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Rush Larsen time stepping methods of high order

for stiff problems in cardiac electrophysiology

Y. COUDIERE, C. DOUANLA LONTSI, AND C. PIERRE

ABSTRACT. The development of efficient solvers in cardiac electrophysiology re-
quires high order (semi) explicit and stable time stepping methods. In this paper
are introduced two new exponential integrators of orders 3 and 4. They generalize
the order 2 Rush Larsen scheme derived by Perego and Veneziani [24] in 2009.
They have been named Rush Larsen of order k, shortly RLy. The RLj schemes
are explicit exponential multistep integrators. They display a simple general for-
mulation and an easy implementation.

The RLj, schemes are shown to be stable under perturbation (or 0-stable) and con-
vergent of order k. Their Dahlquist stability analysis is performed. They have a
very large stability domain provided that the stabilizer associated with the method
captures well enough the stiff modes of the problem. The RLj; method is numeri-
cally studied as applied to the membrane equation in cardiac electrophysiology.

1. INTRODUCTION

The monodomain model in cardiac electrophysiology [3, 4, [5], formulates as a
coupling between an evolution reaction diffusion equation and an ODE system. On
the heart domain € and on the time interval [0, T, it reads:

0 W~ Aot Aww) + s t), D= po,w),

where A is a diffusion operator. The first unknown v : € x [0,7] — R is the
cellular transmembrane potential. The second unknown w : Qx [0, 7] — RY gathers
variables describing the cellular membrane state: it incorporates ionic concentrations
and gating variables. The source term s(x,t) allows to apply stimulation currents
to the system. The reaction terms f; and fy are cell membrane models for ionic
currents and voltage, that are named ionic models. Ionic models originally have
been developed by Hodgkin and Huxley [I7] in 1952 for the squid axon. Several
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ionic models have been especially designed for cardiac cells, such as the Beeler Reuter
model [I], the Luo and Rudy models [21} 22] or the TNNP model [27].

Numerical simulations in cardiac electrophysiology face two difficulties. The first one
is the stiffness displayed by the solutions of . This is commonly coped with by
resorting to very fine space and time grids, associated with high computational costs.
Stiffness is due to the coexistence of fast and slow variables. Fast variables in ionic
models are described by equations in the ODE system in of the form,

(2) 3811;@' = foi(v,w) = a;(v)w; + b;(v).

This feature of ionic models will be exploited here. The rate of variations a;(v) will
be inserted in the numerical method in order to allow stable computations at large
time step.

The second difficulty is the nature of the reaction terms f; and f; in . It is non
linear and the operation (v, w) — fi(v,w) has a significant cost. For example, this
operation for the TNNP model [27] involves the computation of 50 exponentials.
These operations need to be performed at every node of the grid. They represent
a large computational load. Their total amount needs to be maintained as low as
possible. Fully implicit time stepping methods (that require a non linear solver)
therefore are avoided.

Our objective for the numerical resolution of is to go towards high order meth-
ods, in order to reduce the grid size. A high order time stepping method is required
that fulfills two conditions. It must have strong stability properties. It has to be
explicit for the reaction terms. To this aim, we will focus in this paper on the time
integration of stiff ODE systems,

dy
for which a reformulation of the following kind is available,
dy
(4) =a(t,y)y +bt,y), y(0) = .

dt

The linear part a(t,y) will be referred to as the stabilizer. Exponential integrators
fulfill these two conditions. We refer to [23, 14], [12] for general reviews. They have
been widely studied for the quasilinear equations, 0,y = Ay + b(t,y), see e.g. [13] [7,
111, 16l 28] 20]. The basic idea is to use the exact solution of the linearized equation in
order to stabilize the numerical scheme. In general this implies to compute a matrix
exponential. This is the supplementary cost associated to exponential integrators.

The targeted problem displays a non constant linear part a(¢,y). Exponential
integrators have been less studied in that case. Exponential integrators of Adams
type for a non constant linear part have been first considered by Lee and Preiser
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[19] in 1978 and by Chu [2] in 1983. Recently, Ostermann et al [I5] 18] developed
and analyzed the linearized exponential Adams method. The original problem is
reformulated after each time step as,

Y =yt ety Jo= 0w, ealt) = F(t) ~ Ty
The Jacobian matrix J, is used as a stabilizer. This requires the computation of
matrix exponentials. Moreover, when the fast variables of the system are known,
stabilization can be performed only on these variables. Considering the full Jacobian
as the stabilizer implies unnecessary computational efforts. To avoid these problems,
an alternative is to set the stabilizer as a part or as an approximation of the Jacobian.
This has been analyzed in [29], [25] and [6] for exponential Rosenbrock, exponential
Runge Kutta and exponential Adams type methods respectively. For exponential
Adams type methods, equation (4)) is reformulated after each time step as,

dy

% = any + Cn(t: y)a ap = a(tna yn)» Cn(ta y) = f(ta y) —any.

The resulting scheme is (see details in [15], [6]),

(5) Ynt1 = Yn + R [01(anh) (@nyn +71) + @2(anh)ye + ...+ oranh) V] ,

where ~; are the coefficients of the Lagrange interpolation polynomial of ¢, (¢,y) (in
a classical k-step setting) and where the functions ¢; are given by,

(6) po(2) = €, ppa(s) = L
Independently, Perego and Veneziani [24] presented in 2009 a new exponential inte-

grator of order 2, of a different nature:

(7) Yn+1 = Yn + h(pl (Oénh> (anyn + ﬁn) :

The two constants «,, and 3,, are updated after each time step. They are defined with
a, = 3/2a,—1/2a,_1 and S, = 3/2b, —1/2b,_ with a; = a(t;,y;) and b; = b(t;,y;).
The numerical solution y,,1 in (7)) satisfies,

(®) Yni1 = 2(tpp1) With 2" =onz+ 8o, 2(tn) = Yn.

The ODE involves two constant terms only. It is interesting to obtain the order
2 when approximating the original ODE on [tn, t,+1] with that simple ODE (§)).

In this paper we will study the general formulation . [t results in schemes with
a very simple definition. It is in particular simpler than the exponential Adams
integrators (5} We will show that such schemes also exist at the orders 3 and 4,
for an explicit definition of the two constants «, and (,. These schemes will be
referred to as Rush Larsen schemes of order £, shortly denoted RL;. They will be
shown to be stable under perturbation (or O-stable) and convergent of order k. The
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Dahlquist stability analysis for the RL; schemes is also performed. It is a practical
tool that allows to dimension the time step h with respect to the variations of f(¢,y)
in problem (B)), see e.g. [10]. When considering varying stabilizers, the stability
domain depends on how f(t,y)y is decomposed in equation , following [24]. The
stability domains are numerically computed and shown to be much larger than in
the absence of stabilization (i.e. when a(t,y) = 0) provided that a(t, y) captures well
enough the variations of f(¢,y). The performances of the RL; method are evaluated
for the membrane equation in cardiac electrophysiology. They are compared with the
exponential Adams integrators . The two methods have a very similar robustness
to stiffness. They both allow stable computations on coarse time grids. At lareg
time step, the RL3 and RL4 schemes are slightly more accurate, meanwhile with a
simpler implementation.

The paper is organized as follows. The RL; schemes are derived in section [2| and
their numerical analysis is made in sections [2 and |3 The Dahlquist stability analysis
is in section [} The numerical results are presented in section The paper ends
with the conclusion section [6l

In the sequel h denotes the time step and t,, = nh the associated time instants.

2. RL; SCHEME DEFINITION AND CONSISTENCY

Definition 1. The RLj scheme is an explicit k-step method. It is defined with the
formulation for the following setting of «,, and of f,:

3 1 3 1
RL2 : Qp = §an - §an—17 ﬁn - ibn - §bn—17
1
RLs : o, = 5(23% — 16a,_1 + ba,_2),
5—1(2319 16b,,_1 + 5b )+h(b by)
n — 12 n n—1 n—2 12 pOn—1 Ap—19y).
1
RL4 . Qy = ﬂ(55&n — 5961”71 + 376171,2 — 9an,3),
1
B = 57 (530, — 50b, 1 + 37Tb, 5 — 9b,,5)
h
+ E(an(gbn—l - bn—?) - (3(In_1 - an—Z)bn)a

where a; = a(t;,y;) and b; = b(t;,y;).

A solution y(t) of equation (4) on a time interval [0,7] is fixed. It is recalled that
the scheme is consistent of order k if:

- being given a time step h and a time instant kh <t, <T —h ,
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- being given the numerical approximation y,.1 in computed with y,,_; =
Y(tp—;) for j=0...k—1,

we have |y,11 —y(t, +h)| < Ch**1 for a constant C' only depending on the problem
data a, b, yo and on T

Proposition 1. Assume that the functions a(t,y) and b(t,y) in problem are C*
reqular. Moreover assume that a(t,y) either is a diagonal matriz or a constant linear
operator.

Then the RL; scheme is consistent of order k.

Remark 1. In the case of a constant linear part a(t,y) = A, we always have «,, = A.
The definition of (3, also simplifies at the order 3 and 4,

1 h
RLg . Bn - E(2Sbn - ].6bn_1 + 5bn—2) - EA(bn - bn—l)'
1 h
RL4 . Bn = ﬂ(55bn — 59bn—1 + 37bn—2 — 9bn—3) - EA(2bn — Sbn—l + bn_g).

Remark 2. The assumption ‘“a(t,y) either is a diagonal matriz or a constant linear
operator” in proposition |l|has the following origin. To analyze the scheme consistency
we will derive a Taylor expansion in h of . That series is computed with the help
of Taylor expansions in h for a,, and (,.

Assume the simple form «,, = o+ hay. We need to expand ¢;(a,h) as a series in h.
The function ¢; is analytic on C. However in the matrix case, the equality, ¢ (M +
N)=p1(M)+¢@(M)N+.. .+g0§l)(M)Ni/z'!—|—. .. holds if M and N are commutative
matrices. Therefore one cannot expand ¢;(a,h) without the assumptions that ag
and «; are commutative.

That difficulty vanishes if a(t,y) is constant or scalar or, equivalently, a diagonal
matrix.

The proof of proposition (1| is based on the following result.
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Lemma 2. With the same assumption as in propOSitiOn the scheme (@ 18 CoOnsis-
tent of order k if:

n

1 1

k=2: a,=a,+ §a’ h+O(h*), B.=b,+ 5b;h+ O(h?).
1 1

k=3: a,=a,+ Eaﬁlh - gaghQ + O(R?),
1 1

Bn = by + 5b;h + E(a;bn —aybl)h? + O(h?).
— 4 - — 1 / 1 "2 1 "y 3 4
k=4: a—an+2anh—|—6anh —|—24anh + O(h%),

1 1

1
= by + b b+ —
= bt 3buht 35

1
(alby, — aybl,)h* + (ﬂbg’ + ﬂ(agbn - anb;;)) h? 4+ O(Rh*).

" n

Where a;,, all, al and b, b, b denote the successive derivatives at time t,, of the

functions t — a(t,y(t)) and t — b(t,y(t)).

Proof of lemma[3 By assumption the functions a and b in problem are C* reg-
ular. Therefore a solution y of problem on a closed time interval [0, 7] is C**1
regular. Its derivatives up to order k+1 can be bounded by constants only depending
on the problem data and on T'. The Taylor expansion of y at time instant ¢, is,

k
y(ta +h) = y(t) + > %hﬂ‘ + O,
j=1 "

with s; = y((t,). Using that y' = ay + b we get,
51 =ApYpn + bn,
sy =(al, + a2)yn + apb, + b,
sy =(al + 3anal, + a2y, + b + a,b, + 2a.b, + a’b,,
sy =(a” + 4a’ay, + 3a.? + 6a.,a> + at)y,
+ 0" 4+ V'a, + 3a'b, + 5al,ayby, + 3alb, +ab, + a3l

A series expansion in h for «,, and for £, is formally introduced,

U = Qo+ Qpih+ -+ B+ O(RY),
6n = /Bn,O + Bn,lh + 4 6n,k71hk71 + O(hk)
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With the assumption that a(t,y) is either constant or a diagonal matrix (see remark
2)), a Taylor expansion of the numerical solution 3, in can be performed,

Ynt1 = y(tn) + Z ]h] +O(R*H).
=1
A direct computation of the r; gives,
1 =0n,0Yn + Bn,o;
1o =(200m,1 4 5 ) Yn + 28,1 + O 0Bn0;
r3 =(60u2 + Oéi,o + 600, 000.1)Yn + 301800 + 6802 + 05721,0571,0 + 300n.08n.1,

ry =240y, 00 2 + 2400, 3 + 1204n71a,2170 + 120472%1 + aio)yn

+ 120511,2571,0 + 245%3 + 1204n,0ﬁn,2 + 120571,1571,1 + 4ai,oﬁn,1 + 8Q’n,0an,1ﬁn,0 + aiyoﬁn,o-

The condition to be consistent of order k is: r; = s; for 1 < ¢ < k. Lemma
consistency conditions are obtained by solving recursively these relations. O

Proof of proposition[]] It is a direct and simple consequence of the backwards differ-
entiation formula, that we first recall. Consider a real function f, its derivatives can
be approximated as follows (with obvious notations). For the first derivative,

/ fn fn 1
fo==—"—+0M),
- % (3fn — 4fn-1+ fu2) + O(h?),
1

= o (Wfo = 18fu1 +9fn2 = 2fns) + O(h?).

For the second derivative,
" 1
fn = ﬁ (fn - 2fn—1 + fn—?) + O(h')a
1
=13 (2fn = 5 fn1 + 4fn—a — faz) + O(h?).

For the third derivative,

P = (fo = 8fas 4+ 3f0 s — fus) + O(h),
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With these formula, the consistency condition at order 3 on «, in lemma [2] be-
comes,

1 1
Qy = ap + Ea%h + —a’'h? + O(h?),

6 n
1 1
= ap + Z (B(In — 4CLn_1 + CLn_Q) + 6 (an — 2an_1 + (ln_2> + O(hg)
1
= E(23an —16a,_1 + 5a,_2) + O(h?).

We retrieve the definition of «,, for the RL3 scheme. The same holds for (3, and the
RLs5 scheme then is consistent order 3.
The proof is the same at the other oreders. O

3. STABILITY UNDER PERTURBATION AND CONVERGENCE

We refer to [0, Ch. III-8] for the definitions of convergence and of stability under
perturbation (or O-stability). For the analysis of ODE numerical integrators, it is
commonly assumed that f in (3) is uniformly Lipschitz in its second variable y. That
hypothesis will be replaced by assimptions based on the formulation (4)). Precisely
it will be assumed that,

9) a(t,y) is bounded, a(t,y), b(t,y) are uniformly Lipschitz in y.

The Lipschitz constants for a and b are denoted L, and L, respectively. The upper
bound on |a(t,y)| is denoted M,.

Proposition 3. With the assumptions (@ the RLy scheme is stable under pertur-
bation.

Corollary 4. Assume that a(t,y) and b(t,y) are C* regular and that a(t,y) either
1s a diagonal or a constant matrix. In addition assume (@ Then the RLy scheme
1s convergent of order k.

Stability under perturbation together with consistency implies convergence, see
e.g. [9] or [6] where the current setting has been detailed. Therefore corollary {4 is an
immediate consequence of the propositions [1] and [3} Before to prove the proposition
[3 definitions are needed.

Equation is considered on F = R" with the max norm |-|. A final time 7" > 0 is
considered. The space of N x N matrices is equipped with the operator norm || - ||
associated to |-|. The space E¥ is equipped with the max norm |Y |, = maxj<i<, ;]
with Y = (y1,.. ., yr)-

The RLj scheme is defined with the mapping,

Sth Y = (yl, . 7yl~c) € Ek — St7h(Y) c E,
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with,
Sen =Yk + ho1(aan(Y)R) (aen(Y)yr + Ben(Y)),

in such a way that yn,41 = s, n(Un—k+1,---,¥n) in (7). The functions ay; and G,
are given in definition [1} For instance, oy ;(Y') for the RL3 scheme reads,

1
at,h(Y) = 5(2361(75, Y3) — 16a(t — h,ys) + 5a(t — 2h, yl))> Y = (y1, 92, y3).

A first way to prove the stability under perturbation is to show that s, j is globally
Lipschitz in Y. For this the derivative dy s, has to be analyzed. As developed in
the remark [2| this will imply restrictions on a(t,y): either diagonal or constant.

A second way is to prove the two following stability conditions,

(10) 5en(Y) = sen(Z2)] <Y = Z|oo (1 + CR([Y ] + 1)),
(11) I5ea(Y)] < [Y]oo(1+ Ch) + Ch

where C is a constant only depending on the data a, b, 3y in equation (4)) and on the
final time 7. These are sufficient conditions for the stability under perturbation, as
proved in [6].

That second way will be used here, for it is more general and giving rise to less
computations. The core of the proof is the following property of the RLj scheme.
For Y = (yi,...,yx) € E*:

(12) ssh(Y)=z(t+h) for 2= p,(Y)z+ Ben(Y), 2(t) =y

It will be used together with the following Gronwall inequality (see [8, Lemma 196,
p.150]). Suppose that z(¢) is a C'! function and that there exist M;, My > 0 such
that |2/(t)| < M;(t —to) + M, for all t € [tg,to + h]. Then,

(13) Vi€ [toto+h], [2(t)] <M (|2(t)| + Ma(t — to)) .

Proof of proposition[3. In this proof it is always assumed that 0 < h,t < T. We will
denote by C; a constant only depending on the problem data @ and b and on T

With the assumptions @D and the definition , the function oy, is uniformly
Lipschitz with a Lipschitz constant L,. Moreover we have a uniform bound ||y 5| <
M,,. Since b(t,y) is uniformly Lipschitz in y and since 0 < t < T, there exists a
constant K, so that,

(14) b(t,y)| < Kp(1 + |y]).
Consider the RLj3 scheme,
11

h
1Ben(Y)|oo < ?Kb<1 + 1Y) + 1_2Ma2Kb(1 + 1Y)

< Ci(1+ Y o)-
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The same inequality holds for the RL, and RL4 schemes. With we have
sen(Y) = z(t + h) and,

2] = laen(Y)z + Ben(Y)] < Malz[ + C1(1 4 [Y]so).

The initial state is |2(t)| = |yk| < |Y|oo. With the Gronwall inequality we obtain
fort <7 <t+h,

[2(7)] < ™" (Yoo + RO (1 + Y |))
< ! ([Y|wo(1 4+ C1h) + Cih)
(15) < |Yoo(1 4+ Coh) + Csh,

by bounding the exponential with an affine function for 0 < h < 7T'. This gives the
stability condition forr=t+h.

For the RLy scheme 3, is uniformly Lipschitz.
For the RL3z scheme, consider Y = (y1,¥2,y3) and Z = (21, 22, 23) in E3. We have,

1Ben(Y) = Ben(Z)]oe < %Lb\y — Z|oo + %( la(t, y3)b(t — h,y2) — a(t, z3)b(t — h, 22)|
+ |a(t — h,y2)b(t,y3) — a(t — h, z2)b(t, 23)| )

Let us bound the Lipschitz constant for a function of the type F\(Y') = a(&, y2)b(7, y3)
for 0 < 7,6 <T.

F(Y) = F(Z)] = a(&, 35) (b(7, g2) — b(T. ) + (@&, 35) — a(&, 2)) (T, 2)|
< MyLyJY = Z]ao + La]Y = Z]aclb(7, 25)].

With , this yields for 0 < 7,6 < T and for Y, Z € E¥,
[F(Y) = F(Z)] < CslY = Z]oo(1 + | Z]),
As a result,
1Bin(Y) = Ben(Z)oo < CulY = Z]oe (1 +1Z]0)

The same inequality holds for the RL, scheme.
Finally consider Y;, Y, € E* and denote a; = a4 (Yi), Bi = Ben(Yi). With the
property , Sen(Y1) — sen(Ya) = (21 — 22)(t + h) where z; is the solution to,

z =z + B, zi(t) =Yg

On the first hand, with the inequality (15), we have |25(7)| < Cs(1 + |Ya|eo) for
t<7t<t+h.
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On the second hand, on [t,t + A,

(21 = 22)'] < Janl21 = 22| + [on — aal 2] + |51 — B2
< Moz = 25) + La[Y1 = Yaloo C5(1 + [Vaoo) + Ca|Y1 = Yafoo (1 4 [Y2] o)
< Malzr = 2 + C[Y1 = Yaloo (1 4 [Y2|0)
The initial condition is |(z1 — 22)(t)| = |Y14 — Yoi| < |Y1 — Ya|oo. Then the Gronwall
inequality yields,
(21— 22)(t + B)] < (%5 = Yaloo + ACo[Ys — Valuol1 + [¥5lo0))
< e Yy = Yafoo (14 Coh(1 + [Valo)) -

This last inequality implies the stability condition ([10)), again by bounding the ex-
ponential with an affine function for 0 < h < T. O

4. DAHLQUIST STABILITY

8 b L

7k 0 =05

6L 0=2/3 ——
0 =07

51 0=5/6 ——

4L =2 S

3+

2 1

1 F

0 1 1 1 1

-6 -5 -4 -3 -2 -1 0 1

FI1GURE 1. Stability domain Dy for the RLy scheme for various values
of 8. The stability domain for the particular case § = 0 (no stabiliza-
tion) is in grey, corresponding to the Adams Bashforth scheme of order
2.

For the general definition concerning the Dahlquist stability we refer to [10]. The
background for the Dahlquist stability of exponential integrators with a general
varying stabilizer a(t,y) has been developed in [6], following the ideas of Perego
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1o [ 6 =0.85
0=0.9
120 + 9 =0.95
100 0 =1.05
=11
80 +
60
40 +
20 +
O 1 1 7\
-250 -200 -150 -100 -50 , 0
AN
Sy
'y
FI1GURE 2. Stability domain Dy for the RL3 scheme. In the particular
case # = 0 (no stabilization, corresponding to the Adams Bashforth
scheme of order 3), the stability domain crosses the z-axis at x ~ —0.54
(dark blue arrow).
50 0 =0.85
0=0.9
40 r 0 =0.95
0 =1.05
30 + =11
20
R 3 0
xR = R
O 1 L 1 1 1 1 1 1 1
-90 -80 -70 -60 -50 -40 -30 -20 -10 [\,77\ ,T()
&

F1GURE 3. Stability domain Dy for the RL4 scheme. In the particular
case # = 0 (no stabilization, corresponding to the Adams Bashforth
scheme of order 3), the stability domain crosses the z-axis at © ~ —0.3
(dark blue arrow).
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and Veneziani [24]. Problem is considered with the Dahlquist test function
f(t,y) = Ay that is decomposed in () as f(t,y) = a(t,y)y + b(t,y) with,

a(t,y) =0X, b(t,y) = A1 —0)y.

When 0 ~ 1, the exact linear part of f(¢,y) in equation (3] is well approximated
by a(t,y). The stability domain depends on 6. It is denoted Dy. At a fixed value
of 0, it is given by the modulus of a stability function, with the same definition as
for multistep methods, see e.g. [10]. That stability function has been numerically
computed pointwise on a grid inside the complex plane C.

Order 2 Rush Larsen. The stability domain for the RLy scheme has been analyzed
in [24]. The situation for this scheme is interesting and we reproduced the results on
figure [1]
— If 0 < 6 < 2/3 the stability domain Dy is bounded. Its size increases with 6,
starting from the Adams Bashforth scheme of order 2 stability domain when
no stabilization occurs (6§ = 0).
—If § = 2/3, Dy contains the negative real axis: the method is A(0) stable.
The domain boundary is asymptotically parallel to the real axis so that the
method is not A(«) stable.
— If > 2/3, the stability domain is located around the y-axis: the method is
A(a) stable. The angle « increases with 6, it goes to /2 as § — 1~

Rush Larsen of order 3 and 4. The situation is different for the Rush Larsen meth-
ods of order 3 and 4. The stability domains Dy for various values of # have been
numerically computed and depicted on figures [2] and

Excepted for the case 8 = 1, the stability domains are always bounded: the schemes
are not A-stable. However, this stability domain, for values of # ~ 1 are much larger
than the Dgjg—o stability domain when no stabilization occurs ( corresponding to the
Adams Bashforth scheme of order 3 or 4). For the order 3 case, the stability domain
for = 0.85 is 25 times wider on the left than Dgg—g, and for 6 = 1.05 it is 400
times wider. For the order 4 case, Dgjg—1.05 is almost 300 times wider on the left than
Degjg—o-

5. NUMERICAL RESULTS

In this section are presented numerical experiments in order to investigate the
performances of the RL; method. It will be compared to the exponential integrator
of Adams type of order , shortly denoted EFABy here. The EAB, schemes have
been numerically studied in [6] as compared to several classical methods. It had been
shown to be a good candidate for the resolution of the stiff membrane equation in
cardiac electrophysiology.
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FIGURE 4. TN NP model illustration. Left, cellular action potential:
starting at a (negative) rest value, the membrane potential v(¢) has a
stiff depolarization followed by a plateau and a repolarization to the
rest value. Right, depolarization is induced by an ionic sodium current
Iy, with visible stiffness.

5.1. The membrane equation. We consider a class of models in cardiac electro-
physiology. As illustrated on figure [4] these models display a stiff behaviour charac-
terized by the presence of heterogeneous time scales. The models used to simulate
the electrical activity of cardiac cells are ODE systems of the form, see [17, [1], 22, 27]:

dw;  Weoi(V) — w; de
16 = dat
( ) dt Ti(”) 7 dt et
dv
= —Lion(w, e, v) + T4(t),

where w = (wy, ..., w,) € R? is the vector of the gating variables, ¢ € R? is a vector
of ionic concentrations or other state variables, and v € R is the cell membrane
potential. These equations model the evolution of the transmembrane potential of
a single cardiac cell. The four functions we ;(v), 7(v), g(w,c,v) and L, (w,c,v)
are given reaction terms. They characterize the cell model. The function I(t) is

a source term. It represents a stimulation current. Problem (16| reformulates into
problem (4)) form with:

—1/7(v) 0 0 Woo (V) /T(V)
(17) a(t,y) = 0 0 0], bty = 9(y) ,
0 0 0 —Lion(y) + Ls(t)

for y = (w,c,v) € RY (N =p+¢q+1) and where —1/7(v) the p x p diagonal matrix

with diagonal entries (—1/7;(v)),_, . The resulting matrix a(t,y) is diagonal.
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We will consider two such models: the Beeler Reuter model (BR) [I] or the TNNP
model [27] for human cardiac cells.

5.2. Convergence. No theoretical solution are available for the chosen application.
A reference solution y,.; for a reference time step h,.; is computed with the Runge
Kutta 4 scheme to analyze the convergence properties of the RL; scheme. Numerical
solutions y are computed to y,.s for coarsest time steps h = 2Ph,..; for increasing p.
Any numerical solution y consists in successive values v, at the time instants t,, = nh.
On every interval (ts,, t3,+3) the polynomial 7 of degree at most 3 so that y(ts,4;) =
Ysnti, © = 0...4 is constructed. On (0,7"), 7 is a piecewise continuous polynomial of
degree 3. Its values at the reference time instants nh,.s are computed. This provides
a projection P(y) of the numerical solution y on the reference grid. Then P(y) can
be compared with the reference solution y,.s. The numerical error is defined by,

max |vyef — P(v)]

(18) e(h) =

max |Vye |

where the potential v is the last and stiffest component of y in equation . The

1
I RL2 -
0.01 RL3 e
' RILA
0.0001 slope 2 o
e(h) 1le-06 - slope 3
I slope 4
1e-08 **
le-10
0.001 0.01 0.1
Time step

FIGURE 5. Relative error e(h) (definition ([18)) as a function of the
time step h for the RLj schemes, for k = 2 to 4 and in Log/Log scale.

numerical convergence graphs for the BR model are plotted on figure [ All the
schemes display the expected asymptotic behaviour e(h) = O(h¥) as h — 0 in
corollary [

5.3. Stability robustness to stiffness. In [20] has been evaluated the stiffness of
the BR and TNNP models along one cellular electrical cycle (as depicted on figure
4)). The largest negative real part of the eigenvalues of the Jacobian matrix during
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this cycle is of —1170 and —82 for the TNNP and BR models respectively. The
TNNP model thus is 15 times stiffer than the BR model ( 15 ~ 1170/82).
Robustness to stiffness for the RL; scheme is evaluated by comparing the critical
time step for these two models.The critical time step Aty is defined as the largest
time step such that the numerical simulation runs without overflow for A < Aty. The
results are presented in table [T}

method | RLy | RLs | RLy | EABy | EABs| FEAB,
BR 0.323 1 0.200 | 0.149 || 0.424 | 0.203 0.123
TNNP [0.120[0.148 [ 0.111 || 0.233 | 0.108 | 7.56 1072
TABLE 1. Critical time step Aty for the RL; and EAB) schemes

An excellent robustness to stiffness can be observed. The critical time step is divided
by 2.7, 2.0 and 1.3 for £k = 2, 3 and 4 respectively. A comparison with the FABy
schemes shows that the two scheme display a robustness to stiffness of same order.
For a method that is not A(«) stable, it is expected for the critical time step to be
divided by 15 in case of an increase of stiffness of magnitude 15. This is not observed
here, though the RLj scheme is not A(«) stable. The reason for this is that the
ODE system is only partially stabilized by . Loss of stability is induced by
the non-stabilized part, whose eigenvalues are less modified between the BR and the
TN NP models.

5.4. Accuracy. The RL, scheme is here compared to the FAB), scheme in terms of
accuracy. This comparison is done by computing the relative error e(h) in equation
(18]). The two BR and TN N P models are considered. We recall than the TNN P
model is stiffer by a factor 15. The results are collected in the tables [2] and

h RL, RLs RL, EAB, EAB; EAB,

0.2 0.251 0.147 - 0.284 0.516 -

0.1 0.107 [4.07 1072 [5.86 1072 || 9.26 1072 | 9.17 1072 0.119
0.05 [3.351072]6.34 1072 [ 4.58 1073 [[ 2.31 1072 [ 1.09 102 [ 8.96 10~
0.025 [8.88 1073 [ 7.57 107% | 2.61 107* [ 5.39 1072 | 1.17 1073 [ 4.33 10~*

TABLE 2. Relative error e(h) (eq. (18))) for the BR model.

For the RL, and the F AB, schemes, the accuracies are very close, the £ A B, scheme
being slightly more accurate for the BR model. For the orders 3 and 4, a non
negligible difference is observed between the RL and FAB schemes. The RL scheme
is more accurate at large time steps. For smaller time steps, accuracies are almost
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h RL, RL; RL, EAB, | EAB; | EAB,
0.1 0.177 0.305 0.421 0.351 0.530 -
0.05 [7.3910°%[4.5410%[4.6110 %[ 9.01107]5.59107*|8.9310~°
0.025 [2.21107*|6.563107% |5.96 1077 || 2.14 10 [ 7.34 1077 [ 8.34 107
0.0125 | 575107 [ 8.0510~* [ 3.21 10~* | 5.11 10~* | 7.62 10~* | 3.70 10~*

TABLE 3. Relative error e(h) (eq. (18))) for the 7NN P model.

the same. This means that RL and E AB schemes are equivalent in terms of accuracy
considering the asymptotic convergence region, but outside this region, RL scheme
is more precise.

6. CONCLUSION

We introduced in this paper two new ODE solvers that we named Rush Larsen
of order 3 and 4. They are explicit multistep exponential integrators. Their general
definition is very simple inducing an easy implementation. We provided a con-
vergence and stability under perturbation analysis of these two schemes. We also
performed their Dahlquist stability analysis: they are not A(0) stable but display
a very large stability domain for sufficiently precise stabilization. The numerical
properties of the schemes are analyzed for a complex and realistic stiff application.
The RL,; schemes are as stable as exponential integrators of Adams type, allowing
simulations at large time step. The RL; schemes moreover are more accurate for
k = 3 and 4 when considering large time steps. The are shown to be robust to
stiffness both in terms of stability and of accuracy.

REFERENCES

[1] G.W. Beeler and H Reuter. Reconstruction of the Action Potential of Ventricular Myocardial
Fibres. J. Physiol., 268:177-210, 1977.

[2] M. T. Chu. An automatic multistep method for solving stiff initial value problems. J. Comput.
Appl. Math., 9(3):229-238, 1983.

[3] J.C. Clements, J. Nenonen, P.K. Li, and B.M.. Horacek. Activation dynamics in anisotropic
cardiac tissue via decoupling. Ann. Biomed. Eng., 32(7):984-990, 2004.

[4] P. Colli-Franzone, L.F. Pavarino, and B. Taccardi. Monodomain simulations of excitation and
recovery in cardiac blocks with intramural heterogeneity. in Functional Imaging and Modeling
of the Heart (FIMHO05), Lect. Notes Comput. Sci., 3504:267-277, 2005.

[5] P. Colli-Franzone, L.F. Pavarino, and B. Taccardi. Simulating patterns of excitation, repo-
larization and action potential duration with cardiac Bidomain and Monodomain models. To
appear in Math. Biosci., 2005.

[6] Y. Coudiére, C. Douanla Lontsi, and C. Pierre. Exponential Adams Bashforth integrators for
stiff ODEs, application to cardiac electrophysiology. HAL Preprint, 2016.



18
[7]
8]
[9]

[10]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]
[27]

[28]

Y. COUDIERE, C. DOUANLA LONTSI, AND C. PIERRE

S. M. Cox and P. C. Matthews. Exponential time differencing for stiff systems. J. Comput.
Phys., 176(2):430-455, 2002.

Sever Silvestru Dragomir. Some Gronwall type inequalities and applications. Nova Science Pub-
lishers, Inc., Hauppauge, NY, 2003.

E. Hairer, S. P. Ngrsett, and G. Wanner. Solving ordinary differential equations. I, volume 8
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1993.

E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 2010.

M. Hochbruck and A. Ostermann. Explicit Exponential Runge-Kutta Methods for Semilinear
Parabolic Problems. SIAM J. Numerical Analysis, 43(3):1069-1090, 2005.

Marlis Hochbruck. A short course on exponential integrators. In Matriz functions and matriz
equations, volume 19 of Ser. Contemp. Appl. Math. CAM, pages 28-49. Higher Ed. Press,
Beijing, 2015.

Marlis Hochbruck, Christian Lubich, and Hubert Selhofer. Exponential integrators for large
systems of differential equations. SIAM J. Sci. Comput., 19(5):1552-1574 (electronic), 1998.
Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numer., 19:209—
286, 2010.

Marlis Hochbruck and Alexander Ostermann. Exponential multistep methods of Adams-type.
BIT, 51(4):889-908, 2011.

Marlis Hochbruck, Alexander Ostermann, and Julia Schweitzer. Exponential Rosenbrock-type
methods. STAM J. Numer. Anal., 47(1):786-803, 2008/09.

A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve. J. Physiol., 117:500-544, 1952.

Antti Koskela and Alexander Ostermann. Exponential Taylor methods: analysis and imple-
mentation. Comput. Math. Appl., 65(3):487-499, 2013.

D. Lee and S. Preiser. A class of non linear multistep A-stable numerical methods for solving
stiff differential equations. Comp. & maths with appls., 4:43-51, 1978.

V. T. Luan and A. Ostermann. Explicit exponential runge kutta methods of high order for
parabolic problems. J. Comput. Appl. Math., 256:168-179, 2014.

C.H. Luo and Y. Rudy. A model of the Ventricular Cardiac Action Potential. Circ. Res.,
68:1501-1526, 1991.

C.H. Luo and Y. Rudy. A Dynamic Model of the Cardiac Ventricular Action Potential I.
Simulations of Ionic Currents and Concentration Changes. Circ. Res., 74:1071-1096, 1994.
B.V. Minchev and W. M. Wright. A review of exponential integrators for first order semi-linear
problems. Technical report, Norwegian universtity of science and technology trondhem, 2005.
M. Perego and A. Veneziani. An efficent generalization of the Rush-Larsen method for solving
electro-physiology membrane equations. ETNA, 35:234-256, 2009.

G. Rainwater and M. Tokman. A new class of split exponential propagation iterative methods
of Runge-Kutta type (SEPIRK) for semilinear systems of ODEs. J. Comput. Phys., 269:40-60,
2014.

R. J. Spiteri and C. D. Ryan. Stiffness Analysis of Cardiac Electrophysiological Models. Annals
of Biomedical Engineering, 38:3592-3604, Dec 2010.

K.H. Ten Tusscher, D. Noble, P.J. Noble, and A.V. Panfilov. A Model for Human Ventricular
Tissue. Am J Physiol Heart Circ Physiol, 286, 2004.

M. Tokman, J. Loffeld, and P. Tranquilli. New adaptive exponential propagation iterative
methods of Runge-Kutta type. STAM J. Sci. Comput., 34(5):A2650-A2669, 2012.



RUSH LARSEN TIME STEPPING METHODS OF HIGH ORDER 19

[29] Paul Tranquilli and Adrian Sandu. Rosenbrock-Krylov methods for large systems of differential
equations. STAM J. Sci. Comput., 36(3):A1313-A1338, 2014.

YvEs CouDIERE, INRIA BORDEAUX SUD OUEST, UNIVERSITE DE BORDEAUX
E-mail address: yves.coudiere@inria.fr

CHARLIE DOUANLA LoNTsI, INRIA BORDEAUX SUD OUEST, UNIVERSITE DE BORDEAUX
FE-mail address: charlie.douanla-lontsi@inria.fr

CHARLES PIERRE, CNRS, UNIVERSITE DE Pau, LMAP
E-mail address: charles.pierreQuniv-pau.fr



	1. Introduction
	2. RLk scheme definition and consistency
	3. Stability under perturbation and convergence
	4. Dahlquist stability
	5. Numerical results
	5.1. The membrane equation
	5.2. Convergence
	5.3. Stability robustness to stiffness
	5.4. Accuracy

	6. Conclusion
	References

