

Benchmark on the 3D Numerical Modeling of a Superconducting Bulk

Kévin Berger¹, Guillaume Escamez², Loïc Quéval³, Abelin Kameni³, Lotfi Alloui^{3,4}, <u>Brahim Ramdane²</u>

¹GREEN, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
 ²Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, F-38000 Grenoble, France
 ³Group of Electrical Engineering - Paris (GeePs), CNRS UMR 8507,
 CentraleSupélec, UPSud, UPMC, France
 ⁴Laboratoire de Modélisation des Systèmes Energétiques, LMSE, Université de Biskra, Algeria

Context: superconducting applications

- High Temperature Superconducting (HTS) applications are growing rapidly.
- Superconducting materials are a viable option for high power applications (the carrying current densities are 10 times higher than copper).
- Devices are getting powerful and efficient

Page 2

Main challenge in modeling superconducting devices

Nonlinear Constitutive law

$$\vec{E} = \rho(\vec{J}, \vec{B}, T)\vec{J}$$

- highly nonlinear
- → Dependence on *J*, *T* and *B*

Study and development of well-suited methods and formulations

Main challenge in modeling superconducting devices

Nonlinear Constitutive law

$$\vec{E} = \rho(\vec{J}, \vec{B}, T) \vec{J}$$

- $\vec{E} = \rho(\vec{J}, \vec{B}, T) \vec{J}$ \longrightarrow highly nonlinear \longrightarrow Dependence on J, T and B

Goal of this work

- Introduction of a benchmark on the 3D numerical modeling of a superconducting bulk
- Make a brief inventory of the main methods and formulations used by the laboratories participating in this benchmark
- Comparison of the performance of some software based on:
 - The formulation
 - The numerical method
 - Mesh sensitivity
 - The Transient nonlinear solver

Outline

- Context: superconducting applications and main challenges in modeling superconductors
- 3D Numerical Modeling of AC losses in superconducting cables: State of the art
- Benchmark on the 3D Numerical Modeling of a Superconducting Bulk
 - Benchmark presentation
 - Participants in the benchmark
- Results
- Conclusion and future works

Outline

- Context superconducting applications and main challenges in modeling superconductors
- 3D Numerical Modeling of AC losses in superconducting cables: State of the art
- Benchmark on the 3D Numerical Modeling of a Superconducting Bulk
 - Benchmark presentation
 - Participant of the benchmark
- Results
- Conclusion and future works

3D Numerical Modeling of AC losses in superconducting cables: formulations

Superconducting constitutive law

$$\mathbf{E} = \rho(\mathbf{J}) \cdot \mathbf{J}$$

Magnetic Formulations

$$\mathbf{H}, \mathbf{H} - \Omega - \Psi, \mathbf{T} - \Omega$$

$$J = \sigma(\mathbf{E}) \cdot \mathbf{E}$$
Electric Formulations
$$\mathbf{E}, \mathbf{A} - V$$

Influence on the convergence problem

Francesco Grilli et al. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 15, NO. Convergence vs Residue 1, MARCH 2005

3D Numerical Modeling of AC losses in superconducting cables: Magnetic formulation $With \ \rho(\mathbf{J}) = \left(\frac{E_c}{J_c} \cdot \left(\frac{\|\mathbf{J}\|}{J_c}\right)^{(n-1)} + \rho_0$

H formulation
$$\nabla \times \rho(\mathbf{J}) \nabla \times \mathbf{H} + \mu_0 \frac{\partial \mathbf{H}}{\partial t} = \mu_0 \frac{\partial \mathbf{H_0}}{\partial t}$$

- The most frequently used by the superconducting comm
- » Simple to implement
- » Uses the E(J) behavior law

But

- » H -formulation uses finite air resistivity leading to:
- » Unphysical current leaks in the air regions
- » III-conditioning of the matrix system

A. Stenvall, V. Lahtinen, and M. Lyly, Superconductor Science & Technology, vol. 27, no. 10, p. 104004, 2014.

3D Numerical Modeling of AC losses in superconducting cables: Magnetic formulation With $\rho(\mathbf{J}) = \left(\frac{E_c}{J_c} \cdot \left(\frac{\|\mathbf{J}\|}{J_c}\right)^{(n-1)} + \rho_0\right)$

H formulation
$$\nabla \times \rho(\mathbf{J}) \nabla \times \mathbf{H} + \mu_0 \frac{\partial \mathbf{H}}{\partial t} = \mu_0 \frac{\partial \mathbf{H_0}}{\partial t}$$

- The most frequently used by the superconducting comm
- Simple to implement
- Uses the E(J) behavior law

But

- H -formulation uses finite air resistivity leading to:
- Unphysical current leaks in the air regions
- III-conditioning of the matrix system

A. Stenvall, V. Lahtinen, and M. Lyly, Superconductor Science & Technology, vol. 27, no. 10, p. 104004, 2014.

T-Ω formulation
$$\begin{cases}
\nabla \times \rho(\mathbf{J}) \nabla \times \mathbf{T} + \mu_0 \left(\frac{\partial \mathbf{T}}{\partial t} + \nabla \Phi \right) = -\frac{\partial}{\partial t} \mu_0 \mathbf{T_0} \\
\nabla \cdot \mu_0 (\mathbf{T} + \mathbf{T_0} - \nabla \Phi) = 0
\end{cases}$$

- Don't need an artificial high resistivity in air
- » Uses the E(J) behavior law

But

Need to treat multiply connected conductors

3D Numerical Modeling of AC losses in superconducting cables: formulations and methods With $\sigma(\mathbf{E}) = \left(\frac{E_c}{I_c} \cdot \left(\frac{\|\mathbf{E}\|}{F_c}\right)^{\frac{(n-1)}{n}} + \rho_0\right)^{-1}$

Electric formulation A-V formulation

$$\begin{cases} \nabla \times \frac{1}{\mu} \nabla \times \mathbf{A} + \sigma(\mathbf{E}) \cdot \left(\frac{\partial \mathbf{A}}{\partial t} + \nabla V \right) = \mathbf{J_s} \\ \nabla \cdot \left(\sigma(\mathbf{E}) \left(\frac{\partial \mathbf{A}}{\partial t} + \nabla V \right) \right) = 0 \end{cases}$$

- » Relatively simple to implement
- » Don't need an artificial high resistivity in air
- » Don't need to treat multiply connected conductors

But

» Uses the J(E) behavior law (convergence problem)

Numerical methods:

- Finite element method
- Finite volume method
- Integral methods

Outline

- Context superconducting applications and main challenges in modeling superconductors
- 3D Numerical Modeling of AC losses in superconducting cables: State of the art
- Benchmark on the 3D Numerical Modeling of a Superconducting Bulk
 - Benchmark presentation
 - Participants in the benchmark
- Results
- Conclusion and future works

Benchmark presentation

Geometry

The superconductor domain is a cube with a side length of 10 mm

Mesh

Several meshes have been performed in order to study the mesh sensitivity.

	Number of elements in the bulk			
	Regular mesh	Irregular mesh		
Cube6	1080	1076		
Cube12	8640	8677		
Cube24	69120	69227		
Cube36	233280	233277		

Physical properties

- For the superconductor, the power law is used $(E_c=1.0E^{-4}V.m^{-1}, J_c=2.5E^6 A.m^{-2} and n=25).$
- A sinusoidal external magnetic field is imposed (5mT, 10mT, 15mT and 20 mT).

Irregular mesh

Regular mesh
Page 12

Participants in the benchmark

Goal :

Comparison of the performance of some software based on different formulations

Software

FEM, T-Ω formulation: FLUX, commercial code (ALTAIR-G2ELab)

FEM, H formulation:

COMSOL Multiphysics®, commercial code

· GetDP (Liège University), free software

FVM, A-V formulation: homemade software (Université de Biskra, Algérie)

Some numerical considerations

- FEM methods are based on the first edge elements.
- All methods use an implicit time discretization scheme.

Label	FEM, H		FEM, T-Ω	FVM, A-V	
	Comsol	GetDP	Daryl	FLUX3D	Home code
Nonlinear solver	Newton- Raphson	Point fixe	Newton- Raphson	Newton-Raphson	
Relaxation	No relaxation		Optimal relaxation	No relaxation	
Transient solver	implicit time discretization scheme				
Adaptive step size	Yes	No	No	No	No
Linear solver	Mumps	Mumps	Pardiso	Mumps	Gauss-Seidel itérative method

Outline

- Context: superconducting applications and main challenges in modeling superconductors
- 3D Numerical Modeling of AC losses in superconducting cables: State of the art
- Benchmark on the 3D Numerical Modeling of a Superconducting Bulk
 - Benchmark presentation
 - Participant of the benchmark
- Results
- Conclusion and future works

AC losses induced by an External Magnetic Field

Good concordance between the results is observed

Current density cartography

Formulation	AC losses (mW)			
(software)	5 mT	20 mT		
$T - \Omega$ (Flux)	0,8354	14		
H (Comsol)	0,7933	13,01		
H (GetDP)	0,7933	13,90		
H (Daryl Maxwell)	0,7969	14,34		
A-V (home code)	0,8396	13,84		

The average AC losses with the regular mesh of Cube6

AC losses induced by an External Magnetic Field

Comparison between two formulations:

AC losses are slightly higher in the case of $T - \Omega$ formulation especially when the values of the source field increase.

The average AC losses in the case of $T - \Omega$ and H formulation for different meshes at 5 mT and 10 mT

- A. First investigations on the mesh sensitivity
- B. First investigations on the nonlinear solver
- C. Investigation on the performance of the transient solver

A. First investigations on the mesh sensitivity

- B. First investigations on the nonlinear solver
- C. Investigation on the performance of the transient solver

■ The results show:

The average AC losses are close for regular and irregular meshes.

But

- The instantaneous AC losses behavior is impacted by the mesh quality
- These disturbances are reduced with the refinement of the mesh

(a) Regular meshes
(a) Irregular meshes
Instantaneous AC losses for different meshes with Bmax = 5 mT page 19

A. First investigations on the mesh sensitivity

- B. First investigations on the nonlinear solver
- C. Investigation on the performance of the transient solver
- 2 values of an external magnetic field compared to the depth field Bp.
- The results show:
 - Without relaxation, 400 transient iterations are needed for the convergence.
 - With optimal relaxation, the problem converge even with 40 transient iterations.
 - The quality of the mesh doesn't influence significantly the convergence of nonlinear problem.

- A. First investigations on the mesh sensitivity
- B. First investigations on the nonlinear solver
- C. Investigation on the performance of the transient solver

Adaptive time step size

- The time step size decreases when the mesh is finer.
- The finer mesh generates more time step size variations chosen by the solver.

Time step size vs time with Hs= 5 mT

Outline

- Context superconducting applications and main challenges in modeling superconductors
- 3D Numerical Modeling of AC losses in superconducting cables: State of the art
- Benchmark on the 3D Numerical Modeling of a Superconducting Bulk
 - Benchmark presentation
 - Participant of the benchmark
- Results
- Conclusion and future works

Conclusion

- A benchmark on the 3D numerical modeling of a superconducting bulk is introduced.
- The results show a good agreement between the models when considering the AC losses.
- First investigations have been made on the mesh sensitivity and on the solver strategies.
- A research group have been created including the participants in the benchmark.

Future works

- Deepen comparisons by including the results of different models (time computation,...).
- Add to the benchmark the case of the transport current.
- Integration of other methods in the benchmark: integral methods
 - B. Ramdane, G. Meunier, B. Rozier and A. Badel, "3D Volume Integral Formulation Based on Facet Elements for the Computation of AC Losses in Superconductors" ISEM2017.
- More accurate model of the behavior law should be included (dependence on B and T).

Thank you!! Questions??

Benchmark on the 3D Numerical Modeling of a Superconducting Bulk

Kévin Berger¹, Guillaume Escamez², Loïc Quéval³, Abelin Kameni³, Lotfi Alloui^{3,4}, Brahim Ramdane²

¹GREEN, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
 ²Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, F-38000 Grenoble, France
 ³Group of Electrical Engineering - Paris (GeePs), CNRS UMR 8507,
 CentraleSupélec, UPSud, UPMC, France
 ⁴Laboratoire de Modélisation des Systèmes Energétiques, LMSE, Université de Biskra, Algeria

▲ 0.77

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Irregular mesh

Regular mesh

Main challenge in modeling superconducting devices

Multi-scale problem

The characteristic quantities over several orders of magnitude

Development of homogenization techniques

Nonlinear Constitutive law

$$\vec{E} = \rho(\vec{J}, \vec{B}, T)\vec{J}$$
 \rightarrow highly nonlinear

- → Dependence on J, T and B

Study and development of wellsuited methods and formulations

ResultsFirst investigations on the transient solver

Adaptative step size

