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We study the problem of matrix estimation and matrix completion under a general framework. This framework includes several important models as special cases such as the gaussian mixture model, mixed membership model, bi-clustering model and dictionary learning. We consider the optimal convergence rates in a minimax sense for estimation of the signal matrix under the Frobenius norm and under the spectral norm. As a consequence of our general result we obtain minimax optimal rates of convergence for various special models.

Introduction

Over the past decade, there have been considerable interest in statistical inference for high-dimensional matrices. A fundamental model in this context is the matrix de-noising model, under which one observes a matrix θ * + W where θ * is an unknown non-random n × m matrix of interest, and W is a random noise matrix. The aim is to estimate θ * from such observations. Often in applications a part of elements of M is missing. The problem of reconstructing the signal matrix θ * given partial observations of its entries is known as matrix completion problem. There has been an important research in the past years devoted to accurate matrix completion methods.

In general, the signal θ * cannot be recovered consistently from noisy and possibly missing observations. If we only know that θ * is an arbitrary n × m matrix, the guaranteed error of estimating θ * from noisy observations can be prohibitively high. However, if θ * has an additional structure one can expect to estimate it with high accuracy from a moderate number of noisy observations. The algorithmic and analytical tractability of the problem depends on the type of adopted structural model. A popular assumption in the matrix completion literature is that the unknown matrix θ * is of low rank or can be well approximated by a low rank matrix. Significant progresses have been made on low rank matrix estimation and completion problems, see e.g., [START_REF] Candès | The power of convex relaxation: near-optimal matrix completion[END_REF][START_REF] Emmanuel | Matrix completion with noise[END_REF][START_REF] Gross | Recovering low-rank matrices from few coefficients in any basis[END_REF][START_REF] Raghunandan | Matrix completion from noisy entries[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF][START_REF] Foygel | Concentration-based guarantees for low-rank matrix reconstruction[END_REF][START_REF] Klopp | Noisy low-rank matrix completion with general sampling distribution[END_REF][START_REF] Cai | Matrix completion via max-norm constrained optimization[END_REF]. However, in several applications, the signal matrix θ * can have other than just low rank structure. Some examples are as follows.

• Biology. The biological data are sometimes expected to have clustering structures. For example, in the gene microarray data, a large number of gene expression levels are measured under different experimental conditions. It has been observed in the experiments that there is a bi-clustering structure on the genes [START_REF] Cheng | Biclustering of expression data[END_REF]. This means that, besides being of low rank, the gene microarray data can be rearranged to approximately have a block structure.

• Computer Vision. To capture higher-level features in natural images, it is common to represent data as a sparse linear combination of basis elements [START_REF] Bruno | Sparse coding with an overcomplete basis set: A strategy employed by v1?[END_REF] leading to sparse coding models. Unlike the principle component analysis that looks for low rank decompositions, sparse coding learns useful representations with number of basis vectors, which is often greater than the dimension of the data.

• Networks. In network models, such as social networks or citation networks, the links between objects are usually governed by the underlying community structures. To capture such structures, several block models have been recently proposed with the purpose of explaining the network data [START_REF] Paul W Holland | Stochastic blockmodels: First steps[END_REF][START_REF] Edoardo M Airoldi | Mixed membership stochastic blockmodels[END_REF][START_REF] Karrer | Stochastic blockmodels and community structure in networks[END_REF].

While there are some successful algorithmic advancements on adapting new structures in these specific applications, not much is known on the fundamental limits of statistical inference for the corresponding models. A few exceptions are the stochastic block model [START_REF] Gao | Rate-optimal graphon estimation[END_REF][START_REF] Klopp | Oracle inequalities for network models and sparse graphon estimation[END_REF] and the bi-clustering model [START_REF] Gao | Optimal estimation and completion of matrices with biclustering structures[END_REF]. However, many other structures of signal matrix are not analyzed.

The aim of this paper is to study a general framework of estimating structured matrices. We consider a unified model that includes gaussian mixture model, mixed membership model [START_REF] Edoardo M Airoldi | Mixed membership stochastic blockmodels[END_REF], bi-clustering model [START_REF] John A Hartigan | Direct clustering of a data matrix[END_REF], and dictionary learning as special cases. We first study the optimal convergence rates in a minimax sense for estimation of the signal matrix under the Frobenius norm and under the spectral norm from complete observations on the sparsity classes of matrices. Then, we investigate this problem in the partial observations regime (structured matrix completion problem) and study the minimax optimal rates under the same norms. We also establish accurate oracle inequalities for the suggested methods.

Notation

This section provides a brief summary of the notation used throughout this paper. Let A, B be matrices in R n×m .

• For a matrix A, A ij is its (i, j)th entry, A •j is its jth column and A i• is its ith row.

• The scalar product of two matrices A, B of the same dimensions is denoted by A, B = tr(A T B).

• We denote by A 2 the Frobenius norm of A and by A ∞ the largest absolute value of its entries:

A ∞ = max i,j | A ij |. The spectral norm of
A is denoted by A .

• For x ∈ R k , we denote by x 0 its l 0 -norm (the number of non-zero components of x), and by x q its l q -norm, 1 ≤ q ≤ ∞.

• We denote by A 0,∞ the largest l 0 -norm of the rows of A ∈ R n×k :

A 0,∞ = max 1≤i≤p A i• 0 .
• For any i ∈ N, we write for brevity [i] = {1, . . . , i}.

• Given a matrix A = (A ij ) ∈ R n×m , and a set of indices I ⊂ [n] × [m], we define the restriction of A on I as a matrix A I with elements (A I ) ij = A ij if (i, j) ∈ I and (A I ) ij = 0 otherwise.

• The notation I k×k and 0 k×l (abbreviated to I and 0 when there is no ambiguity) stands for the k × k identity matrix and the k × l matrix with all entries 0, respectively.

• We denote by |S| the cardinality of a finite set S, by ⌊x⌋ the integer part of x ∈ R, and by ⌈x⌉ the smallest integer greater than x ∈ R.

• We denote by N ǫ (A) the ǫ-covering number, under the Frobenius norm, of a set A of matrices.

General model and examples

Assume that we observe a matrix Y = (Y ij ) ∈ R n×m with entries

Y ij = E ij θ * ij + ξ ij , i = 1, . . . , n, i = 1, . . . , m, (1) 
where θ * ij are the entries of the unknown matrix of interest θ * = (θ * ij ) ∈ R n×m , the values ξ ij are independent random variables representing the noise, and E ij are i.i.d. Bernoulli variables with parameter p ∈ (0, 1] such that (E ij ) is independent of (ξ ij ).

Model [START_REF] Achlioptas | Database-friendly random projections: Johnson-Lindenstrauss with binary coins[END_REF] is called the matrix completion model. Under this model, an entry of matrix θ * is observed with noise (independently of the other entries) with probability p, and it is not observed with probability 1p. We can equivalently write [START_REF] Achlioptas | Database-friendly random projections: Johnson-Lindenstrauss with binary coins[END_REF] in the form

Y /p = θ * + W, (2) 
where W is a matrix with entries

W ij = θ * ij (E ij -p)/p + ξ ij E ij /p.
The model with complete noisy observations is a special case of (1) (and equivalently of ( 2)) corresponding to p = 1. In this case,

W ij = ξ ij .
We denote by P θ * the probability distribution of Y satisfying [START_REF] Achlioptas | Database-friendly random projections: Johnson-Lindenstrauss with binary coins[END_REF] and by E θ * the corresponding expectation. When there is no ambiguity, we abbreviate P θ * and E θ * to P and E, respectively.

We assume that ξ ij are independent zero mean sub-Gaussian random variables. The sub-Gaussian property means that the following assumption is satisfied.

Assumption 1. There exists σ > 0 such that, for all (i, j)

∈ [n] × [m], ∀ λ ∈ R, E exp (λξ ij ) ≤ exp(λ 2 σ 2 /2).
We assume that the signal matrix θ * is structured, that is, it can be factorized using sparse factors. Specifically, let s n , k n , s m , k m be integers such 0 ≤ s n ≤ k n and 0 ≤ s m ≤ k m . We assume that

θ * ∈ Θ(s n , s m ) ⊂ R n×m , where Θ(s n , s m ) = {θ = XBZ T : X ∈ A sn , B ∈ R kn×km and Z ∈ A sm }.
Here, for s n = 0 we assume that n = k n and the set A sn is a set containing only one element, which is the n × n identity matrix, and for 1 ≤ s n ≤ k n ,

A sn = A sn (n, k n ) = {A ∈ D n×kn n , A i• 0 ≤ s n , for all i ∈ [n]} (3) 
where the set D n is a subset of R called an alphabet. The set A sm is defined analogously by replacing n by m. We will also consider the class Θ * (s n , s m ) defined analogously to Θ(s n , s m ), with the only difference that the inequality in (3) is replaced by the equality.

Choosing different values of s n , k n , s m , k m , and different alphabets we obtain several well-known examples of matrix structures.

• Mixture Model:

Θ MM = {θ ∈ R n×m : θ = XB for some B ∈ R k×m and X ∈ {0, 1} n×k with X i• 0 = 1, ∀i ∈ [n]}.
• Sparse Dictionary Learning:

Θ SDL = {θ = BZ T ∈ R d×n : B ∈ R d×k , Z ∈ R n×k with Z i• 0 ≤ s, ∀i ∈ [n]}.
• Stochastic Block Model:

Θ SBM = {θ = ZBZ T ∈ R n×n : B ∈ [0, 1] k×k , Z ∈ {0, 1} n×k with Z i• 0 = 1, ∀i ∈ [n]}.
• Mixed Membership Model:

Θ MMM = {θ = ZBZ T ∈ R n×n : B ∈ [0, 1] k×k , Z ∈ [0, 1] n×k , with Z i• 1 = 1, Z i• 0 ≤ s, for all i ∈ [n]}.
• Bi-clustering Model:

Θ Bi = {θ = XBZ T ∈ R n×m : B ∈ [0, 1] kn×km , X ∈ {0, 1} n×kn , Z ∈ {0, 1} m×km with X i• 0 = 1, ∀i ∈ [n], Z i• 0 = 1, ∀i ∈ [m]}.
Here, the classes Θ SBM and Θ MMM are not exactly equal to but rather subclasses of Θ * (1, 1) and Θ * (s, s), respectively.

Statistical properties of inference methods under the general model ( 1) are far from being understood. Some results were obtained in particular settings such as the Mixture Model and Stochastic Block Model.

Gaussian mixture models provide a useful framework for several machine learning problems such as clustering, density estimation and classification. There is a quite long history of research on mixtures of Gaussians. We mention only some of this work including methods for estimating mixtures such as pairwise distances [START_REF] Dasgupta | Learning mixtures of gaussians[END_REF][START_REF] Dasgupta | A two-round variant of em for gaussian mixtures[END_REF], spectral methods [START_REF] Vempala | A spectral algorithm for learning mixture models[END_REF][START_REF] Hsu | Learning mixtures of spherical gaussians: Moment methods and spectral decompositions[END_REF] or the method of moments [START_REF] Chaudhuri | Learning mixtures of gaussians using the k-means algorithm[END_REF][START_REF] Belkin | Polynomial learning of distribution families[END_REF]. Most of these papers are concerned with construction of computationally efficient methods but do not address the issue of statistical optimality. In [START_REF] Azizyan | Minimax theory for high-dimensional gaussian mixtures with sparse mean separation[END_REF] authors provide precise information theoretic bounds on the clustering accuracy and sample complexity of learning a mixture of two isotropic Gaussians in high dimensions under small mean separation.

The Stochastic Block Model is a useful benchmark for the task of recovering community structure in graph data. More generally, any sufficiently large graph behaves approximately like a stochastic block model for some k, which can be large. The problem of estimation of the probability matrix θ * in the stochastic block model under the Frobenius norm was considered by several authors [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF][START_REF] Wolfe | Nonparametric graphon estimation[END_REF][START_REF] Xu | Edge Label Inference in Generalized Stochastic Block Models: from Spectral Theory to Impossibility Results[END_REF][START_REF] Chan | A consistent histogram estimator for exchangeable graph models[END_REF][START_REF] Borgs | Private graphon estimation for sparse graphs[END_REF] but convergence rates obtained there are suboptimal. More recently, minimax optimal rates of estimation were obtained by Gao et al. [START_REF] Gao | Rate-optimal graphon estimation[END_REF] in the dense case and by Klopp et al [START_REF] Klopp | Oracle inequalities for network models and sparse graphon estimation[END_REF] in the sparse case.

Recently, a related problem to ours was studied by Soni et al. [START_REF] Soni | Noisy matrix completion under sparse factor models[END_REF]. These authors consider the case when the matrix to be estimated is the product of two matrices, one of which, called a sparse factor, has a small number of non-zero entries (in contrast to this, we assume row-sparsity). The estimator studied in [START_REF] Soni | Noisy matrix completion under sparse factor models[END_REF] is a sieve maximum likelihood estimator penalized by the l 0 -norm of the sparse factor where the sieve is chosen as a specific countable set.

Results for the case of finite alphabets

We start by considering the case of finite alphabets D n and D m and complete observations, that is p = 1. In this section, we establish the minimax optimal rates of estimation of θ * under the Frobenius norm and we show that they are attained by the least squares estimator

θ ∈ arg min θ∈Θ Y -θ 2 2 (4)
where Θ is a suitable class of structured matrices. We first derive an upper bound on the risk of this estimator uniformly over the classes Θ = Θ(s n , s m ).

The following theorem provides an oracle inequality for the Frobenius risk of θ. Here and in what follows, we adopt the convention that 0 log x 0 = 0 for any x > 0. We also set for brevity

d = n + m, r n = n ∧ k n , r m = m ∧ k m .
Theorem 1. Let Assumption 1 hold, and let p = 1. If the sets D n and D m are finite, there exists a constant C > 0 depending only on the cardinalities of D n and D m such that, for all θ * ∈ R n×m and all ǫ > 0, the risk of the estimator (4) satisfies

E θ * || θ -θ * || 2 2 ≤ (1 + ǫ) inf θ∈Θ(sn,sm) θ -θ * 2 2 + Cσ 2 ǫ (R X + R B + R Z ),
where R X = nr m ∧ ns n log ekn sn , R B = r n r m , R Z = mr n ∧ ms m log ekm sm . This theorem is proved in Section A. Note that if the set A sn and/or A sm in the definition of Θ(s n , s m ) contains only the identity matrix, the corresponding term R X and/or R Z disappears from the upper bound of Theorem 1.

In Theorem 1, the true signal θ * can be arbitrary. By assuming that θ * ∈ Θ(s n , s m ), we immediately deduce from Theorem 1 that the following bound holds.

Corollary 2. Under the assumptions of Theorem 1,

sup θ∈Θ(sn,sm) E θ || θ -θ|| 2 2 ≤ Cσ 2 (R X + R B + R Z )
for a constant C > 0 depending only on the cardinalities of D n and D m .

The next theorem provides a lower bound showing that the convergence rate of Corollary 2 is minimax optimal. This lower bound is valid for the general matrix completion model [START_REF] Achlioptas | Database-friendly random projections: Johnson-Lindenstrauss with binary coins[END_REF]. In what follows, the notation inf θ stands for the infimum over all estimators θ taking values in R n×m . Theorem 3. Let the entries W ij of matrix W in model (2) be independent random variables with Gaussian distribution N (0, σ 2 ), and let the alphabets D n and D m contain the set {0, 1}. There exists an absolute constant C > 0 such that inf θ sup θ∈Θ(sm,sn)

P θ || θ -θ|| 2 2 ≥ Cσ 2 p (R X + R B + R Z ) ≥ 0.1, (5) 
and

inf θ sup θ∈Θ(sm,sn) E θ || θ -θ|| 2 2 ≥ Cσ 2 p (R X + R B + R Z ) . (6) 
Furthermore, the same inequalities hold with

Θ * (s m , s n ) in place of Θ(s m , s n ) if s n ∈ {0, 1} and s m ∈ {0, 1}.
The proof of Theorem 3 is given in Section B.1.

The three ingredients R X , R B , and R Z of the optimal rate are coming from the ignorance of X, B and Z respectively. The proof is based on constructing subsets of Θ by fixing two of these parameters to get each of the three terms. The choice of B when fixing the pairs (X, B) and (Z, B) is based on a probabilistic method, namely, Lemma 17. Similar techniques have been used in [START_REF] Klopp | Oracle inequalities for network models and sparse graphon estimation[END_REF] to prove the lower bounds for sparse graphon estimation, and in [START_REF] Gao | Rate-optimal graphon estimation[END_REF].

Remark 1. Theorem 3 can be extended to more general sub-Gaussian distributions under an additional Kullback-Leibler divergence assumption. Assume that there is a constant c such that the distribution of Y in model [START_REF] Achlioptas | Database-friendly random projections: Johnson-Lindenstrauss with binary coins[END_REF] satisfies

KL (P θ , P θ ′ ) ≤ cp 2σ 2 θ -θ ′ 2 2 .
Let the alphabets D n and D m contain the set {0, 1}. Then there exists an absolute constant C > 0 such that inf θ sup θ∈Θ(sm,sn) 

P θ || θ -θ|| 2 2 ≥ Cσ 2 p (R X + R B + R Z ) ≥ 0.
E θ || θ -θ|| 2 2 ≥ Cσ 2 p (R X + R B + R Z ) .
The proof of this result is similar to that of Theorem 3 and only needs to replace the equality in (25) by inequality. In addition, the lower bounds hold with

Θ * (s m , s n ) in place of Θ(s m , s n ) if s n ∈ {0, 1} and s m ∈ {0, 1}.
Remark 2. We summarize the minimax rates for some examples introduced in Section 3 in the following table. The case of Θ SBM is due to [START_REF] Gao | Rate-optimal graphon estimation[END_REF].

Θ MM min{n log(ek) + km, nm} Θ SDL min{ns log(ek/s) + kd, nd}

Θ SBM n log(ek) + k 2 Θ Bi min{n log(ek n ) + m log(ek m ) + k n k m , nk m + m log(ek m ), mk n + n log(ek n ), nm} 5 
Optimal rates in the spectral norm

In this section we derive the optimal rates of convergence of estimators of θ * when the error is measured in the spectral norm. Interestingly, our results imply that these optimal rates coincide with those obtained for estimation of matrices with no structure. That is, the additional structure that we consider in the present paper does not have any impact on the rate of convergence of the minimax risk when the error is measured in the spectral norm.

The lower bound under the spectral norm can be obtained as a corollary of the lower bound under the Frobenius norm given by Theorem 3. 

P θ || θ -θ|| 2 ≥ C ′ σ 2 p (n ∨ m) ≥ 0.1, and 
inf θ sup θ∈Θ(sm,sn) E θ || θ -θ|| 2 ≥ C ′ σ 2 p (n ∨ m) .
The proof of this corollary is given in Section B.2.

To get matching upper bounds we can use the soft thresholding estimator introduced in [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] or the hard thresholding estimator proposed in [START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF]. These papers deal with the completion problem for low rank matrices in the context of trace regression model, which is a slightly different setting.

Here, we consider the hard thresholding estimator. Set

Y ′ = Y /p.
The singular value decomposition of matrix Y ′ has the form

Y ′ = rank(Y ′ ) Σ j=1 σ j (Y ′ )u j (Y ′ )v j (Y ′ ) T , (7) 
where rank(Y ′ ) is the rank of Y ′ , σ j (Y ′ ) are the singular values of Y ′ indexed in the decreasing order, and u j (Y ′ ) (respectively, v j (Y ′ )) are the left (respectively, the right) singular vectors of Y ′ . The hard thresholding estimator is defined by the formula θ = Σ

j:σj (Y ′ )≥λ σ j (Y ′ )u j (Y ′ )v j (Y ′ ) T (8) 
where λ > 0 is the regularization parameter. In this section, we assume that the noise variables W ij are bounded as stated in the next assumption.

Assumption 2. For all i, j we have

E(W ij ) = 0, E(W 2 ij ) = σ 2 and there exists a positive constant b > 0 such that max i,j |W ij | ≤ b.
A more general case of sub-Gaussian noise can be treated as well; in this case, we can work on the event E b where W ∞ is bounded by a suitable constant b and show that the probability of the complement of E b is small.

The following theorem gives the upper bound on the estimation error of the hard thresholding estimator [START_REF] Emmanuel | Matrix completion with noise[END_REF].

Theorem 5. Assume that θ * ∞ ≤ θ mx and let Assumption 2 hold. Let λ = c(b + θ mx ) n∨m p
where c > 0 is a sufficiently large absolute constant. Assume that p ≥ log(n + m)/(n ∨ m). Then, with P θ * probability at least 1 -2/(n + m), the hard thresholding estimator θ satisfies

θ -θ * 2 ≤ C(b + θ mx ) 2 n ∨ m p
where C > 0 is an absolute constant.

The proof of Theorem 5 is close to the argument in [START_REF] Klopp | Rank penalized estimators for high-dimensional matrices[END_REF]. It is given in Section C.

A general oracle inequality under incomplete observations

The aim of this section is to present a general theorem about the behavior of least squares estimators in the setting with incomplete observations. This theorem will be applied in the next section to obtain an analog of the upper bound of Theorem 1 for general alphabets. To state the theorem, it does not matter whether we consider a vector or matrix setting. Therefore, in this section, we will deal with the vector model. Assume that we observe a vector Y = (Y 1 , . . . , Y N ) with entries

Y i = E i (θ * i + ξ i ) , i = 1, . . . , N, (9) 
for some unknown θ * = (θ * 1 , . . . , θ * N ). Our goal is to estimate θ * . Here, ξ i are independent random noise variables, and E i are i.i.d. Bernoulli variables with parameter p ∈ (0, 1] such that (E 1 , . . . , E N ) is independent of (ξ 1 , . . . , ξ N ).

When p is known we can equivalently write [START_REF] Candès | The power of convex relaxation: near-optimal matrix completion[END_REF] in the form

Y ′ = θ * + W, (10) 
where now W is a vector with entries

W i = θ * i (E i -p)/p + ξ i E i /p
, and Y ′ = Y /p. In this section, we denote by P θ * the probability distribution of Y ′ satisfying [START_REF] Chan | A consistent histogram estimator for exchangeable graph models[END_REF].

Consider the least squares estimator of θ * :

θ ∈ arg min θ∈Θ Y ′ -θ 2 2 , ( 11 
)
where Θ is a subset of R N . For some element θ 0 of arg min θ∈Θ θθ * 2 2 we set

Θ 1 = {θ ∈ Θ : θ -θ 0 2 ≤ 1}.
Set

ǫ 0 = 1 2 inf{ǫ ∈ (0, 1] : N ǫ 2 > log N ǫ (Θ 1 )}+sup{ǫ ∈ (0, 1] : N ǫ 2 < log N ǫ (Θ 1 )} . Since N ǫ (Θ 1 ) is a decreasing left-continuous function of ǫ ∈ (0, 1], we have 1 2 log N ǫ0 (Θ 1 ) ≤ N ǫ 2 0 ≤ log N ǫ0 (Θ 1 ). ( 12 
)
Theorem 6. Let ξ i be independent random variables satisfying Ee λξi ≤ e λ 2 σ 2 /2 for some σ > 0 and all λ ∈ R. Assume that there exists a constant θ mx such that θ ∞ ≤ θ mx for all θ ∈ Θ. Then, for any θ * ∈ R N , with P θ * -probability at least 1 -4/N ǫ0 (Θ 1 )exp(-pN/6), the least squares estimator [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF] satisfies the oracle inequality

θ -θ * 2 2 ≤ 3 inf θ∈Θ θ -θ * 2 2 + C θ 2 mx + σ 2 p N ǫ 2 0 ,
where C > 0 is an absolute constant.

The proof of this theorem is given in Section D. Note that Theorem 6 has no assumption on the true signal θ * . Using Theorem 6 with θ * ∈ Θ we immediately deduce that

inf θ∈Θ P θ θ -θ 2 2 ≤ C θ 2 mx + σ 2 p N ǫ 2 0 ≥ 1 -4/N ǫ0 (Θ 1 ) -exp(-pN/6),
where C > 0 is an absolute constant.

Theorem 6 shows that the rate of convergence of the least squares estimator is determined by the value of ǫ 0 satisfying the global entropy condition [START_REF] Chaudhuri | Learning mixtures of gaussians using the k-means algorithm[END_REF]. This quantity is the critical covering radius that appeared in the literature in different contexts, see, e.g., [START_REF] Yang | Information-theoretic determination of minimax rates of convergence[END_REF]. In particular, this critical radius has been shown to determine the minimax optimal rates in nonparametric estimation problems. However, it may lead to slightly suboptimal rates (with deterioration by a logarithmic factor) for parametric estimation problems.

Structured matrix completion with general alphabets

For the structured matrix completion over infinite alphabets we consider the following parameter spaces:

Θ(s n , s m ) = {θ = XBZ T : X ∈ A n , B ∞ ≤ B max , Z ∈ A m , θ ∞ ≤ θ mx }.
Here, B max and θ mx are positive constants, and for 1 ≤ s n ≤ k n ,

A n = {A ∈ D n×kn n : A i• 0 ≤ s n , for all i ∈ [n] and A ∞ ≤ 1}.
If s n = 0, we assume that n = k n and we define A sn as the set containing only one element, which is the n × n identity matrix.

The difference from the class Θ(s n , s m ) is only in the fact that the elements of matrix θ ∈ Θ(s n , s m ) and those of the corresponding factor matrices X, B, Z are assumed to be uniformly bounded. This assumption is natural in many situations, for example, in the Stochastic Block Model or in recommendation systems, where the entries of the matrix are ratings. We introduce the bounds of the entries of the factor matrices in order to fix ambiguities associated with the factorization structure.

A key ingredient in applying Theorem 6 to this particular case is to find the covering number log N ǫ (Θ 1 ) when Θ = Θ(s n , s m ). For any Θ ⊂ R n×m , any θ 0 ∈ Θ, and any u > 0, set

Θ u = {θ ∈ Θ : θ -θ 0 2 ≤ u} .
The following result is proved in Section E. Proposition 7. For any θ 0 ∈ Θ(s n , s m ), 0 < ǫ < 1, and u ≤ 1 we have

log N ǫ Θ u (s n , s m ) ≤ R 1 (ǫ) ∧ R 2 (ǫ) ∧ R 3 (ǫ) ∧ R 4 (ǫ), where R 1 (ǫ) = ns n log ek n s n + ms m log ek m s m + (ns n + ms m ) log 6B max √ mns m s n ǫ + r n r m log 9u ǫ , R 2 (ǫ) = nr m log 6u ǫ + ms m log ek m s m + ms m log 2B max √ mns m s n ǫ , R 3 (ǫ) = mr n log 6u ǫ + ns n log ek n s n + ns n log 2B max √ mns m s n ǫ , R 4 (ǫ) = mn log 3u ǫ .
Theorem 6, together with Proposition 7, imply implies the following upper bound on the estimation error in structured matrix completion.

Corollary 8. Consider model [START_REF] Achlioptas | Database-friendly random projections: Johnson-Lindenstrauss with binary coins[END_REF]. Let Assumption 1 hold. Then, for any θ * ∈ R n×m , the least squares estimator (4) with Θ = Θ(s n , s m ) satisfies the inequality

θ-θ * 2 2 ≤ 3 inf θ∈ Θ(sn,sm) θ-θ * 2 2 +C θ 2 mx + σ 2 p (R 1 (ǫ 0 ) ∧ R 2 (ǫ 0 ) ∧ R 3 (ǫ 0 ) ∧ R 4 (ǫ 0 ))
with P θ * -probability at least

1 -exp (-c(R 1 (ǫ 0 ) ∧ R 2 (ǫ 0 ) ∧ R 3 (ǫ 0 ) ∧ R 4 (ǫ 0 ))) -exp(-pmn/18),
where, C, c > 0 are absolute constants.

Note that Proposition 7 and ( 12) imply that ǫ 0 ≥ c ′ (m + n)/mn for some numerical constant c ′ . Then, we have that for the general scheme of matrix completion and general alphabets the upper bound given by Corollary 8 departs from the lower bound of Theorem 3 by a logarithmic factor: Corollary 9. Let the assumptions of Corollary 8 be satisfied. Then the least squares estimator (4) with Θ = Θ(s n , s m ) satisfies the inequality inf θ∈ Θ(sn,sm)

P θ θ -θ 2 2 ≤ C θ 2 mx + σ 2 p [log(n + m) + log(s n s m )] (R X + R B + R Z ) ≥ 1 -exp -c [log(n + m) + log(s n s m )] (R X + R B + R Z ) -exp(-pmn/18)
where C, c > 0 are absolute constants.

Adaptation to unknown sparsity

The estimators considered above require the knowledge of the degrees of sparsity s n and s m of θ * . In this section, we suggest a method that does not require such a knowledge and thus it is adaptive to the unknown degree of sparsity. Our approach will be to estimate θ * using a sparsity penalized least squares estimator. Let

X = ∪ kn sn=1 ∪ km sm=1 Θ(s n , s m ) (13) 
and set

R(s n , s m ) = nr m log(6 √ n ∧ m) ∧ [ns n log (k n s m (n ∧ m))] + mr n log(6 √ n ∧ m) ∧ [ms m log (k n s m (n ∧ m))] + r n r m log(9 √ n ∧ m). (14) 
For any θ = XBZ T ∈ X let

R(θ) = R( X 0,∞ , Z 0,∞ ). ( 15 
)
In the following, Ω denotes the random set of observed indices (i, j) in model [START_REF] Achlioptas | Database-friendly random projections: Johnson-Lindenstrauss with binary coins[END_REF]. In this section we denote by θ the following estimator θ ∈ arg min

θ=XBZ T ∈X Y -θ Ω 2 2 + λR(θ) (16) 
where λ > 0 is a regularization parameter. Note that this estimator does not require the knowledge of p. The following theorem proved in Appendix F gives an upper bound on the estimation error of θ.

Theorem 10. Assume that n m log(3

√ n ∧ m) ≥ 6 log (k n k m ) and d ≥ 10. Let λ = 8(σ ∨ θ mx ) 2 .
Then, for any θ * ∈ R n×m , with P θ * -probability at least 1 -5 exp(-d/10) -2 exp (-pnm) the estimator (16) satisfies

θ -θ * 2 2 ≤ C inf θ∈X θ -θ * 2 2 + (σ ∨ θ mx ) 2 p R(θ)
where C > 0 is an absolute constant.

Theorem 10 implies that for the general scheme of matrix completion and general alphabets we obtain the following upper bound which departs from the lower bound of Theorem 3 by a logarithmic factor:

inf θ∈X P θ θ -θ 2 2 ≤ C (σ ∨ θ mx ) 2 p [log(n ∧ m) + log(s n s m )] (R X + R B + R Z ) ≥ 1 -5 exp(-d/6) -2 exp (-pnm) ,
where C > 0 is an absolute constant. We finish this section by two remarks. 1. Structured matrix estimation. In the case of complete observations, that is p = 1, the estimator (16) coincides with the following estimator θ ∈ arg min

θ=XBZ T ∈X Y -θ 2 2 + λR(θ) . (17) 
Then, one can show that, with high probability, the following upper bound on the estimation error holds

θ -θ * 2 2 ≤ C σ 2 [log(n ∧ m) + log(s n s m )] (R X + R B + R Z ) .
Here we do not need an upper bound on θ * ∞ . At the same time, the estimator ( 17) is adaptive to the sparsity parameter (s n , s m ).

2. Sparse Factor Model. Sparse Factor Model is studied in [START_REF] Soni | Noisy matrix completion under sparse factor models[END_REF]. With our notation, it corresponds to a particular case of n = k n and X being the identity matrix with the difference that we consider row-sparse matrix Z while Z is assumed component-wise sparse in [START_REF] Soni | Noisy matrix completion under sparse factor models[END_REF]. Convergence rates obtained in [START_REF] Soni | Noisy matrix completion under sparse factor models[END_REF] are of the order p -1 (nk m + k m m) (up to a logarithmic factor). This is greater then the upper bound given by Theorem 10 which, in this setting, is of the order

p -1 [n(k m ∧ m) + s m m]. 9 Proofs A Proof of Theorem 1 Set R1 (n, m) = ns n log ek n |D n | s n + r n m, R2 (n, m) = ns n log ek n |D n | s n + ms m log ek m |D m | s m + r n r m .
Since θ is the least squares estimator on Θ(s n , s m ), and Y = θ * + W , we have that for any θ ∈ Θ(s n , s m ),

θ -θ * 2 2 ≤ θ -θ * 2 2 + 2 θ -θ, W . (18) 
Now we use the following lemma proved in Section G.1.

Lemma 11. Let W ∈ R n×m be a random matrix with independent σ-sub-Gaussian entries. Introduce the notation

U * θ = sup θ∈Θ(sn,sm),θ = θ θ -θ, W 2 θ -θ 2 2 .
For any t > 0, the following inequalities hold, where C > 0 is an absolute constant:

(i) sup θ∈Θ(sn,sm)

P U * θ ≥ 3σ 2 R1 (n, m) + t ≤ e -t , sup θ∈Θ(sn,sm) E(U * θ ) ≤ Cσ 2 R1 (n, m), (ii) 
sup θ∈Θ(sn,sm)

P U * θ ≥ 3σ 2 R2 (n, m) + t ≤ e -t , sup θ∈Θ(sn,sm) E(U * θ ) ≤ Cσ 2 R2 (n, m), (iii) sup θ∈Θ(sn,sm) P U * θ ≥ 3σ 2 (nm + t) ≤ e -t , sup θ∈Θ(sn,sm) E(U * θ ) ≤ Cσ 2 nm.
Applying Lemma 11 (i) to [START_REF] Gao | Rate-optimal graphon estimation[END_REF], for any ǫ > 0, we get that

E θ -θ * 2 2 ≤ (1 + ǫ) θ * -θ 2 2 + Cσ 2 ǫ R1 (n, m). ( 19 
)
On the other hand, applying Lemma 11 (i) to θθ, W = ( θθ) T , W T with n replaced by m, for all ǫ > 0, we get

E θ -θ * 2 2 ≤ (1 + ǫ) θ * -θ 2 2 + Cσ 2 ǫ R1 (m, n). (20) 
Finally using Lemma 11 (ii) and (iii) we get

E θ -θ * 2 2 ≤ (1 + ǫ) θ * -θ 2 2 + Cσ 2 ǫ R2 (n, m) (21) 
and

E θ -θ * 2 2 ≤ (1 + ǫ) θ * -θ 2 2 + Cσ 2 ǫ nm. (22) 
Inequalities ( 19) - [START_REF] Paul W Holland | Stochastic blockmodels: First steps[END_REF] imply that for all ǫ > 0 and all θ ∈ Θ(s n , s m )

E θ -θ * 2 2 ≤ (1 + ǫ) θ * -θ 2 2 + Cσ 2 ǫ R3 (n, m).
where R3 (n, m) = min{ R1 (n, m), R1 (m, n), R2 (n, m), nm}. Taking the supremum over θ ∈ Θ(s n , s m ) and simplifying the expression for R3 (n, m) we obtain the result of Theorem 1.

B Proof of Lower Bounds B.1 Proof of Theorem 3

Lower bound with the terms R X and R Z . We only prove the lower bound with the term R Z by fixing X = X 0 and B = B 0 , where X 0 and B 0 are matrices specified below. The bound with R X is analogous. Fix

X 0 = [I kn×kn , 0] T , if n ≥ k n , [I n×n , 0], otherwise.
By Lemma 16, for k m ≥ 2, we can find S 0 ⊆ {0, 1} km with the following properties:

(i) log |S 0 | ≥ c * 1 s m log ekm sm , (ii) c * 2 s m ≤ a 0 ≤ s m for all a ∈ S 0 , and a 0 = s m for all a ∈ S 0 if s m ≤ k m /2, (iii) a -b 2 2 ≥ c * 3 s m for all a, b ∈ S 0 such that a = b,
where c * j > 0, j = 1, 2, 3, are absolute constants. Assume first that k m ≥ 2 and min{ rn 97 , c * 1 s m log ekm sm } ≥ log 8. Then, choose an arbitrary subset S ⊆ S 0 of cardinality |S| = ⌊exp min{ rn 97 , c * 1 s m log ekm sm } ⌋ where r n = n ∧ k n and we denote by ⌊x⌋ the integer part of x. Since log |S| ≤ r n /96, Lemma 17 implies that there exists a matrix Q ∈ {-1, 1} rn×km such that, for any a, b ∈ S,

r n 2 a -b 2 2 ≤ Qa -Qb 2 2 ≤ 3r n 2 a -b 2 2 . ( 23 
)
For this Q, let

B 0 = [δQ, 0 (kn-rn)×km ] T with δ > 0 to be specified below. Define Z = {Z ∈ {0, 1} m×km , Z i• ∈ S for all i ∈ [m]} and T Z = θ = X 0 B 0 Z T , Z ∈ Z . We have T Z ⊆ Θ(s n , s m ) and log |T Z | = log |Z| = m log |S|.
For any matrices θ = X 0 B 0 Z T ∈ T Z , and θ = X 0 B 0 ZT ∈ T Z we have

||θ -θ|| 2 2 = δ 2 ||QZ T -Q ZT || 2 2 = δ 2 m i=1 ||QZ T i• -Q ZT i• || 2 2 .
Using [START_REF] Hsu | Learning mixtures of spherical gaussians: Moment methods and spectral decompositions[END_REF] and property (iii) of S 0 , we find

||θ -θ|| 2 2 ≥ r n δ 2 2 m i=1 Z i• -Zi• 2 2 ≥ c * 3 r n δ 2 ms m 2 . ( 24 
)
On the other hand, Lemma 15 together with [START_REF] Hsu | Learning mixtures of spherical gaussians: Moment methods and spectral decompositions[END_REF] implies that the Kullback-Leibler divergence between P θ and Pθ satisfies

KL(P θ , Pθ) = p 2σ 2 ||θ -θ|| 2 2 ≤ 3pr n δ 2 4σ 2 m i=1 Z i• -Zi• 2 2 ≤ 3pr n δ 2 ms m 2σ 2 . (25) 
If we choose now δ 2 = C0σ 2 prnsm log |S| for some absolute constant C 0 > 0 small enough, then (24), (25), Theorem 2.5 in [START_REF] Alexandre | Introduction to nonparametric estimation[END_REF] and the fact that |S| ≥ 8 imply that

inf θ sup θ∈TZ P θ || θ -θ|| 2 2 ≥ C 1 σ 2 p mr n ∧ ms m log ek m s m ≥ 0.7 (26) 
for some absolute constant C 1 > 0. This yields the term of the lower bound containing R Z in the case when k m ≥ 2 and min{ rn 97 , c * 1 s m log ekm sm } ≥ log 8. In the complementary case, when k m = 1 or min{ rn 97 , c * 1 s m log ekm sm } < log 8, the value R Z is smaller than Cσ 2 m/p for an absolute constant C > 0. Thus, in this case, it suffices to prove the lower bound of order m/p. To do this, let the matrices X 0 and B 0 be such that their (1, 1)th entry is equal to 1 and all other entries are 0, and consider the set of matrices Z such that their first column is a binary vector in {0, 1} m and all other columns are 0. This defines a set of matrices θ = X 0 B 0 Z T contained in Θ(s n , s m ), which is isometric, under the Frobenius norm, to the set of binary vectors {0, 1} m equipped with the Euclidean norm. Therefore, a lower bound of order m/p follows in a standard way as for vector estimation problem. We omit further details.

Analogously, by permuting n and m, we obtain that inf θ sup θ∈Θ(sn,sm)

P θ || θ -θ|| 2 2 ≥ C 1 σ 2 p nr m ∧ ns n log ek n s n ≥ 0.7, (27) 
which yields the term of the lower bound containing R X .

Lower bound with the term R B . To obtain the term containing R B in the lower bound (5), we fix X = X 0 and Z = Z 0 where

X 0 = [I kn×kn , 0] T , if n ≥ k n , [I n×n , 0],
otherwise, and

Z 0 = [I km×km , 0] T , if m ≥ k m , [I m×m , 0], otherwise.
We first note that if r n r m < 16, the lower bound with term R B is trivially obtained by distinguishing between two matrices. For r n r m ≥ 16, by vectorizing a r n × r m matrix into a r n r m dimensional vector, and applying the Varshamov-Gilbert bound [36, Lemma 2.9] we obtain that there exists a subset B ⊆ {0, 1} rn×rm such that for any

Q, Q ∈ B, ||Q -Q|| 2 2 = i,j 1{Q ij = Qij } ≥ r n r m 8
and log |B| ≥ rnrm 8 . We define

T B = θ = X 0 BZ T 0 , B = δ Q 0 0 0 , Q ∈ B . Clearly, T B ⊆ Θ(s n , s m ). For any θ = X 0 BZ T 0 ∈ T B , θ = X 0 BZ T 0 ∈ T B , we have ||θ -θ|| 2 2 = ||B -B|| 2 2 = δ 2 ||Q -Q|| 2 2 ≥ r n r m δ 2 8 .
Lemma 15 implies that KL(P θ , Pθ)

= p 2σ 2 ||θ -θ|| 2 2 ≤ pδ 2 rnrm 2σ 2
. Choosing δ 2 = C ′ 0 σ 2 /p for some constant C ′ 0 > 0 small enough and using Theorem 2.5 in [START_REF] Alexandre | Introduction to nonparametric estimation[END_REF] we obtain

inf θ sup θ∈TB P θ -θ 2 2 ≥ C 2 σ 2 p r n r m ≥ 0.7 (28) 
for some absolute constant C 2 > 0.

Combining ( 26), ( 27) and ( 28) proves the lower bound [START_REF] Belkin | Polynomial learning of distribution families[END_REF]. The bound (6) follows from (5) and Markov's inequality.

Finally, the lower bounds for the classes Θ * (s n , s m ) with s n , s m ∈ {0, 1} are proved analogously. It suffices to note that, if s m = 0, there is no matrix Z in the definition of the class and thus there is no term R Z . If s m = 1 we follow the above argument corresponding to R Z with the only difference that, by (ii) of Lemma 16, we can grant the exact equality a 0 = 1 for all a ∈ S 0 and k m ≥ 2. We omit further details.

B.2 Proof of Corollary 4

Define

Γ 2 = {θ = XBZ T : X ∈ A sn (n, 2), B ∈ R 2×2 and Z ∈ A sm (m, 2)}. For any θ = XBZ T ∈ Γ 2 , let X = [X, 0 n×(kn-2) ], Z = [Z, 0 m×(km-2) ], B = B 0 2×(km-2) 0 (kn-2)×2
0 .

We have θ = XBZ T = X B ZT ∈ Θ(s n , s m ), which implies that Γ 2 ⊆ Θ(s n , s m ). Thus, for any t > 0, and any estimator θ ∈ R n×m we have sup θ∈Θ(sn,sm)

P θ ( θ -θ 2 ≥ t) ≥ sup θ∈Γ2 P θ ( θ -θ 2 ≥ t). (29) 
For an estimator θ ∈ R n×m , let θ2 ∈ R n×m be the closest matrix to θ in the Frobenius norm among all matrices of rank at most 2. Since θ ∈ Γ 2 is of rank at most 2, we have θ -θ2 ≤ θθ and θ -θ2

2 2 ≤ 4 θ -θ2 2 ≤ 8 θ -θ 2 + θ -θ2 2 ≤ 16 θ -θ 2 .
Thus, 

P θ ( θ -θ 2 ≥ t) ≥ P θ ( θ2 -θ 2 2 ≥ 16t) for any θ ∈ Γ
P θ ( θ -θ 2 ≥ t) ≥ inf θ sup θ∈Γ2 P θ ( θ -θ 2 2 ≥ 16t).
The result of Corollary 4 follows now by choosing t = C 3 σ 2 p (n + m) for some constant C 3 > 0 and using Theorem 3 with k m = k n = 2.

C Proof of Theorem 5

Note that

Y ′ -θ * = Y /p -θ * = W . It is straightforward to see that if λ ≥ W , then θ -θ * ≤ 2λ.
Thus, to prove the theorem, it suffices to show that for λ = c(b + θ mx ) n∨m p with c > 0 large enough we have λ ≥ W with high probability.

Since

W ij = θ ij (E ij -p)/p + ξ ij E ij /p, we have W ≤ p -1 ( Σ 1 + Σ 2 ) ( 30 
)
where Σ 1 ∈ R n×m is a matrix with entries ξ ij E ij and Σ 2 ∈ R n×m is a matrix with entries θ ij (E ij -p). The second term in ( 30) is controlled using the following bound on the spectral norms of random matrices.

Proposition 12 ([4]).

Let A be an n × m matrix whose entries A ij are independent centered bounded random variables. Then, for any 0 < ǫ ≤ 1/2 there exists an absolute constant c ǫ depending only on ǫ such that, for every t > 0,

P A ≥ (1 + ǫ)2 √ 2(σ 1 ∨ σ 2 ) + t ≤ (n ∧ m) exp - t 2 c ǫ σ 2 * where σ 1 = max i j E[A 2 ij ], σ 2 = max j i E[A 2 ij ], σ * = max ij |A ij |.
We now apply Proposition 12 with

A ij = (E ij -p)θ ij .
Then

σ 1 ≤ θ mx √ np, σ 2 ≤ θ mx √ mp and σ * ≤ θ mx .
Using these bounds and taking in Proposition 12 the values ǫ = 1/2 and t = √ c 1/2 θ mx log(n + m) we obtain that there exists an absolute constant c * > 0 such that

Σ 2 ≤ 3θ mx 2(n ∨ m)p + c * θ mx 2 log(n + m)
with probability at least 1 -1/(n + m). Similarly, there exists an absolute constants c * > 0 such that, with probability at least 1 -1/(n + m),

Σ 1 ≤ 3σ 2(n ∨ m)p + c * b 2 log(n + m).
Using these remarks, the assumption p ≥ log(n + m)/(n ∨ m), and ( 30) we obtain that the choice λ = c(b + θ mx ) n∨m p with c > 0 large enough implies the inequality λ ≥ W with probability at least 1 -2/(n + m).

D Proof of Theorem 6

Let R = 3(θ 2 mx +σ 2 ) p N ǫ 2 0 . We consider two cases separately.

Case 1: θ ∈ G {θ ∈ Θ, θθ 0 2 ≤ 2 s * R}. Then the desired result follows from the fact that θθ 0 2 ≤ 2 s * R and from the inequality

θ -θ * 2 2 ≤ 2 θ 0 -θ * 2 2 + 2 θ -θ 0 2 2 .
Case 2: θ ∈ G. The definition of the least squares estimator [START_REF] Chatterjee | Matrix estimation by universal singular value thresholding[END_REF] implies

Y ′ -θ 2 2 ≤ Y ′ -θ 0 2 2 . Writing Y ′ as θ * + W and rearranging, we obtain θ -θ * 2 2 ≤ θ 0 -θ * 2 2 + 2 θ -θ 0 , W . Since θ ∈ G c , Lemma 18 yields θ -θ 0 , W ≤ 1 8 θ -θ 0 2 2 + 96R 2 (31) 
with probability greater than 1 -4 exp(-αR 2 /2) -2 exp(-pN/6) where α = p 6(θ 2 mx +σ 2 ) . On the event where [START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF] 

holds, θ -θ * 2 2 ≤ θ 0 -θ * 2 2 + 1 4 θ -θ 0 2 2 + 192R 2 ≤ 3 2 θ 0 -θ * 2 2 + 1 2 θ -θ * 2 2 + 192R 2 .
This yields θθ * 2 2 ≤ 3 θ 0θ * 2 2 + 384R 2 with probability greater than 1 -4 exp(-αR 2 /2)exp(-pN/6).

E Proof of Proposition 7

We start by proving the upper bound corresponding to R 1 (ǫ). Let Ān (δ) denote the δ-covering set of A n under the ℓ ∞ norm. For any given θ = XBZ T ∈ Θ u (s n , s m ), there exist X 0 ∈ Ān (δ 1 ) and

Z 0 ∈ Ām (δ 2 ) such that ||X -X 0 || ∞ ≤ δ 1 and ||Z -Z 0 || ∞ ≤ δ 2 .
For such X 0 and Z 0 , let T (X 0 , Z 0 ) be the ǫ/3-covering set of T u (X 0 , Z 0 ) defined in Lemma 21. For any B ∈ T u (X 0 , Z 0 ), there exists B 0 ∈ T (X 0 , Z 0 ) such that

||XBZ T -X 0 B 0 Z T 0 || 2 ≤ ||XBZ T -X 0 BZ T || 2 + ||X 0 BZ T -X 0 BZ T 0 || 2 + ||X 0 BZ T 0 -X 0 B 0 Z T 0 || 2 ≤ 2s n √ nm X -X 0 ∞ BZ ∞ + 2s m √ nm X 0 B ∞ Z -Z 0 ∞ + ǫ 3 ≤ 2B max √ nms n s m (δ 1 + δ 2 ) + ǫ 3 ,
where in the second inequality we have used Lemma 23 and the last inequality is due to the assumptions that

||B|| ∞ ≤ B max , ||X|| ∞ ≤ 1 and ||Z|| ∞ ≤ 1. Choosing δ 1 = δ 2 = ǫ/(6B max √ nms n s m ) we get that the set Θ u := X0∈An(δ1),Z0∈Am(δ2) T (X 0 , Z 0 )
is an ǫ-covering set of Θ u (s n , s m ). Then, Lemmas 21 and 22 imply

log N ǫ Θ u (s n , s m ) ≤ log A n (δ 1 ) + log A m (δ 2 ) + max X0,Z0 log T (X 0 , Z 0 ) ≤ ns n log ek n s n + ns n log 6B max √ mns m s n ǫ + r n r m log 9u ǫ +ms m log ek m s m + ms m log 6B max √ mns m s n ǫ .
To get upper bounds corresponding to R 2 (ǫ), R 3 (ǫ) and R 4 (ǫ) we define 

Θ 1 u = θ = AZ T , A ∈ [-s n B max , s n B max ] n×km , Z ∈ A m , θ -θ 0 2 ≤ u , Θ 2 u = θ = XG T , X ∈ A n , G ∈ [-s m B max , s m B max ] kn×m , θ -θ 0 2 ≤ u , and Θ 3 u = θ ∈ [-s n s m B max , s n s m B max ] n×m , θ -θ 0 2 ≤ u . It is easy to verify that Θ u (s n , s m ) ⊆ Θ 1 u , Θ u (s n , s m ) ⊆ Θ 2 u and Θ u (s n , s m ) ⊆ Θ 3 u .
= XBZ T ∈ X Y -θΩ 2 2 + λR( θ) ≤ Y -θ Ω 2 2 + λR(θ) which implies θΩ -θ * Ω 2 2 ≤ θ Ω -θ * Ω 2 2 -2 ξ Ω , θ -θ * + λR(θ) + 2 ξ Ω , θ -θ * -λR( θ) (32) 
where we set ξ = (ξ ij ). We will bound each term in [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF] separately. Lemma 27 implies that with probability at least 1exp(-pnm) -2 exp(-d/10),

ξ Ω , θ -θ * ≤ 2 (σ ∨ θ mx ) 2 R( θ) + p 8 θ -θ * 2 2 . (33) 
To control ξ Ω , θθ * , we use Lemma 28 with t = p θθ * 2 2 + (σ ∨ θ mx ) 2 R(θ). It follows that, with probability at least 1exp(-d/2),

ξ Ω , θ -θ * ≤ (σ ∨ θ mx ) 2 R(θ) + p θ -θ * 2 2 (34) 
where we have used that R(θ) ≥ d. On the other hand, Lemma 24 implies that, with probability at least 1exp(-pnm) -2 exp(-d/6),

θΩ -θ * Ω 2 2 + 4 θ 2 mx R( θ) ≥ p 2 θ -θ * 2 2 . (35) 
Finally, using Lemma 26 with

a ij = (θ -θ * ) 2 ij and t = p 2 θ -θ * 2 2 + 4θ 2 mx d we get that, with probability at least 1 -exp(-d), θ Ω -θ * Ω 2 2 ≤ 4θ 2 mx R(θ) + 3p 2 θ -θ * 2 2 ( 36 
)
where we have used that R(θ) ≥ d. Plugging ( 33) -( 36) in [START_REF] Negahban | Restricted strong convexity and weighted matrix completion: Optimal bounds with noise[END_REF] we get

p 4 θ -θ * 2 2 ≤ 5p 2 θ -θ * 2 2 + 8 (σ ∨ θ mx ) 2 R( θ) + 6 (σ ∨ θ mx ) 2 R(θ) + λR(θ) -λR( θ)
with probability larger then 1 -5 exp(-d/10) -2 exp (-pnm) where we have used that d ≥ 10. Taking here λ = 8 (σ ∨ θ mx ) 2 finishes the proof.

G Proofs of the lemmas G.1 Lemmas for Theorem 1

Proof of Lemma 11. We start by proving (i). Note that for any fixed X ∈ A n , θ = XBZ T belongs to a linear space of dimension not greater than nm ∧ k n m = r n m as BZ T belongs to a linear space of dimension not greater than k n m. Thus, θθ * belongs to a linear space of dimension not greater than r n m + 1, which we denote by W rnm (X). We have

sup θ∈Θ(sn,sm),θ =θ * θ -θ * , W 2 θ -θ * 2 2 ≤ max X∈An U X
where, for a fixed X ∈ A n , we define

U X = sup θ∈Θ(sn,sm),θ =θ * ,θ=XBZ T θ -θ * , W 2 θ -θ * 2 2 ≤ sup u∈Wr n m (X): u 2=1 u, W .
It follows from Lemma 13 that

P U X ≥ σ 2 (2(r n m + 1) + 3v) ≤ e -v , ∀v > 0.
Note that, for any A ∈ A n , there are at most s n non-zero entries in each row of A. This implies that the number of different supports of matrix A is at most kn sn n . For those ns n non-zero entries, there are at most |D n | nsn choices. Then, we have

log |A n | ≤ n log k n s n + ns n log |D n | ≤ ns n log ek n |D n | s n . (37) 
Applying the union bound and using (37) we get

P max X∈An U X ≥ σ 2 (2(r n m + 1) + 3v) ≤ ek n |D n | s n snn e -v , ∀v > 0.
which yields the first result of Lemma 11. To get the bound on the expectation, we use the fact that for any non-negative random variable ξ and any a > 0

P(ξ ≥ a + t) ≥ e -t , ∀t > 0 implies Eξ ≤ a + 1.
The proof of (ii) follows the same lines fixing both X and Z. To prove (iii) we use that θ = XBZ T belongs to a linear space of dimension not greater than nm.

Lemma 13. Let ξ be a σ-subgaussian random vector in R n , and let W be a linear subspace of R n with dim(W) = d. Consider the Euclidean ball B(0, 1) = {u ∈ W : u 2 ≤ 1}. Then, for any t > 0, P max u∈B(0,1)

(u T ξ) 2 ≥ σ 2 (d + 2 √ dt + 2t) ≤ e -t .
Proof. We have max u∈B(0,1)

(u T ξ) 2 = max u∈B(0,1) (u T P W ξ) 2 = P W ξ 2 2
where P W is the orthogonal projector onto W. Applying the following lemma with A = P W yields the result.

Lemma 14 (Hsu et al. [START_REF] Hsu | A tail inequality for quadratic forms of subgaussian random vectors[END_REF]). Let ξ be a σ-subgaussian random vector in R n , and let A ∈ R n×n be a matrix. Set Σ = A T A. Then, for any t > 0,

P Aξ 2 2 ≥ σ 2 (Tr(Σ) + 2 Tr(Σ 2 )t + 2λ max (Σ)t) ≤ e -t
where Tr(Σ) and λ max (Σ) denote the trace and the maximal eigenvalue of Σ.

G.2 Lemmas for Theorem 3

Lemma 15. Assume that the noise variables W ij in model ( 1) are i.i.d. Gaussian with distribution N (0, σ 2 ). Then, the Kullback-Leibler divergence between P θ and P θ ′ has the form

KL (P θ , P θ ′ ) = p 2σ 2 θ -θ ′ 2 2 .
Proof of this lemma is straighforward and it is therefore omitted.

Lemma 16. Let k ≥ 2 and s ≥ 1 be integers, s ≤ k. There exists a subset S 0 of the set of binary sequences {0, 1} k such that

(i) log |S 0 | ≥ c * 1 s log ek s , (ii) c *
2 s ≤ a 0 ≤ s for all a ∈ S 0 , and a 0 = s for all a ∈ S 0 if s ≤ k/2, (iii) ab 2 2 ≥ c * 3 s for all a, b ∈ S 0 such that a = b, where c * j > 0, j = 1, 2, 3, are absolute constants. Proof. For s ≤ k/2 the result follows from Lemma A.3 in [START_REF] Rigollet | Exponential screening and optimal rates of sparse estimation[END_REF]. For k/2 < s ≤ k and k ≥ 32, we restrict the consideration only to binary sequences in {0, 1} k such that the first m = ⌈k/4⌉ elements can be either 0 or 1, the last sm elements are 1 and the remaining elements are 0. Then, (i) -(iii) follow from the Varshamov-Gilbert bound [36, Lemma 2.9] applied to the set of binary sequences of length m. For k/2 < s ≤ k and k < 32, the result is obvious. Lemma 17. Let {a 1 , a 2 , . . . , a N } ⊆ {0, 1} k . Let r be an integer satisfying r > 96 log N . Then, there exists a matrix Q ∈ {-1, 1} r×k such that for any

u, v ∈ [N ], r 2 a u -a v 2 2 ≤ Qa u -Qa v 2 2 ≤ 3r 2 a u -a v 2 2 .
Proof. The result follows immediately from Johnson -Lindenstrauss Lemma as stated in [1, Theorem 2] by taking there β = 1 and ǫ = 1/2.

G.3 Lemmas for Theorem 6

Lemma 18. Let R =

3(θ 2 mx +σ 2 ) p N ǫ 2 0 and Θ R = θ ∈ Θ, θ -θ 0 2 ≥ 2 s * R . Then we have P sup θ∈Θ R θ -θ 0 , W - 1 8 θ -θ 0 2 2 > 96R 2 ≤ 4 exp - αR 2 2 +exp(-pN/6) where α = p 6(θ 2 mx +σ 2 ) . Proof of Lemma 18. Let E = { W 2 ≤ N 2α } and for s ≥ 2 let Θ R s = {θ ∈ Θ R , 2 s R ≤ θ -θ 0 2 ≤ 2 s+1 R}. Then we have that Θ R = ∪ ∞ s=s * Θ R s .
The union bound yields

P sup θ∈Θ R θ -θ 0 , W - 1 8 θ -θ 0 2 2 > 96R 2 , E ≤ ∞ s=s * P sup θ∈Θ R s θ -θ 0 , W - 1 8 θ -θ 0 2 2 > 96R 2 , E ≤ ∞ s=s * P sup θ∈Θ R s θ -θ 0 , W ≥ 2 2s-3 + 96 R 2 , E ≤ ∞ s=s * P sup θ∈Θ 2 s+1 R θ -θ 0 , W ≥ 2 2s-3 + 96 R 2 , E .
where the last step is due to the fact that Θ R s ⊆ Θ 2 s+1 R . Now we are going to apply Lemma 19 with D = 2 s+1 R, ǫ = Dǫ 0 and t = (2 2s-4 + 48)R 2 . It is easy to check that t ∈ [DR, D 2 ] for all s ≥ s * . Then [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF] yields

∞ s=s * P sup θ∈Θ 2 s+1 R θ -θ 0 , W ≥ 2 2s-3 + 96 R 2 , E ≤ ∞ s=2 2e -αsR 2 4 ≤ 4e -αR 2 2 .
The last inequality holds when αR 2 ≥ 4. By Lemma 20, P (E c ) ≤ exp(-pN/6), and therefore we obtain the desired result.

Lemma 19. Suppose ǫ satisfies √ N ǫ ≤ 2D log N ǫ (Θ D ). Then, for D ≥ 2 log N ǫ (Θ D )/α and for any t ∈ [D 2 log N ǫ (Θ D )/α, D 2 ], we have P sup θ∈ΘD θ -θ 0 , W ≥ 2t, E ≤ 2 exp - αt 2 2D 2 (38) 
where

E = { W 2 ≤ N 2α }.
Proof of Lemma 19. Let C D be an ǫ-covering set of Θ D under the Frobenius norm. That is, for any θ ∈ Θ D , there exists θ ∈ C D such that θθ 2 ≤ ǫ.

Denote by N N ǫ (Θ D ) the minimum cardinality of such C D . This yields

θ -θ 0 , W = θ -θ 0 , W + θ -θ, W ≤ max θ∈CD θ -θ 0 , W + ǫ W 2 ,
where we use Cauchy-Schwarz for the last inequality. On the event E, we have

that ǫ W 2 ≤ ǫ N 2α ≤ D 2 log(N ǫ (Θ D ))/α. It implies P sup θ∈ΘD θ -θ 0 , W ≥ 2t, E ≤ P max θ∈CD θ -θ 0 , W ≥ t for t ≥ D 2 log N ǫ (Θ D )/α.
By union bound and Lemma 20, the right hand side of the above inequality can be bounded from above by

θ∈CD P θ -θ 0 , W ≥ t ≤ exp -α min{t 2 /D 2 , t)} + log N ǫ (Θ D ) .
Then the desired result [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF] holds when D 2 log N/α ≤ t ≤ D 2 .

Lemma 20. Let α = p 6(θ 2 mx +σ 2 ) . Then, for any t > 0 and a ∈ R n , we have

P { a, W > t} ≤ exp -α min t 2 a 2 , θ mx t a ∞ , (39) 
and

P W 2 ≥ N 2α ≤ exp(-pN/6). ( 40 
)
Proof of Lemma .

Here the second inequality is due to the fact that Ee λ(Ei-p) ≤ e λp for |λ| ≤ 1. Now, following the Chernoff argument as in the proof of Lemma 28 we get [START_REF] Wolfe | Nonparametric graphon estimation[END_REF].

To prove [START_REF] Xu | Edge Label Inference in Generalized Stochastic Block Models: from Spectral Theory to Impossibility Results[END_REF] note first that the variance of W i satisfies

EW 2 i = θ 2 i 1 -p p + Eξ 2 i p ≤ θ 2 mx + σ 2 p .
Then we have .

W 2 i -EW 2 i = (θ * i ) 2 (E i -p)(1 -2p) p 2 + E i p 2 (ξ 2 i -Eξ 2 i )+ E i -p p 2 Eξ 2 i + E i (E i -p) p 2 2θ * i ξ i When λ(θ 2 mx + √ 2σ 2 )/p 2 ≤ 1, we obtain E e λ(W 2 i -EW 2 i ) ≤ E e λ(θ * i ) 2 (E i -p)(
The Chernoff argument yields

P N i=1 W 2 i -EW 2 i ≥ t ≤ exp -λt + 6λ 2 (θ 4 mx + σ 4 ) p 3 N .
For t = 2(θ 2 mx +σ 2 ) p N , we choose λ = p 2 6(θ 2 mx +σ 2 ) to get the desired result.

G.4 Lemmas for Proposition 7

Lemma 21. For any fixed X ∈ R n×kn and Z ∈ R m×km , let

T R (X, Z) = θ = XBZ T , B ∈ R kn×km , ||θ -θ 0 || 2 ≤ R . Then, for any 0 < ǫ ≤ R N ǫ (T R (X, Z)) ≤ 3R ǫ rnrm .
Proof. Note that for any fixed X ∈ R n×kn and Z ∈ R m×km the set of matrices θ = XBZ T , B ∈ R kn×km belongs to a linear subspace of R n×m of dimension at most r n r m . To see it, note that any of such matrices θ can be written as θ = rn i=1 rm j=1 a ij (θ)M ij with scalars a ij (θ) ∈ R and matrices M ij ∈ R n×m . Now, applying the standard bound on the covering number of the ball in the Euclidean norm (see, e.g. Lemma 5.2 in [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF]) we get the result of the lemma.

Lemma 22. We have the following upper bound on the ǫ-covering number of A n under ℓ ∞ norm:

N ǫ (A n , • ∞ ) ≤ k n s n n 1 ǫ nsn .
Proof. Note that there are kn sn n subsets of {1, . . . , k n } n that satisfy the column sparsity constraint of A ∈ A n . For any such subset, the selected ns n entries lie in the unit Euclidean ball B 2 [START_REF] Achlioptas | Database-friendly random projections: Johnson-Lindenstrauss with binary coins[END_REF]. By the standard volume ratio argument we can find an ǫ-covering set of B 2 (1) with at most ( 1 ǫ ) nsn elements. Hence, the lemma follows.

Lemma 23. Assume that

A ∈ R n×k , Z ∈ R m×k and that each row of Z is s-sparse. Then, AZ T 2 ≤ s √ mn A ∞ Z ∞ .
Proof. We have

AZ T 2 2 = i∈[n] j∈[m]   l∈[k] A il Z jl   2 ≤ i∈[n] j∈[m] (s A ∞ Z ∞ ) 2 ≤ s 2 nm A 2 ∞ Z 2 ∞ .
G.5 Lemmas for Theorem 10

Lemma 24. Assume that n m log (3 √ nm) ≥ 6 log (k n k m ). Then, with probability larger then 1 -2 exp(-d/6)exp(-pnm)

sup θ∈Xν p 2 θ -θ * 2 2 -θ Ω -θ * Ω 2 2 θ 2 mx R(θ) ≤ 4 
where R(θ) is defined in [START_REF] Dasgupta | A two-round variant of em for gaussian mixtures[END_REF].

Proof. Let E 2 = ij (E ij -p) 2 ≤ 3pnm . Lemma 26 implies that P(E 2 ) ≥ 1 -exp (-pnm).
Using the definition of X ν we have that

P sup θ∈Xν p 2 θ -θ * 2 2 -θ Ω -θ * Ω 2 2 θ 2 mx R(θ) ≥ 4, E 2 ≤ kn sn=1 km sm=1 I sn,sm (41) 
where

I sn,sm = P sup θ∈ Θ ν (sn,sm) p 2 θ -θ * 2 2 -θ Ω -θ * Ω 2 2 ≥ 4 θ 2 mx R(s n , s m ), E 2 and Θ ν (s n , s m ) {θ ∈ Θ(s n , s m ), θ -θ * 2 > 2 6 ν}.
In order to bound I sn,sm from above, we use a standard peeling argument. Let µ = 2. For l ∈ N set

S l = θ ∈ Θ(s n , s m ) : µ l ν ≤ θ -θ * 2 ≤ µ l+1 ν . Then, Θ ν (s n , s m ) = ∞ ∪ l=7
S l and the union bound yields

I sn,sm ≤ ∞ l=7 P sup θ∈S l p 2 θ -θ * 2 2 -θ Ω -θ * Ω 2 2 ≥ 4 θ 2 mx R(s n , s m ), E 2 ≤ ∞ l=7 P sup θ∈ Θr(sn,sm) p θ -θ * 2 2 -θ Ω -θ * Ω 2 2 ≥ 4 θ 2 mx R(s n , s m ) + pr 2 2µ 2 , E 2 (42) 
where r = µ l+1 ν. We have that E

E ij (θ -θ * ) 2 ij = p (θ -θ * ) 2 ij and p θ -θ * 2 2 -θ Ω -θ * Ω 2 2 = (ij) (p -E ij ) (θ -θ * ) 2 ij . Let S = min s ≥ 2 : 2 -s ≤ I nm
and { G S j } Ns j=1 be a minimal 2 -S r-covering set of Θ r (s n , s m ) in Frobenius norm given by Proposition 7. Let G S j = Π( G S j ) where Π is the projection operator under the Frobenius norm into the set

B = {θ ∈ R n×m : θ ∞ ≤ θ mx }.
As B is closed and convex, Π is non-expansive and we have that for any θ ∈

Θ r (s n , s m ), θ -G S j 2 ≤ θ -G S j 2 . Then, there exists G S θ ∈ {G S j } Ns j=1 such that on the event E 2 (ij) (p -E ij ) (θ * -θ) 2 ij -θ * -G S θ 2 ij ≤ pr 2 4µ 2
where we use (θ *θ) 

2 ij -θ * -G S θ 2 ij = G S θ -θ ij 2θ * -G S θ -θ ij ,
(p -E ij )(θ * -G S k ) 2 ij ≥ 4 θ 2 mx R(s n , s m ) + pr 2 4µ 2    . (ij) 
We apply Markov's inequality. Set t = R(s n , s m ) + pr 2

16θ 2 mx µ 2 P    max k=1,...,NS 1 4θ 2 mx (ij) (p -E ij )(θ * -G S k ) 2 ij ≥ t    ≤ e -t E exp   max k=1,...,NS 1 4θ 2 mx (ij) (p -E ij )(θ * -G S k ) 2 ij   ≤ e -t NS k=1 E exp   1 4θ 2 mx (ij) (p -E ij )(θ * -G S k ) 2 ij   ≤ e -t NS k=1 (ij) E exp (p -E ij ) (θ * -G S k ) 2 ij 4θ 2 mx . (43) 
Now we use the following lemma that follows easily from [21, p.22], see also [START_REF] Gao | Optimal estimation and completion of matrices with biclustering structures[END_REF]: 

1 4θ 2 mx (ij) (p -E ij )(θ * -G S k ) 2 ij ≥ t    ≤ e -t NS k=1 (ij) exp p(θ * -G S k ) 4 ij 16θ 4 mx ≤ exp pr 2 2 8 θ 2 mx + log(N S ) -t ≤ exp - 3pr 2 64µ 2 θ 2 mx
where we use S ≥ 3 and Lemma 29 which implies log(N S ) ≤ R(s n , s m ). Putting this last bound into (42) and ( 41) we get Lemma 26. Let a = (a ij ) ∈ R nm . Then, for any t > 0 we have

P sup θ∈Xν p 2 θ -θ * 2 2 -θ Ω -θ * Ω 2 2 θ 2 mx R(θ) ≥ 4 
P    ij (E ij -p)a ij > t    ≤ exp -min t 2 4p a 2 2 , t 2 a ∞ , (44) and P 
   ij (E ij -p) 2 ≥ 3pnm    ≤ exp(-pnm). ( 45 
)
Proof. This is a direct consequence of Bernstein's inequality. For (44) we note that

E ij (E ij -p) 2 a 2 ij ≤ p(1 -p) a 2 2 .
On the other hand, for any (ij) ∈

[n] × [m] we have |(E ij -p)a ij | ≤ a ∞ .
Then, Bernstein's inequality implies (44).

For (45) we have

E ij (E ij -p) 4 ≤ E ij (E ij -p) 2 = p(1 -p)nm and |E ij -p| 2 ≤ p 2 ∨ (1 -p) 2 ≤ 1.
Then, using Bernstein's inequality we get 

P    ij (E ij -p) 2 ≥ t +
(σ ∨ θ mx ) 2 R(θ) ≤ 2.
where R(θ) is defined in [START_REF] Dasgupta | A two-round variant of em for gaussian mixtures[END_REF], and X ν is defined in the proof of Theorem 10.

Proof. We proceed as in the proof of Lemma 

where r = µ l+1 ν. Let { G S j } Ns j=1 be a minimal 2 -S r-covering set of Θ r (s n , s m ) in the Frobenius norm and S = min s ≥ 1 : 2 -s ≤ I nm .

As in the proof of Lemma 24 we define G S j = Π( G S j ). Then, there exists G S θ ∈ {G S j } Ns j=1 such that on the event E 1 (ij)

E ij ξ ij (θ -θ * ) ij -G S θ -θ * ij ≤ pr 2 16µ 2
where we use 

E ij ξ ij (G S k -θ * ) ij ≥ 2 (σ ∨ θ mx ) 2 R(s n , s m ) + pr 2 16µ 2    . (ij) 
We apply Markov's inequality. Set t = R(s n , s m ) + 

E ij ξ ij (G S k -θ * ) ij   ≤ e -t NS k=1 E exp   1 2 (σ ∨ θ mx ) 2 (ij) E ij ξ ij (G S k -θ * ) ij   ≤ e -t NS k=1 (ij) E exp E ij ξ ij (G S k -θ * ) ij 2 (σ ∨ θ mx ) 2 . ( 48 
)
Lemma 25 implies that E e λEij ≤ e 2λp for any 0 ≤ λ ≤ 1. Then, using Assumption 1 and (48) we get Lemma 28. Let a = (a ij ) ∈ R n×m . Then, for any t > 0 we have

P    max k=1,...,NS 1 
2 (σ ∨ θ mx ) 2 (ij) E ij ξ ij (G S k -θ * ) ij ≥ t    ≤ e -t
P    ij a ij E ij ξ ij > t    ≤ exp -min t 2 4σ 2 p a 2 2 , t √ 2σ a ∞ , (49) and P 
   ij E ij ξ 2 ij ≥ σ 6pnm    ≤ exp(-pnm). ( 50 
)
Proof. Lemma 25 implies that E e λEij ≤ e 2λp for any 0 ≤ λ ≤ 1. Then, using Assumption 1 for 0 ≤ λ ≤ √ 2/(σ a ∞ ) we obtain

E [exp(λE ij a ij ξ ij )] ≤ E exp(λ 2 E ij a 2 ij σ 2 /2) ≤ exp(λ 2 a 2 ij σ 2 p).
The Chernoff argument yields

P    ij a ij E ij ξ ij > t    = P e ij (λaij Eij ξij ) > e λt
≤ e -λt exp(λ 2 σ 2 p a 2 2 ).

Now, choosing λ = t 2σ 2 p a 2 2 if t ≤ 2 √ 2σp a 2 2 a ∞ and λ = √ 2 σ a ∞ if t > 2 √ 2σp a 2 2 a ∞
we get (49). We prove (50) in a similar way. Using Markov's inequality for λ = 2σ 2 -1 we find

P    ij E ij ξ 2 ij ≥ t    = P e λ ij Eij ξ 2 ij > e λt ≤ e -λt Π ij E exp(λE ij ξ 2 ij -σ 2 + λE ij σ 2 ) ≤ e -λt Π ij E exp(2λ 2 E ij σ 4 + λE ij σ 2 )
≤ e -t/(2σ 2 )+2pnm and we take t = 6σ 2 pnm. and we have that

R 1 (r2 -S ) ∧ R 2 (r2 -S ) ∧ R 3 (r2 -S ) ∧ R 4 (r2 -S ) ≤ R(s n , s m )
where we have used that I ≥ n + m.

Corollary 4 .

 4 Under the assumptions of Theorem 3, there exists a absolute constant C ′ > 0 such that inf θ sup θ∈Θ(sm,sn)

2

 2 and any estimator θ. The last inequality and (29) imply inf θ sup θ∈Θ(sn,sm)

Lemma 25 .

 25 Let E ∼ Ber(p), then for any |λ| ≤ 1 we have E exp{λ(p -E)} ≤ e λ 2 p .

, E 2 ≤ 6 where we used e x ≥ x and ν 2 = (σ∨θmx) 2 pI.

 2622 In the last inequality we use condition n m log(3 √ n ∧ m) ≥ 6 log (k n k m ) which implies I 6 ≥ log (k n k m ). Finally, I = min (sn,sm) R(s n , s m ) ≥ (n + m) implies the result of Lemma 24.

√

  6pnm . So, it suffices to prove the exponential inequality for

E

  ij ξ ij (G S kθ * ) ij ≥ t

-θ * ) 2 ij 4 (σ ∨ θ mx ) 2 ≤ exp pr 2 2 8 2 128µ 2 2 (σ ∨ θ mx ) 2 R

 242282222 (σ ∨ θ mx ) 2 + log(N S )t ≤ exp -3pr (σ ∨ θ mx ) 2 .The last inequality follows from Lemma 29 which implies log(N S ) ≤ R(s n , s m ). Combining the last display with (46) and (47) we findP sup θ∈Xν ξ Ω , θθ * -p 8 θθ * 2 used that e x ≥ x, ν 2 = (σ∨θmx) 2 p I, I = min (sn,sm) R(s n , s m ) ≥ (n + m), and n m log (3 √ nm) ≥ 6 log (k n k m ).

Lemma 29 . 2

 292 Let N S = N r2 -S (Θ r (s n , s m )) where S = min s ≥ 3 : 2 -s ≤ I nm and r = 2 l+1 (σ ∨ θ mx ) I p for l ≥ 6. We have that R(s n , s m ) ≥ log N S .Proof. We use Proposition 7 and I nm ≥

  By the definition of R(s n , s m ) in[START_REF] Dasgupta | Learning mixtures of gaussians[END_REF] we have I ≥ d. Note first that if θθ * 2 ≤ 2 7 ν, then Theorem 10 holds trivially. So, without loss of generality, we can assume that θ ∈ X ν {θ ∈ X : θθ * 2 > 2 7 ν}. By the definition (16) of the estimator θ = X B ẐT we have that for any θ

	log N ǫ Θ u (s n , s m )	≤ mr n log	6u ǫ	+ ns n log	ek n s n	+ ns n log	2B max	√ mns m s n ǫ	,
	and								
			log N ǫ Θ u (s n , s m )	≤ mn log	3u ǫ	.
	Combining these bounds completes the proof of Proposition 7.
	F Proof of Theorem 10			
	Let I = min (sn,sm)	R(s n , s m ) and ν 2 = (σ∨θmx) 2			
			m log	6u ǫ	+ ms m log	ek m s m	+ ms m log	2B max	√ mns m s n ǫ	,

Using the same techniques as above we obtain log N ǫ Θ u (s n , s m ) ≤ nr p I.

  [START_REF] John A Hartigan | Direct clustering of a data matrix[END_REF]. Since W i = θ *

	have			i	Ei-p p	+ ξ i	Ei p , for λ(σ ∨ 2θ mx ) a ∞ ≤ p, we
	E e λaiWi ≤ E e λaiθ * i	E i -p p	e	λ 2 a 2 i σ 2 E i 2p 2	≤ e	λ 2 a 2 i σ 2 2p	e	λa i θ * i p	+	λ 2 a 2 i σ 2 2p 2	2	p ≤ e	3λ 2 a 2 i (θ 2 mx +σ 2 ) 2p

  pnm(1p) Choosing t = 2pnm we get the result of Lemma 26. Lemma 27. Assume that n m log (3 √ nm) ≥ 6 log (k n k m ). Then, with probability greater then 1 -2 exp(-d/10)exp (-pnm), sup

	  	≤ exp -	t 2 2pnm(1 -p) + 2t/3	;

θ∈Xν ξ Ω , θθ * -p 8 θθ * 2 2

  [START_REF] Hsu | A tail inequality for quadratic forms of subgaussian random vectors[END_REF]. LetE 1 = ≥ 2 (σ ∨ θ mx ) 2 R(s n , s m ), E 1 Ω , θθ * ≥ 2 (σ ∨ θ mx ) 2 R(s n , s m ) + pr 2 8µ 2 , E 1

		kn	km
			I ′ sn,sm	(46)
		sn=1	sm=1
	where	
	I ′ sn,sm = P	sup
		θ∈ Θ ν (sn,sm)
	Using a standard peeling argument we find
	I ′ sn,sm ≤ 2 ≤ ∞ l=7 P sup θ∈S l ξ Ω , θ -θ * -p 8 θ -θ * 2 ∞ P sup l=7 θ∈ Θr(sn,sm)

ij E ij ξ 2 ij ≤ σ √ 6pnm .

Lemma 28 implies that P(E 1 ) ≥ 1exp (-pnm). Using the definition of X ν we get

P sup θ∈Xν ξ Ω , θθ * -p 8 θθ * 2 2 (σ ∨ θ mx ) 2 R(θ) ≥ 2, E 1 ≤ ξ Ω , θθ * -p 8 θθ * 2 2 ≥ 2 (σ ∨ θ mx ) 2 R(s n , s m ), E 1 .

ξ

  -S ) ≤ ns n log ek n s n + ms m log ek m s m + (ns n + ms m ) log 3B max s m s n 2 6 (σ ∨ θ mx )

			nm	√ p
	+ r n r m log 9 R 2 (r2 -S ) ≤ nr m log 6 R 3 (r2 -S ) ≤ mr n log 6	nm I nm I nm I	I √ p I nm nm B max s m s n 2 6 (σ ∨ θ mx ) B max s m s n 2 6 (σ ∨ θ mx ) + ms m log + ns n log ek m s m ek n + ms m log + ns n log s n √ p I ,	,
	R			

4 (r2 -S ) ≤ mn log 3 nm I