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This paper presents a fully automatic framework to extract building footprints from a Digital Surface
Model (DSM). The proposed approach may be decomposed in two steps, each of them relying on a global
optimization solver. The first step aims to extract rectangular building footprints directly from the DSM
using a Marked Point Process (MPP) of rectangles. We introduce an energy that prevents overlapping
rectangles and aligns rectangle edges with DSM discontinuities. This energy is then embedded in a
RJMCMC sampler coupled with a simulated annealing to find its global optimum. Then, the second step
of our framework refines these extracted rectangles into polygonal building footprints. We first create an
arrangement of line segments supporting the rectangle edges. The dual graph of this arrangement is then
considered in a maximum flow optimization scheme to remove edges in the arrangement which do not
correspond to building edges in the DSM. Finally, 3D results illustrate a fully automatic process to build a
3D city model from a DSM only.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

1.1. Context and related work

Building extraction and reconstruction from remotely sensed
images has been a very motivating topic for both research and
industry in the last two decades. Indeed, 3D building models are
now embedded in many scientific or large public applications.
We can mention, among many others, wave propagation models
for telecommunication operators, virtual tourism or realistic urban
environments simulation for video games.

However, to construct a volumetric representation of buildings,
most approaches of the literature rely on the existence of two-
dimensional building outlines (Brunn and Weidner, 1997; Lafarge
et al., 2008). If cadastral maps provide these polygonal footprints,
they are however not always available. In addition, they may be
outdated, incomplete or more generally suffer from discrepancies
with the remotely-sensed dataset (Pfeifer et al., 2007). Besides, as
both the surfaces to be mapped and the resolution of the remo-
tely-sensed datasets tend to increase, it becomes unrealistic to rely
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on human operators to delineate building footprint manually. In
this respect, automating the extraction of these polygonal building
outlines is highly desirable.

Many methods tackling this issue have been presented in the
literature. Some methods operate a segmentation and classification
to extract building regions from input data (LiDAR, DSM and/or
aerial images). This is the case of e.g. the two state-of-the-art
methods (Rottensteiner et al., 2005; Rutzinger et al., 2006) pre-
sented and compared in (Pfeifer et al., 2007). If these two methods
are shown to be efficient, they only output noisy building outlines
that need to be vectorized and simplified as a post-process. Arefi
et al. (2007) proposed two simplifications methods. One is based
on a minimum bounding rectangle that is very efficient but as-
sumes rectilinear buildings. The other is based on RANSAC-ex-
tracted line segments combined using a rule-based algorithm.
This simplification may also be achieved using Hough transform
and least squares adjustment (Guercke and Sester, 2011) or Doug-
las–Peucker line simplification, graph and RANSAC-based general-
ization followed by a least squares adjustment to enforce
parallelism and orthogonality (Neidhart and Sester, 2008).

Among the methods that deliver simplified 2D building outlines
directly , we can find (Frédéricque et al., 2008) that populates a
database by first detecting building footprints with a geometric ap-
proach. Regions of interest are then extracted from a DSM and their
skeletons are computed to obtain the main directions. Eventually,
they are used to generate a set of rectangle hypotheses which is
then filtered using an iterative algorithm to reconstruct building
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.isprsjprs.2012.11.007
mailto:mathieu.bredif@ign.fr
mailto:olivier.tournaire@cstb.fr
mailto:bruno.vallet@ign.fr
mailto:nicolas.champion@ign.fr
http://dx.doi.org/10.1016/j.isprsjprs.2012.11.007
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


58 M. Brédif et al. / ISPRS Journal of Photogrammetry and Remote Sensing 77 (2013) 57–65
blocks. (Ortner et al., 2007) also extracts rectangular building
footprints from a DSM. This approach is based on a stochastic opti-
mization framework and consists in modeling an energy which de-
fines how a rectangle fits a building in a DSM, and how rectangles
are arranged. This method is all the more interesting as it has been
applied successfully to photogrammetric DSM, similar to those
used in this paper (Lafarge et al., 2008). We give more details about
this method in Section 2, which proposes a simplification and opti-
mization of this method as a first step to extract polygonal foot-
prints (see Fig. 1).

1.2. Overview of our framework

None of the previous approaches is able to extract polygonal
building footprints with a fully automatic framework and in a glo-
bal optimization scheme. To do so, we have chosen to work on
DSM which are rasterized height maps (Fig. 2). They can be directly
obtained from the 3D point cloud provided by LiDAR sensors, or
with surface reconstruction techniques using multiple images
(Hirschmuller, 2008; Pierrot-Deseilligny and Paparoditis, 2006).

As illustrated in Fig. 2, our strategy relies on two distinct steps.
The first one is presented in Section 2 and aims at extracting rect-
angular footprints in the DSM. This is performed using a marked
point process of rectangles. We try to find the optimum configura-
tion of rectangles in the DSM, i.e. the one which minimizes an en-
ergy fitting rectangle edges on DSM height discontinuities and
penalizing overlapping objects. In Section 3, which is our main con-
tribution, we propose a new procedure to turn the previously ex-
tracted rectangles into polygonal footprints, based on a max-
flow-optimized energy defined on the graph which is dual to an
arrangement of line segments supporting the extracted rectangle
edges. Section 4 presents some results and show how the extracted
polygonal footprints may be used to automatically reconstruct 3D
buildings models.

2. Extracting rectangular building footprints

The first step of our process consists in extracting rectangular
building footprints from the DSM image. This section summarizes
the global strategy proposed to reach this goal by Tournaire et al.
(2010). Its implementation is publicly available in the open-source
librjmcmc library (Brédif and Tournaire, 2012).

2.1. Marked point process of rectangles

A solution of the first global optimization step is a simple collec-
tion of rectangles. This allows to introduce the prior that buildings
tend to be rectilinear and thus decomposable into non-overlapping
unions of rectangles. Each rectangle is described by its center posi-
tion ci within the DSM image bounds C ¼ ½0;w� � ½0;h� and by addi-

tional geometric marks (Fig. 3): the aspect ratio ri ¼ li
Li

and a vector

v i
! coding the semi-major axis, where Li and li are respectively the
Fig. 1. Overview of our framework. From left to right: a multiview based photogrammet
segments supporting the rectangle edges; Polygonal footprints obtained by a max-flow o
rectangle dimensions along and across v i
! i:e: kv i

!k ¼ Li
2

� �
. Using

this original parameterization optimizes greatly many geometric
computations (Tournaire et al., 2010). Finally, object parameters
are sampled within the compact sets of the image bounds C and
the rectangle marks M:

ðci; v i
!
; riÞ 2 ½0;w� � ½0; h�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

C

� �w
2
;
w
2

h i
� �h

2
;
h
2

� �
� ½0;1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

ð1Þ

A key issue is that the number itself of rectangles required to
describe a scene is unknown which leads to using a Marked Point
Process (MPP) framework, which extends our search space over all
collections of rectangles to a probability space. This framework is
able to deal with spaces of varying and very high dimension and
also allows the introduction of an energy (Section 2.2) in the prob-
ability space density, enabling its minimization (Section 2.3).
Mathematical details can be found in (van Lieshout, 2000). MPP
have recently shown their versatility to extract objects in images
in various remote sensing and computer vision applications. They
have for instance been used to extract road marking in high reso-
lution aerial images (Tournaire and Paparoditis, 2009), linear struc-
tures such as roads or rivers in satellite images (Lacoste et al.,
2005) or to reconstruct 3D building models (Lafarge et al., 2010).
This proposed extraction of building footprints as a realization of
a MPP of rectangles is a complete reformulation and optimization
(Tournaire et al., 2010) of the earlier similar work of (Ortner et al.,
2007).
2.2. Energy model

A collection X of rectangles xi 2 C �M is valued using the fol-
lowing energy:

UðXÞ ¼
X
xi2X

UdataðxiÞ þ b
X
xi ;xj2X

i–j

Upriorðxi; xjÞ ð2Þ

where b tunes the importance of the data energy Udata versus the
prior energy Uprior (see Tournaire et al. (2010) for a study of b’s influ-
ence; b = 10 generally gives good results). Fig. 4 illustrates these en-
ergy terms on various configurations of objects.
2.2.1. Data term
The data attachment term aims at measuring the consistency of

the extracted objects with respect to the image DSM and defines
what an attractive object is. As we aim at extracting building foot-
prints from DSM, i.e. rasterized height data, we are naturally look-
ing for altimetric discontinuities. The best rectangle edge
candidates should thus be well positioned and oriented on a high
vertical discontinuity. This is measured using an estimated façade

area covered by each edge ej
i ¼ pj

i; p
jþ1
i

h i
of a rectangle xi:
ric DSM; The rectangles detected using a marked point process; Arrangement of line-
ptimization on the dual graph of the arrangement.



Fig. 2. DSM obtained from multiple images (left) or from a 3D LiDAR point cloud (middle) on a urban area (right) (the brighter the pixel, the higher the height). Notice that a
LiDAR based DSM is generally less noisy than a photogrammetric DSM and has sharper edges.

Fig. 3. The ðc;~v ; rÞ parameterization of rectangular objects.
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A ej
i

� �

¼max 0; nj
i

!
�
Z 1

0
rz
�!

pj
i þ t ej

i

!� 	
dt

� 	
ð3Þ
Fig. 4. Configurations with decreasing energy terms (from left to right), as the objects ar
ðUpriorÞ.
where ej
i

!
¼ pjþ1

i � pj
i

� �
is the edge vector, nj

i

!
¼ ej

i

!
? its inner-pointing

normal and rz
�!ðpÞ is the DSM gradient magnitude at pixel p.

The estimated façade area

A ej
i

� �
is

thus the dot product of the edge normal nj
i

!
and the average

gradient across the edge
R
rz
�!

.
A is

clamped to nonnegative values to disable any penalization that
would for instance prevent the extraction of a low-rise building
next to a higher one as the height discontinuity would contribute
negatively to the detection of the low-rise building on their com-
mon edge. Then, the data energy of a rectangle xi combines the esti-

mated façade areas of its four edges ej
i:
e increasingly better aligned with height discontinuities ðUdataÞ, or less overlapping
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(a) (b) (c)

Fig. 5. (a) Rectangle with extended oriented line segments. (b) Arrangement close-ups on interacting rectangle pairs. (c) Cleaned-up arrangement faces with edge
orientations (black arrows).

Fig. 6. (a) MPP-extracted rectangles. (b) Extended line-segment arrangement. (c) Cleaned-up arrangement. (d) Graph-cut-extracted polygonal footprints.
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UdataðxiÞ ¼ A0 �
X3

j¼0

A

ej
i

� �
ð4Þ

where the constantA0 can be considered as the minimal façade sur-
face required for a building to be detected, and thus acts as a gen-
eralization parameter. Since this parameter has a physical
meaning and can be expressed in squared meters, its tuning does
not depend on the DSM resolution. In our experiments, we used
A0 ¼ 100 m2.

2.2.2. Prior term
The proposed prior term is repulsive as it only penalizes over-

lapping objects and multiple detection, using their intersection
area.



t

s a

b

c

d

e

t

s a

b

c

d

e

(a) (b) (c)

Fig. 7. (a) Input arrangement. (b) Corresponding graph with source node s, sink node t and regular nodes a, b, c, d, e. Each oriented arrangement edge g yields an oriented
graph edge between regular nodes (bold), weighted by Uedgeðg;1;0Þ. (c) Multiple edges linking identical nodes are merged by summing up their weights. They may correspond
to contiguous arrangement edges (e.g. 3 edges from d to e) or discontinuous arrangement edges (e.g. 2 edges from a to e). The 1-weighted edges (not depicted here for
readability) are reverse edges of the bold edges.
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Upriorðxi; xjÞ ¼ Aintersectionðxi; xjÞ ð5Þ

This simple energy proved to be sufficient as the attractivity
needed to combine close rectangles into building blocks is pro-
vided by the data term, which tries to fit rectangle edges to every
meaningful height discontinuity present in the DSM.

2.3. RJMCMC optimization

Let us now consider a marked point process Xt of rectangles de-
fined through a (unnormalized) probability density f with respect
to the law pm(�) of a reference Poisson process:

f ðXtÞ ¼ e�UðXtÞ ð6Þ

Extracting building footprints consists in finding the configura-
tion of objects eXt minimizing the energy U, thus maximizing the
posterior probability: eXt ¼ argmax f ð�Þ. This is where the RJMCMC
sampler and the simulated annealing take place.

Classical MCMC methods such as Metropolis–Hastings cannot
handle dimension jumps, i.e., changes in dimension between sam-
ples. That is why we used a RJMCMC sampler, which consists in
simulating a Markov Chain on the configuration space: a transition
from one step of the chain to another is guided through a set of
proposition kernels (Green, 1995). Each kernel randomly proposes
a new configuration based on the current configuration, by modi-
fying an already existing object, or by adding/removing an object
(thus changing the dimension space).

The RJMCMC sampler is coupled with a simulated annealing
(Salamon et al., 2002) in order to find the optimum of the density
f(�). Instead of f(�), we use in the optimization process f ð�Þ

1
Tt , where

Tt is a sequence of decreasing temperatures which tends to zero as
t tends to infinity. Theoretically, convergence is guaranteed what-
ever the initial configuration X0 is if the decrease of the tempera-
ture follows a logarithmic scheme. In practice it is impossible to
use such a scheme since it is too slow. Thus, it is generally replaced
with a geometric decrease which gives a good solution close to the
optimal one.
2 Computational Geometry Algorithms Library, http://www.cgal.org.
3. Extracting polygonal building footprints

Once a meaningful configuration of rectangles has been ex-
tracted, a subsequent refinement step is required to retrieve non-
overlapping polygonal building footprints comparable to
cadastral maps. First a normalized Digital Surface Model (nDSM)
is derived from the DSM using the extracted rectangles (Section
3.1). We then formulate the polygonal building footprint extraction
as a global optimization problem. Sections 3.2 and 3.3 define its
search space as a selection of faces of an arrangement (Halperin,
2004) of line segments. Then Section 3.4 introduces the scoring
function as a refinement of the energy used during the MPP extrac-
tion step. The best polygonal footprints are finally extracted using a
global optimization based on maximum flow (Section 3.5).

3.1. Rectangle-guided DTM and nDSM derivation

The polygonal footprint extraction step requires building
heights above the ground (Pfeifer et al., 2007), that are encoded
by the normalized Digital Surface Model (nDSM). To produce this
nDSM, we first derive an off-ground mask from the rectangles de-
tected during the MPP step. This mask is then used to guide the
derivation of a Digital Terrain Model (encoding the height of bare
earth) from the DSM, with the surface-based approach proposed
in (Champion et al., 2009). In the end, the nDSM is then obtained
by subtracting the DTM from the DSM.

3.2. Extending rectangular line segments

The rectangles extracted by the marked point process faithfully
retrieve the supporting lines of the façades but their extent is less
accurately estimated, due to the rectangular and nonoverlapping
priors. Therefore, it seems natural to extend the line segments
bounding the MPP-extracted rectangular footprints by some dis-
tance d to construct the set of line segment hypotheses supporting
the polygonal building footprints (5a and 6b). d tunes the confi-
dence on the localization of the line segments extracted by the
MPP step (d = 0: complete confidence, d ?1: endpoints are dis-
carded so that only the supporting lines of the extracted line seg-
ments are considered). As d can be expressed in meters, its value
can easily be set independently of the nDSM resolution
(d 2 [5;10] was used in our experiments). Note that the parallelism
and orthogonality priors introduced by the rectangular extraction
step are preserved, as line segment orientations are not modified.

3.3. Selecting arrangement faces

The arrangement of a set of line segments is a well-known com-
putational geometry data structure (Halperin, 2004) with readily
available infinite precision implementations.2 It refers to the subdi-
vision of the plane into vertices (the endpoints of the line segments
and their intersections), edges (a sub-segment of an extended line-
segment between two arrangement vertices) and faces (polygons,
possibly with holes and/or unbounded, delimited by arrangement
edges). The sets of vertices, edges and faces of an arrangement are
respectively denoted V, E and F. The faces in F define, by construc-
tion, a partition of the plane (Fig. 5b and 6b): they only meet at their
boundaries and their union is R2.

http://www.cgal.org
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Whereas previous methods (Lafarge et al., 2010) to derive
polygonal footprints from rectangle layouts relied on a complex
case analysis that was only able to consider interactions between
a single pair of rectangles at a time, the proposed approach is based
on the arrangement of the extended rectangular line segments to
be both robust and generic. First, all the geometric robustness con-
cerns are segregated into the computation of the extended line
segment arrangement. Second, its genericity is implied by the
arrangement framework, which does not limit the considered geo-
metric cases or even the number of simultaneously interacting
rectangles.

To simplify subsequent processing, the arrangement of the ex-
tended rectangular line segments is first cleaned up (Fig. 5c and
6c) by discarding edges that do not separate distinct facets (such
as the antennae of Fig. 5b), as well as the resulting isolated vertices.
We then propose to extract the polygonal building footprints by
selecting a subset S of the face set F. The union of the selected faces
indeed represents a set of polygonal shapes (Fig. 6d). For instance,
selecting all the faces inside at least one extracted rectangle results
in the polygonal shape of the union of the extracted rectangles.

Finally, line segments are oriented, as they describe a height
discontinuity oriented outward the extracted rectangle (Fig. 5a
and 5c). This orientation information is kept as an attribute for
each edge of the arrangement, so that an edge may only be used
to model a façade with the detected orientation. This orientation
defines for each arrangement edge e, oriented from face f to face
g (denoted f !e g) its source f and target g.

3.4. Energy model

A selection S of arrangement faces is valued according to the fol-
lowing energy, where the k parameter balances the effects of a un-
ary energy US

1ðf Þ summed over all faces and a binary energy US
2ðf ; gÞ

summed over all face pairs:

UðSÞ ¼
X
f2F

US
1ðf Þ þ k

X
f ;g2F; f –g

US
2ðf ; gÞ ð7Þ
3.4.1. Unary energy
The union of all the MPP-extracted rectangles provides an initial

classification of the nDSM pixels into building and non-building
areas. From this preliminary segmentation, histograms of nDSM
values of the building h1(z) and non-building h0(z) classes may
be computed. These two histograms may then be combined into

the probability p1ðzÞ ¼ 1� p0ðzÞ ¼ h1ðzÞ
h0ðzÞþh1ðzÞ

whether a given height

z belongs to a building or not. This probability is finally turned into
a Gibbs energy US

1, assuming the independence of the height values
zp of the nDSM pixels p within an arrangement face f:

US
1ðf Þ ¼ U faceðf ;vSðf ÞÞ

with U faceðf ; iÞ ¼
X
ðx;yÞ2f

� logðpiðzpÞÞ

where vS(f) = 1 if f 2 S and 0 otherwise. This unary energy learns the
building and non-building heights from the preliminary segmenta-
tion given by the extracted rectangular building approximations.

3.4.2. Binary energy
US

2ðf ; gÞ has two goals: ensuring the orientation constraint (Sec-
tion 3.3), and placing the interface between selected building faces
and deselected non-building faces at height discontinuities. US

2ðf ; gÞ
accumulates the contributions of the possibly multiple edges of the
arrangement from f to g:

US
2ðf ; gÞ ¼

X
e2E;f!

e
g

Uedgeðe;vSðf Þ;vSðgÞÞ ð8Þ
Uedgeðe;0;0Þ ¼ Uedgeðe;1;1Þ ¼ 0
Uedgeðe;0;1Þ ¼ þ1

Uedgeðe;1;0Þ ¼maxð0;Hjej � A
ðeÞÞ

8>>>>>>><
>>>>>>>:

ð9Þ

where H is a height constant, jej the length of e and
A ðeÞ is

the estimated façade area (Eq. (3)). Thus, Uedge forbids wrongly ori-
ented façades using the +1 value, and penalizes edges with poor
nDSM support if their mean height discontinuity is less than H
(we usually set H to 3 m which is suitable in the most common
cases).

3.5. Graph-cut optimization

The proposed energy is graph-representable (Kolmogorov and
Zabih, 2004), it may thus be globally minimized using a maximum
flow/graph cut optimization. The flow graph is dual to the line seg-
ment arrangement and is constructed as follows (Fig. 7) :

� Each face of the extended line-segment arrangement is
associated with a node, denoted regular by opposition to
the auxiliary source and sink nodes.

� A pair of opposite oriented edges is added between the
nodes representing adjacent facets of the arrangement.

� An oriented edge is added at each face node from the source
or to the sink according to the sign of the unary energy of
the face (Kolmogorov and Zabih, 2004).

The result of a graph-cut problem is a partition of its nodes into
two sets, each containing an auxiliary node. Such a partition pro-
vides S by selecting all the faces of the arrangement represented
by regular nodes of the graph partitioned in the same set as the
source node. The polygonal footprint is then finally the union of
the faces in S.

To represent the proposed energy US into this dual graph, each
edge must be weighted by the cost of simultaneously selecting its
source node in S and deselecting its target node as a non-building
region in FnS. Edge pairs of the graph between regular nodes corre-
spond to an arrangement edge e. They are weighted by
Uedgeðe;0;1Þ ¼ þ1, modeling the orientation constraint (Section
3.3), embedded into the graph using an arbitrarily high constant
weight K, and Uedgeðe;1; 0Þ, ensuring façades are placed at height
discontinuities. An edge between an auxiliary node (source or sink)
and a regular node f encodes a term of the unary energy US

1ðf Þ. Such
an edge is weighted by DU1ðf Þ:

DU1ðf Þ ¼ jU faceðf ;1Þ � U faceðf ;0Þj ¼
X
ðx;yÞ2f

log
h1ðzpÞ
h0ðzpÞ














 ð10Þ

Fig. 8 illustrates the unary energy US
1 on the faces of the parti-

tion of Fig. 6c. Fig. 8a shows US
1 directly while Fig. 8b is normalized

by the face area, which illustrates that faces are pixelwise well
classified even on oversegmented facets (top-right region).

Note that it would have been simpler and more
intuitive to define Uedgeðe;1;0Þ
¼ �A ðeÞ,

preventing the need for a parameter H, but the resulting energy
would not have been graph-representable and thus not minimiz-
able using graph-cuts (Kolmogorov and Zabih, 2004). The binary
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Fig. 8. Unary energy terms: each arrangement face f is uniformly filled with (a) its DU1ðf Þ unary term and (b) the same term normalized by the face area DU1ðf Þ
Aðf Þ .

M. Brédif et al. / ISPRS Journal of Photogrammetry and Remote Sensing 77 (2013) 57–65 63
term U2 that fits polygonal boundaries to the oriented gradients
alone is not sufficient by itself. Discarding the pixelwise unary
term U1 that biases the polygonal segmentation towards the preli-
minary rectangle-based segmentation would however yield a triv-
ial segmentation (all building or all non-building). This also
grounds from the required submodularity of the graphcut-mini-
mized energy (Kolmogorov and Zabih, 2004).

4. Results

4.1. Qualitative analysis

Our framework was applied on both photogrammetric (Photo)
and Lidar DSMs with Ground Sampling Distances (GSDs) of
10 cm and 50 cm, with the following number of objects and com-
putation times for the two main steps:
Input DSM
Fig. 9. Results
MPP
on a photogramme
Graph cut
Type
(fig)

GSD
(cm)
Image
size
]

Rect.

Time
(s)
]

Nodes
tric DSM,
Time
(s)
Photo (6) 50
 650 � 650
 76
 177
 1045
 5

Photo (9) 10
 800 � 1400
 31
 104
 147
 5

Lidar (10) 50
 650 � 650
 109
 179
 2801
 7

Photo (11) 50
 3634 � 2502
 426
 480
 12954
 352
There is still room for optimization as the 352 s of graph-cut
processing in Fig. 11 are not due to the graph-cut itself (10 s),
but to the elevation histograms computation (128 s) and to the
edge and node weight evaluations (214 s).

On photogrammetric DSMs, the MPP-extracted rectangles
delineate most of the buildings (Figs. 6 and 11). Undetected build-
ings have low height and are mainly located in inner courtyards.
10 cm GSD: ext
This underdetection is due to our parameterization since A0 was
tuned high to prevent false positives and get an uncluttered result.
The second step to reconstruct polygonal footprints gives good re-
sults: all building blocks composed of several rectangles are now
given by only one polygon (possibly with holes), and complex
building shapes are clearly recovered (see large buildings in the
middle left of Fig. 11). The main problem is that low height build-
ings are not properly segmented during the graph-cut step: they
are not easily distinguishable from ground regions in the elevation
histograms. Fig. 9 presents the MPP rectangle extraction and polyg-
onal building footprints graph-cut optimization on a 10 cm GSD
photogrammetric DSM. At this high resolution, all building parts
are correctly detected, but some rectangles are located on trees.
These false detections may easily be avoided by introducing a veg-
etation mask. The interesting point is that the graph cut optimiza-
tion to obtain polygonal footprints is well adapted to this
resolution without tuning the parameters again. Moreover, some
false detection on trees are also filtered as their supporting
arrangement edges exhibit too weak a height discontinuity.

On the Lidar DSM (Fig. 10), the extraction results are equivalent
to the ones obtained with a photogrammetric DSM on the same
area (Fig. 6): similar discontinuities have been detected and thus
polygonal footprints are extracted similarly. Some buildings are
however better delineated, due to sharper discontinuities in the Li-
dar DSM (e.g. the 9-shaped building in the center of the image).
4.2. Quantitative analysis

A quantitative analysis has been performed to assess the quality
of the proposed approach. Reference polygonal footprints have
been manually extracted and compared to the output of our auto-
matic process (Fig. 11c). It follows a pixel-based comparison of the
two resulting building/non-building binary images. Each pixel is
then classified as either True Positive (TP) for successfully
extracted building areas, False Positive (FP) for overdetected
racted rectangles (left) and extracted polygons (right).



Fig. 11. Results on a 50 cm GSD Photogrammetric DSM (containing Fig. 6) proving
the scalability of the proposed approach. From top to bottom: (a) MPP rectangle
extraction, (b) graph-cut optimization and (c) pixel-based evaluation.

Fig. 10. 50 cm GSD Lidar DSM on the same area as Fig. 6: extracted rectangles (left) and extracted polygons (right).

Fig. 12. Automatic 3D reconstruction of the area of Fig. 6.
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buildings (false alarms), False Negative (FN) for underdetected
buildings or True Negative (TN) for successfully extracted non-
building areas. This allows us to introduce the two quality mea-
sures of completeness and correctness:
Completeness ¼ TP
TPþ FN

¼ 80:3%

Correctness ¼ TP
TPþ FP

¼ 90:5%

Although these completeness/correctness values are dataset
dependent, they are in line and compare favorably with the values
of 85%/73% and 85%/63% obtained in Pfeifer et al. (2007) for two
state-of-the-art methods Rottensteiner et al. (2005), Rutzinger
et al. (2006).

To further analyze the causes of the errors, FN and FP pixels
have been manually subclassified for the following discussion.
Most of FN errors (54.9%) are due to completely undetected build-
ings. This is mainly due to the low sensitivity of our method to the
detection of low-rise buildings surrounded by higher buildings.
Two other noticeable underdetections are due to the presence of
a large curved mall that breaks our rectilinearity assumption and
to the misreconstruction of a large glassroof in the photogrammet-
ric DSM. Turning to FP errors, 40.9% are trees detected as buildings.
Thus correctness could then easily be improved above 94% by
using a vegetation mask. Finally, the geometric accuracy of cor-
rectly detected buildings accounts for 45.1% of FN errors and
46.1% of FP errors. Dividing the number of the corresponding FN
and FP pixels by the total façade length of the reference yields an
estimate of the localization performance of our method of 1.85
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m. This complies with the expected precision of the DSM and of the
reference dataset (�1 m).

5. Conclusion and future works

This paper proposes a succession of two global optimization
techniques to successfully extract polygonal building outlines from
a raw DSM only. These polygonal footprints may be used to fully
automatically reconstruct 3D building models (Durupt and Taillan-
dier, 2006; Vallet et al., 2009) (Fig. 12). Thus, we demonstrate a
scalable and fully-automatic process that converts robustly raw
DSMs into 3D city models at extremely low costs.

The two optimization procedures proposed in this paper are
fully automatic and only involve a few easily tunable parameters
ðb;A0; d; k;HÞ that feature intuitive physical interpretations. In
our experiments, their value was set using prior knowledge on
the scene. The MPP-based optimization relying on a RJMCMC and
simulated annealing framework (Tournaire et al., 2010) has been
extended with a novel graph-cut-based global optimization
scheme. This second step relaxes the rectilinear constraints by
casting its minimization problem as a classification problem over
a partition of the DSM induced by the extracted rectangles. The
main advantages of this formulation lies in its simplicity, its
robustness and its geometric genericity.

For future work, artefacts due to the two successive steps of glo-
bal optimization (such as missing low-rise buildings) should be re-
duced by performing a single step of global optimization. For
instance, a RJMCMC-based optimization performed directly over
the set of piecewise linear partitions of the input DSM is a promis-
ing idea. Unifying the energy terms between the two successive
MPP and graphcut-based steps is subject to future work but it is
constrained by the submodularity requirement of the graphcut for-
mulation and the desired independence of the energy terms to the
extended line segment oversegmentation. Automatic parameter
estimation is also a very important task. The work presented in
(Ben Hadj et al., 2010) can be of great interest. Last but not least,
the proposed energies have been tuned for simplicity and opera-
tional efficiency. Future work will explore alternative energies tay-
lored to more specific problems, such as energies that introduce
alignment priors. Finally the result may exhibit topological clutter
(e.g. saw-tooth patterns) that may require simplification or gener-
alization. A final regularization step could be added to balance the
topological complexity of the extracted outlines with their geo-
metric accuracy (i.e. the data alignment of facades).
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