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To design and optimize 

the superconducting 

systems

Need to develop reliable 

models: AC losses

computation,…

1986 1990 2008 2014

LIPA cable

138 kV/2.4 k A

First HTS cable

30 kV 2.4 kA
Discovery 

of HTS
MgB2 cable

20 kA
Source: American 

Superconductor Corp

Context : superconducting applications

High Temperature Superconducting (HTS) applications are growing rapidly.

Superconducting materials are a viable option for high power applications (the

carrying current densities are 10 times higher than copper).

Devices are getting powerful and efficient



Page 3

 highly nonlinear

 Dependence on J, T and B

Study and development of well-suited methods and 

formulations 

Power-law 
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Main challenge in modeling superconducting 

devices

Nonlinear Constitutive law
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Main challenge in modeling superconducting 

devices

 highly nonlinear

 Dependence on J, T and B

Nonlinear Constitutive law

Goal of this work

Introduction of a benchmark on the 3D numerical modeling of a superconducting

bulk

Make a brief inventory of the main methods and formulations used by the

laboratories participating in this benchmark

Comparison of the performance of some software based on:

The formulation

The numerical method

• Mesh sensitivity

• The Transient nonlinear solver
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Outline

Context: superconducting applications and main challenges
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3D Numerical Modeling of AC losses in superconducting

cables: State of the art

Benchmark on the 3D Numerical Modeling of a
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3D Numerical Modeling of AC losses in superconducting 

cables: formulations

Superconducting constitutive law

𝐇, 𝐇− 𝛺 −𝛹, 𝐓 − Ω

Magnetic Formulations

𝐄 = 𝜌 𝐉 ∙ 𝐉

𝐄, 𝐀 − 𝑉
Electric Formulations

𝐉 = 𝜎 𝐄 ∙ 𝐄

Influence on the 

convergence problem

Residue Residue

Convergence vs Residue
Francesco Grilli et al. IEEE TRANSACTIONS ON 

APPLIED SUPERCONDUCTIVITY, VOL. 15, NO. 

1, MARCH 2005
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H formulation

» The most frequently used by the superconducting community

» Simple to implement

» Uses the E(J) behavior law 

But

» H -formulation uses finite air resistivity leading to:

» Unphysical current leaks in the air regions

» Ill-conditioning of the matrix system

A. Stenvall, V. Lahtinen, and M. Lyly,

Superconductor Science & Technology, vol. 27,

no. 10, p. 104004, 2014.

3D Numerical Modeling of AC losses in superconducting

cables: Magnetic formulation
With 𝜌 𝐉 =

𝐸𝑐

𝐽𝑐
∙

𝐉

𝐽𝑐

𝑛−1
+ 𝜌0

𝛻 × 𝜌 𝐉 𝛻 × 𝐇 + 𝜇0
𝜕𝐇

𝜕𝑡
= 𝜇0

𝜕𝐇𝟎

𝜕𝑡
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3D Numerical Modeling of AC losses in superconducting

cables: Magnetic formulation
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T-Ω formulation 

» Don’t need an artificial high resistivity in air

» Uses the E(J) behavior law

But

» Need to treat multiply connected conductors

With 𝜌 𝐉 =
𝐸𝑐

𝐽𝑐
∙

𝐉

𝐽𝑐

𝑛−1
+ 𝜌0

𝛻 × 𝜌 𝐉 𝛻 × 𝐇 + 𝜇0
𝜕𝐇

𝜕𝑡
= 𝜇0

𝜕𝐇𝟎

𝜕𝑡
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Electric formulation A-V formulation

» Relatively simple to implement

» Don’t need an artificial high resistivity in air

» Don’t need to treat multiply connected conductors

But 

» Uses the J(E) behavior law (convergence problem)
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3D Numerical Modeling of AC losses in superconducting

cables: formulations and methods

Numerical methods:

Finite element method

Finite volume method

Integral methods

With 𝜎 𝐄 =
𝐸𝑐

𝐽𝑐
∙

𝐄

𝐸𝑐

𝑛−1

𝑛
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Outline

Context: superconducting applications and main challenges
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3D Numerical Modeling of AC losses in superconducting

cables: State of the art

Benchmark on the 3D Numerical Modeling of a

Superconducting Bulk

Benchmark presentation
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Results

Conclusion and future works
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Geometry
The superconductor domain is a cube with a side length of

10 mm

Mesh
Several meshes have been performed in order to study the

mesh sensitivity.

Physical properties
• For the superconductor, the power law is used

(Ec=1.0E-4V.m-1, Jc=2.5E6 A.m-2 and n=25).

• A sinusoidal external magnetic field is imposed (5mT,

10mT, 15mT and 20 mT).

Number of elements in the bulk

Regular mesh Irregular mesh

Cube6 1080 1076

Cube12 8640 8677

Cube24 69120 69227

Cube36 233280 233277

Benchmark presentation

Irregular mesh

Regular mesh
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• Goal :

• Comparison of the performance of some software based on different 

formulations

• Software

FEM, T-Ω formulation: FLUX, commercial code (ALTAIR-G2ELab)

FEM, H formulation: 

• COMSOL Multiphysics®, commercial code 

• Daryl-Maxwell: homemade software (Polytechnique

Montréal,Canada)

• GetDP (Liège University), free software

FVM, A-V formulation: homemade software (Université de Biskra, Algérie)

Participants in the benchmark
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FEM methods are based on the first edge elements.

All methods use an implicit time discretization scheme.

Label
FEM, H FEM, T-Ω 

FVM, A-V

Comsol GetDP Daryl FLUX3D Home code

Nonlinear 

solver

Newton-

Raphson

Point 

fixe

Newton-

Raphson

Newton-Raphson

Relaxation No relaxation Optimal relaxation No relaxation

Transient 

solver

implicit time discretization scheme

Adaptive

step size

Yes No No No No

Linear solver
Mumps Mumps Pardiso Mumps Gauss-Seidel

itérative method

Some numerical considerations
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Outline

Context: superconducting applications and main challenges

in modeling superconductors

3D Numerical Modeling of AC losses in superconducting

cables: State of the art

Benchmark on the 3D Numerical Modeling of a

Superconducting Bulk

Benchmark presentation
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Results

Conclusion and future works
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Good concordance between the results is observed

Results

AC losses induced by an External Magnetic Field

Formulation 

(software)

AC losses (mW)

5 mT 20 mT

𝐓 − 𝛺 (Flux) 0,8354 14

H (Comsol) 0,7933 13,01

H (GetDP) 0,7933 13,90

H (Daryl Maxwell)
0,7969 14,34

A-V (home code)
0,8396 13,84

The average AC losses  with the regular 

mesh of Cube6Current density cartography
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The average AC losses in the case of 𝐓 − Ω and 𝐇 formulation for 

different meshes at 5 mT and 10 mT

Comparison between two formulations:

AC losses are slightly higher in the case of T − 𝛺 formulation especially

when the values of the source field increase.

AC losses induced by an External Magnetic Field

Results
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Results A. First investigations on the mesh sensitivity

B. First investigations on the nonlinear solver

C. Investigation on the performance of the transient solver
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Results A. First investigations on the mesh sensitivity

Instantaneous  AC  losses  for  different meshes with  Bmax = 5 mT

(a) Regular meshes (a) Irregular meshes

The results show:

The average AC losses are close for regular and irregular meshes.

But

The instantaneous AC losses behavior is impacted by the mesh quality

These disturbances are reduced with the refinement of the mesh

B. First investigations on the nonlinear solver

C. Investigation on the performance of the transient solver
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2 values of an external magnetic field compared to the depth field Bp.

The results show:

Without relaxation, 400 transient iterations are needed for the convergence.

With optimal relaxation, the problem converge even with 40 transient iterations.

The quality of the mesh doesn't influence significantly the convergence of

nonlinear problem.

Results
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A. First investigations on the mesh sensitivity

B. First investigations on the nonlinear solver

C. Investigation on the performance of the transient solver
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Adaptive time step size

The time step size decreases when the mesh is finer.

The finer mesh generates more time step size variations chosen by the

solver.

Results

Time step size vs time with Hs= 5 mT

A. First investigations on the mesh sensitivity

B. First investigations on the nonlinear solver

C. Investigation on the performance of the transient solver
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A benchmark on the 3D numerical modeling of a superconducting bulk

is introduced.

The results show a good agreement between the models when

considering the AC losses.

First investigations have been made on the mesh sensitivity and on the

solver strategies.

A research group have been created including the participants in the

benchmark.

Conclusion
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Deepen comparisons by including the results of different models (time

computation,…).

Add to the benchmark the case of the transport current.

Integration of other methods in the benchmark: integral methods

B. Ramdane, G. Meunier, B. Rozier and A. Badel, ”3D Volume Integral Formulation

Based on Facet Elements for the Computation of AC Losses in Superconductors”

ISEM2017.

More accurate model of the behavior law should be included

(dependence on B and T).

Future works
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Thank you !!

Questions ??
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Irregular mesh Regular mesh
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• Multi-scale problem

The characteristic quantities over several orders of magnitude 

• Nonlinear Constitutive law

 highly nonlinear

 Dependence on J, T and B

Development of 

homogenization techniques

Study and development of well-

suited methods and formulations 

28

Main challenge in modeling superconducting 

devices
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Adaptative step size

Results

First investigations on the transient solver


