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Abstract
To address the issues of stability and accuracy for reaction-diffusion equations,

the development of high order and stable time-stepping methods is necessary. This is
particularly true in the context of cardiac electrophysiology, where reaction-diffusion
equations are coupled with stiff ODE systems. Many research have been led in
that way in the past 15 years concerning implicit-explicit methods and exponential
integrators. In 2009, Perego and Veneziani proposed an innovative time-stepping
method of order 2. In this paper we present the extension of this method to the
orders 3 and 4 and introduce the Rush-Larsen schemes of order k (shortly denoted
RLk). The RLk schemes are explicit multistep exponential integrators. They display
a simple general formulation and an easy implementation.
The RLk schemes are shown to be stable under perturbation and convergent of
order k. Their Dahlquist stability analysis is performed. They have a very large
stability domain provided that the stabilizer associated with the method captures
well enough the stiff modes of the problem. The RLk method is numerically studied
as applied to the membrane equation in cardiac electrophysiology.
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Introduction

The general purpose of this article is the time integration of stiff reaction-diffusion equa-
tions, more precisely when a coupling with ODE systems occurs. In that framework, the
matters of stability and accuracy together with the non linear nature of the equations
are of first importance (as developed below). As a systemic example of these questions,
we will consider the monodomain model in cardiac electrophysiology [3, 4, 5]. It has the
general formulation: on the heart domain Ω and on the time interval [0, T ],

∂v

∂t
= Av + f1(v, w) + s(x, t),

∂w

∂t
= f2(v, w), (1)

whereA is a diffusion operator. The first unknown v : Ω×[0, T ]→ R is the transmembrane-
potential. The second (vector) unknown w : Ω× [0, T ]→ RN gathers variables describing
the state of the cellular membrane : it incorporates ionic concentrations and gating vari-
ables. The source term s(x, t) is an applied stimulation current. The reaction terms f1
and f2 model ionic currents and voltage across the cellular membrane, they are named
ionic models. Ionic models originally have been developed by Hodgkin and Huxley [17] in
1952 for the squid axon. Several ionic models have been especially designed for cardiac
cells, such as the Beeler and Reuter model [1], the Luo and Rudy models [22, 21] or the
TNNP model [27]. A comprehensive list is available in [26].

Numerical simulations in cardiac electrophysiology have to face two difficulties. The first
one is the nature of the reaction terms f1 and f2 in (1). It is non linear and the operation
(v, w)→ fi(v, w) has a significant cost. For example, this operation for the TNNP model
[27] involves the computation of 50 exponentials. These operations need to be performed
at every node of the grid. They represent a large computational load. Their total amount
needs to be maintained as low as possible. Fully implicit time-stepping methods (that
require a non linear solver) therefore are avoided. The second difficulty is the stiffness.
The management of the numerical instabilities thus is challenging since implicit methods
are not affordable here. More precisely, the stiffness of the monodomain model (1) is
caused by the presence of different space and time scales. The solutions of (1) display
sharp wave-fronts. This is commonly coped with by resorting to very fine space and time
grids, associated with high computational costs.

In this context, our strategy for the numerical resolution of (1) is to go towards high order
methods, in order to have accurate simulations on much coarser space and time grids. A
high order time-stepping method is required that fulfils these two conditions: it must have
strong stability properties and it is explicit for the reaction terms. To this aim, we will
focus in this paper on the time integration of stiff ODE systems,

dy

dt
= f(t, y), y(0) = y0, (2)

for which a reformulation of the following kind is available,

dy

dt
= a(t, y)y + b(t, y), y(0) = y0. (3)
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The linear part a(t, y) will be referred to as the stabilizer. The stabilizer will be inserted
in the numerical scheme in order to stabilize the computations.
That approach is relevant in cardiac electrophysiology where stiffness is induced by the
coexistence of fast and slow variables. The fast variables (gating variables) are described
by equations in the ODE system in (1) of the form:

∂wi
∂t

= f2,i(v, w) =
w∞(v, w)− wi

τi(v, w)
,

that motivates the reformulation (3) with a diagonal stabilizer a = diag(−1/τi). More
details are given in Section 4.1.

Exponential integrators are well suited in that framework. We refer to [23, 14, 11] for
general reviews. They have been widely studied for the quasi-linear equations, ∂ty =
Ay + b(t, y), see e.g. [12, 7, 13, 16, 28, 20]. The basic idea is to use the exact solution of
the linearized equation in order to stabilize the numerical scheme. In general this implies
to compute a matrix exponential. This is the supplementary cost associated to exponen-
tial integrators.
The targeted problem (3) displays a non constant linear part a(t, y). Exponential integra-
tors have been less studied in that case. Exponential integrators of Adams type for a non
constant linear part have been first considered by Lee and Preiser [19] in 1978 and by Chu
[2] in 1983. Recently, Ostermann et al. [15, 18] developed and analyzed the linearized
exponential Adams method. The original problem (2) is reformulated after each time step
as,

dy

dt
= Jny + cn(t, y), Jn = ∂yf(tn, yn), cn(t, y) = f(t, y)− Jny.

The Jacobian matrix Jn is used as the stabilizer with the following induced drawbacks.
It requires the computation of matrix exponentials at every time steps. Moreover, when
the fast variables of the system are known, stabilization can be performed only on these
variables. Considering the full Jacobian as the stabilizer implies unnecessary computa-
tional efforts. To avoid these problems, an alternative is to set the stabilizer as a part
or as an approximation of the Jacobian. This has been analyzed in [29], [25] and [6] for
exponential Rosenbrock, exponential Runge-Kutta and exponential Adams type methods
respectively. For exponential Adams type methods, equation (3) is reformulated after
each time step as:

dy

dt
= any + cn(t, y), an = a(tn, yn), cn(t, y) = f(t, y)− any.

The resulting scheme is (see details in [15, 6]):

yn+1 = yn + h [ϕ1(anh) (anyn + γ1) + ϕ2(anh)γ2 + . . .+ ϕk(anh)γk] , (4)

where γi are the coefficients of the Lagrange interpolation polynomial of cn(t, y) (in a
classical k-step setting) and where the functions ϕj are given by

ϕ0(z) = ez, ϕj+1(z) =
ϕj(z)− 1/j!

z
. (5)
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Independently, Perego and Veneziani [24] presented in 2009 an innovative exponential
integrator of order 2, of a different nature:

yn+1 = yn + hϕ1(αnh) (αnyn + βn) , (6)

also involving two constants αn and βn to be computed at each time step. It results in
a schemes with a very simple definition. It is in particular simpler than the exponential
Adams integrators (4). The essential difference with the previous approaches is that
αn 6= a(tn, yn). Precisely, the constants αn and βn are given by αn = 3/2an−1/2an−1 and
βn = 3/2bn − 1/2bn−1 with aj = a(tj, yj) and bj = b(tj, yj).

In this paper we will study the general formulation (6). We will show that such schemes
also exist at the orders 3 and 4, for an explicit definition of the two constants αn and
βn. These schemes will be referred to as Rush-Larsen schemes of order k, shortly denoted
RLk. They will be shown to be stable under perturbation and convergent of order k.
The Dahlquist stability analysis for the RLk schemes is also performed. It is a practical
tool that allows to dimension the time step h with respect to the variations of f(t, y)
in problem (2), see e.g. [10]. When considering varying stabilizers, the stability domain
depends on how f(t, y)y is decomposed in Equation (3), following [24]. The stability
domains are numerically computed and shown to be much larger than in the absence
of stabilization (i.e. when a(t, y) = 0) provided that a(t, y) captures well enough the
variations of f(t, y). The performances of the RLk method are evaluated for the membrane
equation in cardiac electrophysiology. They are compared with the exponential Adams
integrators (4). The two methods have a very similar robustness to stiffness. They both
allow stable computations on coarse time grids.

At large time step, for the presented test case, the RL3 and RL4 schemes are more
accurate, meanwhile with a simpler implementation and thus a lighter cost.

The paper is organized as follows. The RLk schemes are derived in Section 1 and their
numerical analysis is made in Sections 1 and 2. The Dahlquist stability analysis is in
Section 3. The numerical results are presented in Section 4. The paper ends with the
conclusion Section.

In the sequel h denotes the time step and tn = nh the associated time instants.

1 RLk scheme definition and consistency

We start this section with the definition of the Rush-Larsen schemes.

Definition 1. The RLk scheme is an explicit k-step method. It is defined with the
formulation (6) for the following setting of αn and of βn: for the RL2 scheme

αn =
3

2
an −

1

2
an−1, βn =

3

2
bn −

1

2
bn−1,
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for the RL3 scheme

αn =
1

12
(23an − 16an−1 + 5an−2),

βn =
1

12
(23bn − 16bn−1 + 5bn−2) +

h

12
(anbn−1 − an−1bn),

and for the RL4 scheme

αn =
1

24
(55an − 59an−1 + 37an−2 − 9an−3),

βn =
1

24
(55bn − 59bn−1 + 37bn−2 − 9bn−3)

+
h

12
(an(3bn−1 − bn−2)− (3an−1 − an−2)bn),

where aj = a(tj, yj) and bj = b(tj, yj).

A solution y(t) of Equation (3) on a time interval [0, T ] is fixed. It is recalled that the
scheme (6) is consistent of order k if:

- being given a time step h and a time instant kh ≤ tn ≤ T − h ,

- being given the numerical approximation yn+1 in (6) computed with yn−j = y(tn−j)
for j = 0 . . . k − 1,

we have |yn+1 − y(tn + h)| ≤ Chk+1, for a constant C only depending on the problem (3)
data a, b, y0 and on T .

Proposition 1. Assume that the functions a(t, y) and b(t, y) in problem (3) are Ck

regular. Moreover assume that a(t, y) either is a diagonal matrix or a constant linear
operator.
Then the RLk scheme is consistent of order k.

Remark 1. In the case of a constant linear part a(t, y) = A, we always have αn = A.
The definition of βn also simplifies at the order 3 and 4,

RL3 : βn =
1

12
(23bn − 16bn−1 + 5bn−2)−

h

12
A(bn − bn−1).

RL4 : βn =
1

24
(55bn − 59bn−1 + 37bn−2 − 9bn−3)−

h

12
A(2bn − 3bn−1 + bn−2).

Remark 2. The assumption “a(t, y) either is a diagonal matrix or a constant linear
operator” in Proposition 1 has the following origin. To analyze the scheme consistency we
will derive a Taylor expansion in h of the scheme formulation (6). That series is computed
with the help of Taylor expansions in h for αn and βn.
Assume the simple form αn = α0 + hα1. We need to expand ϕ1(αnh) as a series in h.
The function ϕ1 is analytic on C. However in the matrix case, the equality, ϕ1(M +
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N) = ϕ1(M) + ϕ′1(M)N + . . . + ϕ
(i)
1 (M)N i/i! + . . . holds if M and N are commutative

matrices. Therefore one cannot expand ϕ1(αnh) without the assumptions that α0 and α1

are commutative.
That difficulty vanishes if a(t, y) is constant or a varying diagonal matrix.

The proof of Proposition 1 is based on the following result.

Lemma 1. With the same assumption as in Proposition 1, the scheme (6) is consistent
of order k if:

k = 2 : αn = an +
1

2
a′nh+O(h2), βn = bn +

1

2
b′nh+O(h2).

k = 3 : αn = an +
1

2
a′nh+

1

6
a′′nh

2 +O(h3),

βn = bn +
1

2
b′nh+

1

12
(a′nbn − anb′n)h2 +O(h3).

k = 4 : α = an +
1

2
a′nh+

1

6
a′′nh

2 +
1

24
a′′′n h

3 +O(h4),

β = bn +
1

2
b′nh+

1

12
(a′nbn − anb′n)h2 +

(
1

24
b′′′n +

1

24
(a′′nbn − anb′′n)

)
h3 +O(h4).

Where a′n, a′′n, a′′′n and b′n, b′′n, b′′′n denote the successive derivatives at time tn of the functions
t 7→ a(t, y(t)) and t 7→ b(t, y(t)).

Proof of lemma 1. By assumption the functions a and b in problem (3) are Ck regular.
Therefore a solution y of problem (3) on a closed time interval [0, T ] is Ck+1 regular. Its
derivatives up to order k+1 can be bounded by constants only depending on the problem
(3) data and on T . The Taylor expansion of y at time instant tn is:

y(tn + h) = y(tn) +
k∑
j=1

sj
j!
hj +O(hk+1),

with sj = y(i)(tn). Using that y′ = ay + b we get

s1 =anyn + bn,

s2 =(a′n + a2n)yn + anbn + b′n,

s3 =(a′′n + 3ana
′
n + a3n)yn + b′′n + anb

′
n + 2a′nbn + a2nbn,

s4 =(a′′′n + 4a′′nan + 3a
′2
n + 6a′na

2
n + a4n)yn

+ b′′′n + b′′nan + 3a′′nbn + 5a′nanbn + 3a′nb
′
n + a3nbn + a2nb

′
n.

A series expansion in h for αn and for βn is introduced as

αn = αn,0 + αn,1h+ · · ·+ αn,k−1h
k−1 +O(hk),

βn = βn,0 + βn,1h+ · · ·+ βn,k−1h
k−1 +O(hk).
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With the assumption that a(t, y) is either constant or a diagonal matrix (see Remark 2),
a Taylor expansion of the numerical solution yn+1 in (6) can be performed:

yn+1 = y(tn) +
k∑
j=1

rj
j!
hj +O(hk+1).

A direct computation of the rj gives,

r1 =αn,0yn + βn,0,

r2 =(2αn,1 + α2
n,0)yn + 2βn,1 + αn,0βn,0,

r3 =(6αn,2 + α3
n,0 + 6αn,0αn,1)yn + 3αn,1βn,0 + 6βn,2 + α2

n,0βn,0 + 3αn,0βn,1,

r4 =(24αn,0αn,2 + 24αn,3 + 12αn,1α
2
n,0 + 12α2

n,1 + α4
n,0)yn

+ 12αn,2βn,0 + 24βn,3 + 12αn,0βn,2 + 12αn,1βn,1 + 4α2
n,0βn,1 + 8αn,0αn,1βn,0 + α3

n,0βn,0.

The condition to be consistent of order k is: ri = si for 1 ≤ i ≤ k. Lemma 1 consistency
conditions are obtained by solving recursively these relations.

Proof of Proposition 1. It is a direct and simple consequence of the backwards differen-
tiation formula, that we first recall. Consider a real function f , its derivatives can be
approximated as follows (with obvious notations). For the first derivative,

f ′n =
fn − fn−1

h
+O(h),

=
1

2h
(3fn − 4fn−1 + fn−2) +O(h2),

=
1

6h
(11fn − 18fn−1 + 9fn−2 − 2fn−3) +O(h3).

For the second derivative,

f ′′n =
1

h2
(fn − 2fn−1 + fn−2) +O(h),

=
1

h2
(2fn − 5fn−1 + 4fn−2 − fn−3) +O(h2).

For the third derivative,

f ′′′n =
1

h3
(fn − 3fn−1 + 3fn−2 − fn−3) +O(h),

With these formula, the consistency condition at order 3 on αn in lemma 1 becomes,

αn = an +
1

2
a′nh+

1

6
a′′nh

2 +O(h3),

= an +
1

4
(3an − 4an−1 + an−2) +

1

6
(an − 2an−1 + an−2) +O(h3)

=
1

12
(23an − 16an−1 + 5an−2) +O(h3).

We retrieve the definition of αn for the RL3 scheme. The same proof holds for βn and
extends at the other 4.
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2 Stability under perturbation and convergence

We refer to [9, Ch. III-8] for the definitions of convergence and of stability under per-
turbation. For the analysis of time-stepping methods, it is commonly assumed that f in
(2) is uniformly Lipschitz in its second variable y. That hypothesis will be replaced by
assimptions based on the formulation (3). Precisely it will be assumed that,

a(t, y) is bounded, a(t, y), b(t, y) are uniformly Lipschitz in y. (7)

The Lipschitz constants for a and b are denoted La and Lb respectively. The upper bound
on |a(t, y)| is denoted Ma.

Proposition 2. With the assumptions (7) the RLk scheme is stable under perturbation.

Corollary 1. Assume that a(t, y) and b(t, y) are Ck regular and that a(t, y) either is a
diagonal or a constant matrix. In addition assume (7). Then the RLk scheme is convergent
of order k.

Stability under perturbation together with consistency implies convergence, see e.g. [9]
or [6] where the current setting has been detailed. Therefore Corollary 1 is an immediate
consequence of Propositions 1 and 2. Before to prove Proposition 2, definitions are needed.

Equation (2) is considered on E = RN with the max norm | · |. A final time T > 0 is
considered. The space of N × N matrices is equipped with the operator norm ‖ · ‖
associated to | · |. The space Ek is equipped with the max norm |Y |∞ = max1≤i≤k |yi|
with Y = (y1, . . . , yk). The RLk scheme is defined with the mapping

st,h : Y = (y1, . . . , yk) ∈ Ek −→ st,h(Y ) ∈ E,

with
st,h = yk + hϕ1(αt,h(Y )h) (αt,h(Y )yk + βt,h(Y )) ,

in such a way that yn+1 = stn,h(yn−k+1, . . . , yn) in (6). The functions αt,h and βt,h are
given in Definition 1. For instance, αt,h(Y ) for the RL3 scheme reads:

αt,h(Y ) =
1

12
(23a(t, y3)− 16a(t− h, y2) + 5a(t− 2h, y1)), Y = (y1, y2, y3).

A first way to prove the stability under perturbation is to show that st,h is globally
Lipschitz in Y . For this the derivative ∂Y st,h has to be analyzed. As developed in Remark
2, this will imply restrictions on a(t, y): either diagonal or constant. A second way is to
prove the two following stability conditions,

|st,h(Y )− st,h(Z)| ≤ |Y − Z|∞ (1 + Ch(|Y |∞ + 1)) , (8)

|st,h(Y )| ≤ |Y |∞(1 + Ch) + Ch (9)

where C is a constant only depending on the data a, b, y0 in Equation (3) and on the final
time T . These are sufficient conditions for the stability under perturbation, as proved in
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[6].

That second way will be used here, for it is more general and giving rise to less com-
putations. The core of the proof is the following property of the RLk scheme. For
Y = (y1, . . . , yk) ∈ Ek:

st,h(Y ) = z(t+ h) for z′ = αt,h(Y )z + βt,h(Y ), z(t) = yk. (10)

It will be used together with the following Gronwall inequality (see [8, Lemma 196, p.150]).
Suppose that z(t) is a C1 function and that there exist M1, M2 > 0 such that |z′(t)| ≤
M1(t− t0) +M2 for all t ∈ [t0, t0 + h]. Then,

∀ t ∈ [t0, t0 + h], |z(t)| ≤ eM1(t−t0) (|z(t0)|+M2(t− t0)) . (11)

Proof of Proposition 2. In this proof it is always assumed that 0 ≤ h, t ≤ T . We will
denote by Ci a constant only depending on the problem (3) data a and b and on T .

With the assumptions (7) and Definition 1, the function αt,h is uniformly Lipschitz
with a Lipschitz constant Lα. Moreover we have a uniform bound ‖αt,h‖ ≤ Mα. Since
b(t, y) is uniformly Lipschitz in y and since 0 ≤ t ≤ T , there exists a constant Kb so that,

|b(t, y)| ≤ Kb(1 + |y|). (12)

Consider the RL3 scheme,

|βt,h(Y )|∞ ≤
11

3
Kb(1 + |Y |∞) +

h

12
Ma2Kb(1 + |Y |∞)

≤ C1(1 + |Y |∞).

The same inequality holds for the RL2 and RL4 schemes. With (10) we have st,h(Y ) =
z(t+ h) and,

|z′| = |αt,h(Y )z + βt,h(Y )| ≤Mα|z|+ C1(1 + |Y |∞).

The initial state is |z(t)| = |yk| ≤ |Y |∞. With the Gronwall inequality (11) we obtain for
t ≤ τ ≤ t+ h,

|z(τ)| ≤ eMαh (|Y |∞ + hC1(1 + |Y |∞))

≤ eMαh (|Y |∞(1 + C1h) + C1h)

≤ |Y |∞(1 + C2h) + C2h, (13)

by bounding the exponential with an affine function for 0 ≤ h ≤ T . This gives the
stability condition (9) for τ = t+ h.

For the RL2 scheme βt,h is uniformly Lipschitz.
For the RL3 scheme, consider Y = (y1, y2, y3) and Z = (z1, z2, z3) in E3. We have,

|βt,h(Y )− βt,h(Z)|∞ ≤
11

3
Lb|Y − Z|∞ +

h

12

(
|a(t, y3)b(t− h, y2)− a(t, z3)b(t− h, z2)|

+ |a(t− h, y2)b(t, y3)− a(t− h, z2)b(t, z3)|
)
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Let us bound the Lipschitz constant for a function of the type F (Y ) = a(ξ, y2)b(τ, y3) for
0 ≤ τ, ξ ≤ T .

|F (Y )− F (Z)| = |a(ξ, y3) (b(τ, y2)− b(τ, z2)) + (a(ξ, y3)− a(ξ, z3)) b(τ, z2)|
≤MaLb|Y − Z|∞ + La|Y − Z|∞|b(τ, z2)|.

With (12), this yields for 0 ≤ τ, ξ ≤ T and for Y, Z ∈ Ek,

|F (Y )− F (Z)| ≤ C3|Y − Z|∞(1 + |Z|∞),

As a result,

|βt,h(Y )− βt,h(Z)|∞ ≤ C4|Y − Z|∞ (1 + |Z|∞)

The same inequality holds for the RL4 scheme.
Finally consider Y1, Y2 ∈ Ek and denote αi = αt,h(Yi), βi = βt,h(Yi). With the

property (10), st,h(Y1)− st,h(Y2) = (z1 − z2)(t+ h) where zi is the solution to,

z′i = αizi + βi, zi(t) = Yi,k.

On the first hand, with the inequality (13), we have |z2(τ)| ≤ C5(1 + |Y2|∞) for t ≤ τ ≤
t+ h.
On the second hand, on [t, t+ h],

|(z1 − z2)′| ≤ |α1||z1 − z2|+ |α1 − α2||z2|+ |β1 − β2|
≤Mα|z1 − z2|+ Lα|Y1 − Y2|∞C5(1 + |Y2|∞) + C4|Y1 − Y2|∞(1 + |Y2|∞)

≤Mα|z1 − z2|+ C6|Y1 − Y2|∞(1 + |Y2|∞)

The initial condition is |(z1 − z2)(t)| = |Y1,k − Y2,k| ≤ |Y1 − Y2|∞. Then the Gronwall
inequality (11) yields,

|(z1 − z2)(t+ h)| ≤ eMαh (|Y1 − Y2|∞ + hC6|Y1 − Y2|∞(1 + |Y2|∞))

≤ eMαh |Y1 − Y2|∞ (1 + C6h(1 + |Y2|∞)) .

This last inequality implies the stability condition (8), again by bounding the exponential
with an affine function for 0 ≤ h ≤ T .

3 Dahlquist stability

For the general definition concerning the Dahlquist stability we refer to [10]. The back-
ground for the Dahlquist stability of exponential integrators with a general varying sta-
bilizer a(t, y) has been developed in [6], following the ideas of Perego and Veneziani [24].
Problem (2) is considered with the Dahlquist test function f(t, y) = λy that is decomposed
in (3) as f(t, y) = a(t, y)y + b(t, y) with,

a(t, y) = θλ, b(t, y) = λ(1− θ)y.
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Figure 1: Stability domain Dθ for the RL2 scheme for various values of θ. The stability
domain for the particular case θ = 0 (no stabilization) is in grey, corresponding to the
Adams-Bashforth scheme of order 2.

When θ = 1, the method is exact and thus A-stable.
When θ ' 1, the exact linear part of f(t, y) in Equation (2) is well approximated by
a(t, y). The stability domain depends on θ. It is denoted Dθ. At a fixed value of θ, it
is given by the modulus of a stability function, with the same definition as for multistep
methods, see e.g. [10]. That stability function has been numerically computed pointwise
on a grid inside the complex plane C.

Order 2 Rush-Larsen

The stability domain for the RL2 scheme has been analyzed in [24]. The situation for this
scheme is interesting and we reproduced the results on Figure 1.

– If 0 ≤ θ < 2/3 the stability domain Dθ is bounded. Its size increases with θ, starting
from the Adams-Bashforth scheme of order 2 stability domain when no stabilization
occurs (θ = 0).

– If θ = 2/3, Dθ contains the negative real axis: the method is A(0) stable. The
domain boundary is asymptotically parallel to the real axis so that the method is
not A(α) stable.

– If θ > 2/3, the stability domain is located around the y-axis: the method is A(α)
stable. The angle α increases with θ, it goes to π/2 as θ → 1−.
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Figure 2: Stability domain Dθ for the RL3 scheme. In the particular case θ = 0 (no
stabilization, corresponding to the Adams-Bashforth scheme of order 3), the stability
domain crosses the x-axis at x ' −0.54 (dark blue arrow).

Rush-Larsen of order 3 and 4

The situation is different for the Rush-Larsen methods of order 3 and 4. The stability
domains Dθ for various values of θ have been numerically computed and depicted on
Figures 2 and 3.
Excepted for the case θ = 1, the stability domains are always bounded: the schemes are
not A-stable. However, this stability domain for values of θ ' 1 are much larger than
the Dθ|θ=0 stability domain when no stabilization occurs (corresponding to the Adams-
Bashforth scheme of order 3 or 4). For the order 3 case, the stability domain for θ = 0.85
is 25 times wider on the left than Dθ|θ=0, and for θ = 1.05 it is 400 times wider. For the
order 4 case, Dθ|θ=1.05 is almost 300 times wider on the left than Dθ|θ=0.

4 Numerical results

In this section are presented numerical experiments in order to investigate the perfor-
mances of the RLk method. It will be compared to the exponential integrator of Adams
type of order k, shortly denoted EABk, defined by Equation (4). The EABk schemes have
been numerically studied in [6] as compared to several classical methods. It had been
shown to be a good candidate for the resolution of the stiff membrane equation in cardiac
electrophysiology.





Rush-Larsen time-stepping methods of high order

0

10

20

30

40

50

-90 -80 -70 -60 -50 -40 -30 -20 -10 0

←
-0.3

←
-2.3

←
-5

.5

←
-2

6.
0

←
-8

6.
5

←
-4

0.
1

θ = 0.85

θ = 0.9

θ = 0.95

θ = 1.05

θ = 1.1

Figure 3: Stability domain Dθ for the RL4 scheme. In the particular case θ = 0 (no
stabilization, corresponding to the Adams-Bashforth scheme of order 3), the stability
domain crosses the x-axis at x ' −0.3 (dark blue arrow).

-100

-80

-60

-40

-20

0

20

40

0 100 200 300 400

P
o
te

n
ti

al
(m

V
)

Time (ms)

Transmembrane potential

v

-200

-100

0

0 100 200 300 400

C
u

rr
en

t
(A

/F
/c

m
2
)

Time (ms)

Fast inward sodium current

INa

Figure 4: TNNP model illustration. Left, cellular action-potential: starting at a (negative)
rest value, the membrane potential v(t) has a stiff depolarization followed by a plateau
and a repolarization to the rest value. Right, depolarization is induced by an ionic sodium
current INa, with obvious large stiffness.

4.1 The membrane equation

We consider a class of models in cardiac electrophysiology. As illustrated on Figure 4,
these models display a stiff behaviour characterized by the presence of heterogeneous
time scales. The models used to simulate the electrical activity of cardiac cells are ODE
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systems of the form, see [17, 1, 21, 27]:

dwi
dt

=
w∞,i(v)− wi

τi(v)
,

dc

dt
= g(w, c, v), (14)

dv

dt
= −Iion(w, c, v) + Ist(t),

where w = (w1, . . . , wp) ∈ Rp is the vector of the gating variables, c ∈ Rq is a vector of
ionic concentrations or other state variables, and v ∈ R is the transmembrane-potential.
The four functions w∞,i(v), τi(v), g(w, c, v) and Iion(w, c, v) are given reaction terms.
The function Ist(t) is a source term. It represents a stimulation current. Problem (14)
reformulates into problem (3) form with:

a(t, y) =

−1/τ(v) 0 0
0 0 0
0 0 0

 , b(t, y) =

 w∞(v)/τ(v)
g(y)

−Iion(y) + Ist(t)

 , (15)

for y = (w, c, v) ∈ RN (N = p+ q+ 1) and where −1/τ(v) the p× p diagonal matrix with
diagonal entries (−1/τi(v))i=1...p. The resulting matrix a(t, y) is diagonal.
We will consider two such models: the BR model (Beeler and Reuter [1]) and the TNNP
model [27] for human cardiac cells.

4.2 Convergence

No theoretical solution are available for the chosen application. A reference solution
yref for a reference time step href is computed with the Runge-Kutta scheme of order
4 to analyze the convergence properties of the RLk scheme. Numerical solutions y are
computed to yref for coarsest time steps h = 2phref for increasing p.
Any numerical solution y consists in successive values yn at the time instants tn = nh. On
every interval (t3n, t3n+3) the polynomial y of degree at most 3 so that y(t3n+i) = y3n+i,
i = 0 . . . 4 is constructed. On (0, T ), y is continuous and piecewise polynomial of degree 3.
Its values at the reference time instants nhref are computed. This provides a projection
P (y) of the numerical solution y on the reference grid. Then P (y) can be compared with
the reference solution yref . The numerical error is defined by,

e(h) =
max |vref − P (v)|

max |vref |
, (16)

where the potential v is the last and stiffest component of y in Equation (14). The
numerical convergence graphs for the BR model are plotted on Figure 5. All the schemes
display the expected asymptotic behaviour e(h) = O(hk) as h→ 0 in Corollary 1.

4.3 Stability

In [26] has been evaluated the stiffness of the BR and TNNP models along one cellular
electrical cycle (as depicted on Figure 4). The largest negative real part of the eigenvalues
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Figure 5: Relative error e(h) (definition (16)) as a function of the time step h for the
RLk schemes, for k = 2 to 4 and in Log/Log scale.

of the Jacobian matrix during this cycle is of−1170 and−82 for the TNNP and BR models
respectively. The TNNP model thus is 15 times stiffer than the BR model ( 15 ' 1170/82).
Robustness to stiffness for the RLk scheme is evaluated by comparing the critical time
step for these two models.The critical time step ∆t0 is defined as the largest time step
such that the numerical simulation runs without overflow for h < ∆t0. The results are
presented in Table 1.

Table 1: Critical time step ∆t0 for the RLk and EABk schemes
method RL2 RL3 RL4 EAB2 EAB3 EAB4

BR 0.323 0.200 0.149 0.424 0.203 0.123
TNNP 0.120 0.148 0.111 0.233 0.108 7.56 10−2

An excellent robustness to stiffness can be observed. The critical time step is divided by
2.7, 2.0 and 1.3 for k = 2, 3 and 4 respectively. A comparison with the EABk schemes
shows that the two scheme display a robustness to stiffness of same order.
For a method that is not A(α) stable, it is expected for the critical time step to be divided
by 15 in case of an increase of stiffness of magnitude 15. This is not observed here, though
the RLk scheme is not A(α) stable. The reason for this is that the ODE system (14) is
only partially stabilized by (15). Loss of stability is induced by the non-stabilized part,
whose eigenvalues are less modified between the BR and the TNNP models.

4.4 Accuracy

The RLk scheme is here compared to the EABk scheme in terms of accuracy. This
comparison is done by computing the relative error e(h) in Equation (16). The two BR
and TNNP models are considered. We recall than the TNNP model is stiffer by a factor
15. The results are collected in Tables 2 and 3.
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Table 2: Relative error e(h) (eq. (16)) for the BR model.
h RL2 RL3 RL4 EAB2 EAB3 EAB4

0.2 0.251 0.147 - 0.284 0.516 -
0.1 0.107 4.07 10−2 5.86 10−2 9.26 10−2 9.17 10−2 0.119
0.05 3.35 10−2 6.34 10−3 4.58 10−3 2.31 10−2 1.09 10−2 8.96 10−3

0.025 8.88 10−3 7.57 10−4 2.61 10−4 5.39 10−3 1.17 10−3 4.33 10−4

Table 3: Relative error e(h) (eq. (16)) for the TNNP model.
h RL2 RL3 RL4 EAB2 EAB3 EAB4

0.1 0.177 0.305 0.421 0.351 0.530 -
0.05 7.39 10−2 4.54 10−2 4.61 10−2 9.01 10−2 5.59 10−2 8.93 10−2

0.025 2.21 10−2 6.53 10−3 5.96 10−3 2.14 10−2 7.34 10−3 8.34 10−3

0.0125 5.75 10−3 8.05 10−4 3.21 10−4 5.11 10−3 7.62 10−4 3.70 10−4

For the RL2 and the EAB2 schemes, the accuracies are very close, the EAB2 scheme
being slightly more accurate for the BR model. For the orders 3 and 4, a non negligible
difference is observed between the RL and EAB schemes. The RL scheme is more accurate
at large time steps. For smaller time steps, accuracies are almost the same. This means
that RL and EAB schemes are equivalent in terms of accuracy considering the asymptotic
convergence region, but outside this region, RL scheme is more precise.

Conclusion

We introduced in this paper two new ODE solvers that we named Rush-Larsen of order
3 and 4. They are explicit multistep exponential integrators. Their general Definition (6)
is very simple inducing an easy implementation. We provided a convergence and stability
under perturbation analysis of these two schemes. We also performed their Dahlquist
stability analysis: they are not A(0) stable but display a very large stability domain for
sufficiently precise stabilization. The numerical properties of the schemes are analyzed for
a complex and realistic stiff application. The RLk schemes are as stable as exponential
integrators of Adams type, allowing simulations at large time step. On the presented
example, the RLk schemes moreover are more accurate for k = 3 and 4 when considering
large time steps. The are shown to be robust to stiffness both in terms of stability and of
accuracy.
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