ ∈ M̂, and a piecewise
polynomial ρ-estimator ŝm′based on m′ such that on Ωξ,

h2(s, ŝm′) ≤ C ′′
{
h2(s,Pr(m)) +

(r + 1)|m|
n

log2+

(
n

(r + 1)|m|

)
+ ξ log+(1/ξ)

}
,(76)

where C ′′ is universal. As |m′| ≤ 4|m| − 3 ≤ 4|m|, and L ≥ 1,

h2(s, ŝm′) + L
(r + 1)|m′|

n
log2+

(
n

r + 1

)
≤ C ′′′

{
h2(s,Pr(m)) + L

(r + 1)|m|
n

log2+

(
n

r + 1

)

ξ log+(1/ξ)
}
,

where C ′′′ is universal. Define P ′
r,ℓ =

⋃
m∈M
|m|≤ℓ

Pr(m). As m is arbitrary among M and m′ ∈ M̂,

inf
m′∈M̂

{
h2(s, ŝm′) + L

(r + 1)|m′|
n

log2+

(
n

r + 1

)}

≤ C ′′′′ inf
ℓ≥1

{
h2(s,P ′

r,ℓ) + L
(r + 1)ℓ

n
log2+

(
n

r + 1

)
+ ξ log+(1/ξ)

}
,(77)

where C ′′′ is universal. We may verify that P ′
r,ℓ is dense in Pr,ℓ in the metric space (S, h). This

means that we may replace P ′
r,ℓ in (77) by Pr,ℓ, which ends the proof. �
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Univ Lyon, UJM-Saint-Étienne, CNRS UMR 5208, Institut Camille Jordan, 10 rue Tréfilerie, CS
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