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Abstract: In this paper, we present a novel framework for detecting individual trees in densely
sampled 3D point cloud data acquired in urban areas. Given a 3D point cloud, the objective is
to assign point-wise labels that are both class-aware and instance-aware, a task that is known as
instance-level segmentation. To achieve this, our framework addresses two successive steps. The
first step of our framework is given by the use of geometric features for a binary point-wise semantic
classification with the objective of assigning semantic class labels to irregularly distributed 3D points,
whereby the labels are defined as “tree points” and “other points”. The second step of our framework
is given by a semantic segmentation with the objective of separating individual trees within the
“tree points”. This is achieved by applying an efficient adaptation of the mean shift algorithm and
a subsequent segment-based shape analysis relying on semantic rules to only retain plausible tree
segments. We demonstrate the performance of our framework on a publicly available benchmark
dataset, which has been acquired with a mobile mapping system in the city of Delft in the Netherlands.
This dataset contains 10.13 M labeled 3D points among which 17.6% are labeled as “tree points”.
The derived results clearly reveal a semantic classification of high accuracy (up to 90.77%) and an
instance-level segmentation of high plausibility, while the simplicity, applicability and efficiency of
the involved methods even allow applying the complete framework on a standard laptop computer
with a reasonable processing time (less than 2.5 h).

Keywords: mobile mapping systems; 3D point cloud; feature extraction; feature selection; semantic
classification; semantic segmentation; instance-level segmentation; tree-like objects

1. Introduction

The automated analysis of data acquired in urban areas has become a topic of major interest in the
fields of remote sensing, photogrammetry, computer vision and robotics. In recent years, particular
attention has been paid to the analysis of data in the form of densely sampled 3D point clouds
representing the measured counterpart of object surfaces in the local surrounding of the acquisition
system. Due to the technological advancements, such densely sampled 3D point clouds can meanwhile
be acquired directly by using mobile mapping systems (MMSs), which allow one to efficiently acquire
large amounts of densely sampled 3D point cloud data, e.g., corresponding to street sections or city
districts. Once respective 3D data have been acquired, different tasks may be addressed, such as a
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semantic point cloud labeling with respect to different class labels [1–7] or the extraction of specific
objects (e.g., building structures [8], roads or road inventory [9–12] or individual trees [13–15]) in
the scene.

Among a diversity of objects, particularly trees play an important role in urban areas
since they can provide measurable economic, environmental, social and health benefits [16,17].
As a prerequisite for urban planning, numerous municipalities and governmental agencies meanwhile
focus on acquiring tree cadasters, which allow statements about the number of trees, the tree species
and the physical and environmental effects of respective trees. Such tree cadasters can be derived
from publicly available aerial and street view images from Google maps [18], but in many cases, they
are derived from acquired MMS point cloud data. To foster research on the extraction of individual
trees from MMS point cloud data as, e.g., shown in Figure 1, a special track within the recent IQmulus
Processing Contest IQPC’15 has been initiated [13]. This special track focuses on two subtasks facing
the challenges of an irregular point sampling, a high complexity of real-world scenes and a huge
amount of data resulting from the acquisition of larger scenes. The first subtask is given by the
binary classification of the 3D points of an MMS point cloud into “tree points” and “other points”,
whereas the second subtask is given by the separation of the “tree points” into clusters corresponding
to individual trees. The joint consideration of both subtasks represents an instance-level segmentation
inferring both class labels and instance labels [19,20]. To evaluate the performance of respective
approaches for both subtasks, a labeled benchmark dataset acquired with a mobile mapping system in
the city of Delft in the Netherlands has been released. This dataset comprises about 10.13 M labeled
3D points, whereby the reference labels are given at point-level with respect to a binary classification
distinguishing “tree points” and “other points”. The results of a segmentation of individual trees can
easily be verified by visual inspection. Regarding the IQPC’15, a diversity of proposed approaches
for both subtasks relies on a voxelization of 3D space. For reasons of accuracy, however, it would
be desirable to have an efficient end-to-end processing pipeline for individual tree extraction from
MMS point cloud data that is scalable towards the processing of large datasets without involving a
voxelization of 3D space.

In this paper, we focus on the extraction of individual trees from densely sampled 3D point cloud
data. We present a novel two-step framework that addresses (1) semantic classification by assigning
semantic class labels to irregularly distributed 3D points and (2) semantic segmentation by separating
individual objects within the labeled 3D points. More specifically, the first step of our framework
is given by the detection of tree-like objects, which is achieved via a binary classification distinguishing
3D points belonging to tree-like objects (“tree points”) from 3D points belonging to non-tree-like
objects (“other points”). The second step only relies on those 3D points belonging to tree-like objects,
and it is given by a segmentation of individual trees within these 3D points. To improve efficiency,
this step involves a 2D projection and a mean shift segmentation, which are applied to a downsampled
version of the 3D points belonging to tree-like objects. Since misclassifications resulting from the first
step should not significantly affect the second step, the latter also involves a segment-based shape
analysis to only retain plausible tree segments. We demonstrate the performance of our framework
by presenting the respective results obtained for the IQPC’15 benchmark dataset.

This paper represents an extended version of [21], whereby the extension is given by a more
comprehensive analysis comprising:

• feature subsets that are selected manually,
• feature subsets that are derived automatically via feature selection techniques and
• an improved segment-based shape analysis relying on semantic rules.

In addition to drawing conclusions about which features are most relevant for the given
classification task, we focus on increased efficiency via a parallelized memory-efficient implementation,
which can be run on a standard laptop computer.
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Figure 1. The MMS point cloud dataset released in the scope of the IQmulus Processing Contest
IQPC’15: 3D point cloud colored with respect to the provided RGB values (top) and 3D point cloud
colored with respect to the provided reflectance information (bottom).

After briefly summarizing related work (Section 2), we describe our novel two-step framework
for extracting individual trees from densely sampled 3D point cloud data (Section 3). Subsequently, we
demonstrate the performance of our framework on a publicly-available benchmark dataset (Section 4).
This is followed by a discussion of the derived results with respect to accuracy, robustness and efficiency
(Section 5) and a summary of the strengths and limitations of our framework and the involved methods.
Finally, we provide concluding remarks and suggestions for future work (Section 6).

2. Related Work

In recent years, the semantic interpretation of 3D point cloud data has been addressed by many
investigations. Among a variety of research directions, particular interest has been paid to (1) a
semantic classification, which aims at assigning a semantic class label to each point of a given 3D point
cloud [6,22], and (2) a semantic segmentation, which aims at providing a meaningful partitioning of a
given 3D point cloud into smaller, connected subsets corresponding to objects of interest or to parts of
these [23,24].
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2.1. Semantic Classification

The classical processing pipeline for the semantic classification of 3D point cloud data may
be decomposed into different components addressing neighborhood selection, feature extraction
(and optionally feature selection) and classification [22]. In the following, we briefly summarize related
work with respect to these components.

The local neighborhood of a considered 3D point X0 is often defined by considering all 3D points
within a spherical neighborhood [25,26] or within a cylindrical neighborhood [27]. In this regard,
the neighborhood size is commonly defined by involving prior knowledge about the scene and/or
the data, and the same value for the scale parameter is typically used for all points of the 3D point
cloud. However, as demonstrated in recent investigations [6,22], different structures in the scene may
favor a different neighborhood size. Accordingly, data-driven approaches for optimal neighborhood
size selection have been presented, which focus on a local adaptation of the neighborhood size with
respect to the local 3D structure. Among these approaches, the most promising ones are represented
by an approach focusing on the local surface variation [28], an approach relying on curvature,
point density and noise of normal estimation [29,30], dimensionality-based scale selection [31]
and eigenentropy-based scale selection [6,22].

In contrast to optimizing the neighborhood size in order to derive features with improved
distinctiveness, it has been proposed to describe the local 3D structure at different scales and thus
also how the local 3D structure changes across these scales. Respective approaches typically focus
on extracting geometric features from multiple spherical neighborhoods of different scales [32]
or from multiple cylindrical neighborhoods of different scales [33]. However, some approaches
also focus on extracting geometric features from multiple neighborhoods of different scales and types,
e.g., from a combination of cylindrical and spherical neighborhoods [34], or from different entities
in the form of voxels, blocks and pillars [3] or in the form of spatial bins, planar segments and
local neighborhoods [35].

The features themselves are commonly derived by describing geometric characteristics
of the defined local neighborhood. Many investigations rely on the use of local 3D shape features
derived from the 3D structure tensor [28,36], as such features are relatively simple and allow rather
intuitive descriptions (e.g., with respect to linear, planar or volumetric structures in the scene).
To address further geometric characteristics of the local neighborhood, the feature vector
is typically extended by adding complementary features, which are for instance given by angular
statistics [1], height and plane characteristics [37,38], low-level 3D and 2D features [6] or moments
and height features [7].

Among the extracted features, some may be more and others less relevant to the classification task.
However, the less relevant features as well as the redundant features may have a detrimental effect
on the predictive accuracy of the involved classifier, which is commonly referred to as the Hughes
phenomenon [39]. Furthermore, it should be taken into account that the use of many features typically
increases the computational burden with respect to processing time and memory consumption and,
consequently, it seems desirable to involve methods for feature selection. Regarding the classification
of 3D point cloud data, feature selection has for instance been addressed by filter-based feature selection
methods evaluating (1) feature-class relations to reason about relevant features and (2) partly also
feature-feature relations to remove redundancy [22,40]. Furthermore, wrapper-based feature selection
methods interacting with a classifier have been applied [37,41].

Finally, the extracted features are provided as input for classification. In the simplest form,
the classification of a considered 3D point X0 only relies on the respective feature vector describing
the local 3D structure at X0. For that purpose, a variety of classifiers relying on different learning
principles may be used [6,22]. Respective classifiers are meanwhile available in a variety of software
tools, and they can easily be applied by non-expert users. Due to the separate consideration of each
3D point, however, the derived labeling typically reveals a noisy behavior. To derive a rather smooth
labeling, smooth labeling techniques [42] or contextual classification approaches may be applied.
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The latter classify a 3D point X0 based on the respective feature vector as well as those feature
vectors and labels of neighboring points. Accordingly, interactions among 3D points within the local
neighborhood of X0 have to be modeled, which can be done by following different strategies,
e.g., focusing on the use of Associative Markov Networks (AMNs) [1], Non-Associative Markov
Networks (N-AMNs) [43], Conditional Random Fields (CRFs) [33,44–46] or more sophisticated
inference procedures [2,47]. However, inferring interactions among neighboring points typically
corresponds to an increased computational burden and to the requirement of a larger amount of
training data to train the respective classifier.

Besides the classical processing pipeline, recent effort also involves Convolutional Neural
Networks (CNNs) adapted to 3D data. Respective 3D-CNNs for instance focus on predicting an object
class label given a 3D point cloud segment containing a single object [48,49]. To classify a 3D point
cloud, a network architecture has been proposed that comprises an encoder and a decoder part [50].
Furthermore, a 3D-CNN has been presented to classify each 3D point of a point cloud by considering
a voxel-occupancy grid corresponding to the respective local neighborhood [51]. A similar approach
relying on a voxel-occupancy grid for representing a local neighborhood has been proposed in [52].
While the 3D-CNNs tend to outperform conventional approaches [53], they typically require a large
amount of training data. Furthermore, the network architecture and its internal settings need to be
defined, which is typically performed heuristically.

In the scope of this paper, we focus on a classical processing pipeline for the semantic
classification of 3D point cloud data. Thereby, we take into account that recent benchmark datasets
for multi-class classification of densely sampled 3D point cloud data contain at least one class referring
to vegetation [1,4,53,54] and that the extraction of individual trees from densely sampled 3D point cloud
data has become a topic of major interest [13]. The latter has recently been addressed by an approach
for point-wise classification with respect to “tree points” and “other points” [14]. This approach focuses
on defining a 2D probability matrix on a horizontally oriented plane, where each entry represents
a probability value derived from the local point density. Tree trunks are expected to correspond
to high probability values, and consequently, tree trunks are indicated by local maxima of the 2D
probability matrix. Finally, further points are assigned to the tree trunks if they appear in the close
proximity. In contrast to this approach, we intend to test the capability of a classical processing
pipeline for the semantic classification of densely sampled 3D point cloud data with respect to “tree
points” and “other points”. Thereby, we also focus on the simplicity and applicability of the involved
methods so that non-expert end-users can apply the complete framework on a standard laptop
computer without requiring expert knowledge about single methods. For this reason, we intend
to avoid a heuristic specification of local neighborhoods and therefore apply the data-driven approach
of eigenentropy-based scale selection [6,22]. Based on the derived local neighborhoods, we calculate
rather intuitive, low-level geometric 3D and 2D features that are expected to be sufficient to derive
reasonable classification results. Thereby, we define different feature sets selected either manually or
automatically as input for the classification task. The latter is kept relatively simple by using a standard
Random Forest (RF) classifier [55], since we expect that contextual classification will neither be possible
for the given amount of training data nor allow a processing on a standard laptop computer.

2.2. Semantic Segmentation

For point cloud segmentation, different approaches may be applied [24]. Some of these approaches
first perform an oversegmentation of the given 3D point cloud and subsequently merge neighboring
segments with similar characteristics. In contrast, other approaches start with seed points and perform
a region growing. After applying any of the segmentation approaches, the derived segments should
correspond to meaningful objects or object parts. In [56], for example, it is proposed to apply
a segmentation approach that relies on surface growing so that the derived segments can be described
via a variety of geometric, radiometric and topological features. These features, in turn, allow
a segment-wise classification, e.g., by applying a Support Vector Machine (SVM) classifier. Since
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a generic segmentation approach operating at point-level typically results in a high computational
burden, a voxelization of 3D space is often introduced. One of these approaches has been presented
in [57] where the main idea is to use a voxelization of the considered 3D point cloud, apply a subsequent
supervoxel segmentation and classify the derived segments by exploiting a set of geometric and
radiometric features.

Instead of focusing on the segmentation of a variety of objects in 3D point cloud data, we
are particularly interested in the segmentation of individual trees where each derived segment should
correspond to an individual tree (i.e., each segment should cover both the foliage and the trunk
of an individual tree). In this regard, many investigations also rely on a voxelization of 3D space.
Based on such a voxelization, the properties of neighboring voxels may be evaluated to derive voxel
groups corresponding to potential trees in the scene [58]. Alternatively, the voxelization of 3D space can
be followed by deriving connected components and separating these connected components further if
they contain multiple clusters [13]. Furthermore, it has been proposed to perform a downsampling
and retiling of a given 3D point cloud via voxelization so that a subsequent 2D gridding allows
finding local maxima in point density, which indicate potential tree locations [15]. For these potential
tree locations, octree-based region growing and thresholding techniques may be applied to derive
segments corresponding to individual trees. A different strategy has been followed by first deriving
a 2D accumulation map corresponding to a horizontally oriented plane and then extracting respective
features allowing the separation of natural objects, such as trees, from man-made objects [59]. Those 3D
points corresponding to natural objects are subsequently transferred to a voxel space, where individual
trees are segmented by applying a normalized cut segmentation based on the voxel structure [60].

In contrast to those approaches involving a voxelization of 3D space, there are also approaches
that focus on segmenting individual trees from the original data at point-level. In this regard, it has
for instance been proposed to use the 3D Hough transform and a surface growing algorithm in order
to segment a given 3D point cloud into planar regions [61,62]. As larger planes typically correspond
to man-made objects, the respective 3D points can be removed so that the remaining small segments
as well as those 3D points that were not segmented can be merged via connected component analysis.
Based on geometric features, further non-vegetation objects can be detected and removed. A different
approach relies on the calculation of geometric descriptors for each 3D point, the projection of these
descriptors onto a horizontally oriented 2D accumulation map and the consideration of a spatial
filtering to derive individual tree segments [63].

In some cases, a pre-classification with respect to “tree points” and “other points” is already
available. Then, individual trees can directly be segmented at point-level by deriving connected
components for those 3D points categorized as “tree points”, whereby connected components are
further split via an upward and downward growing algorithm if there are multiple seeds at a height
between 0.5 m and 1 m [13,64]. Furthermore, it is possible to directly apply a standard clustering
technique, such as a k-means clustering or hierarchical clustering [65], or the mean shift algorithm [66].
Particularly the mean shift algorithm has been applied for point cloud segmentation [67–70], since it
operates in a data-driven manner without the need for defining a specific geometric model or involving
prior knowledge about the number of expected modes. Such a data-driven point cloud segmentation
can however be computationally demanding, particularly for the consideration of larger 3D point
clouds. Accordingly, it is often desirable to improve computational efficiency, which can for instance
be achieved by applying the mean shift algorithm on a 2D projection of the considered 3D point cloud
as proposed in the context of tomographic SAR data processing [71]. For a ground-based acquisition
of 3D point cloud data as, e.g., given when using mobile mapping systems, a significantly higher point
density can be expected so that further strategies for improving computational efficiency are required.

In the scope of this paper, we assume that the first step of our framework provides an appropriate
pre-classification with respect to “tree points” and “other points”. Accordingly, we can directly
focus on a separation of “tree points” with respect to individual trees. For the sake of simplicity
and applicability, we focus on the use of a data-driven point cloud segmentation at point-level via
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the mean shift algorithm, whereby we introduce an adaptation towards data-intensive processing.
To account for misclassifications resulting from the first step of our framework, we furthermore
consider plausibility checks on the basis of segment-wise features and segment-based shape analysis.

3. Methodology

In this paper, we present a two-step framework for the detection of individual trees in dense
3D point cloud data acquired in urban areas. The first step of the framework is given by a
semantic classification in terms of assigning semantic class labels to irregularly distributed 3D points
(Section 3.1), whereas the second step is given by a semantic segmentation in terms of separating
individual objects within the labeled 3D points (Section 3.2). For both steps, we focus on a data
processing at point-level to achieve accurate results.

3.1. Detection of Tree-Like Structures via Semantic Classification

The first step of our framework is given by a point-wise, binary semantic labeling of a given
3D point cloud, whereby the labels are represented by “tree points” and “other points”. In general,
such a semantic classification relies on an appropriate description of each considered 3D point X0,
for which we focus on the use of geometric features. Accordingly, we first focus on the recovery
of a suitable local neighborhood for each 3D point and then use those 3D points within the recovered
local neighborhood for the extraction of low-level geometric 2D and 3D features (Section 3.1.1).
Among the extracted features, there might be more and less relevant ones, so that it may be desirable
to test different feature sets, which are selected either manually or automatically (Section 3.1.2), and
draw conclusions about their absolute and relative performance with respect to the classification
task (Section 3.1.3). As shown in Figure 2, we intend to apply the first step of our framework in order
to retain “tree points” and discard “other points”.

Input 
Point Cloud 

Feature 
Selection 

2 Supervised 
Classification 

3 Feature 
Extraction 

1 

Figure 2. Illustration of the first step of our framework given by a semantic classification of “tree points”
and “other points” in dense 3D point cloud data acquired in urban areas.

3.1.1. Feature Extraction

To adequately describe the local 3D structure at a considered 3D point X0 with geometric features,
spatial relationships among those 3D points within a specific local neighborhood of X0 are typically
quantified via handcrafted features. Accordingly, a suitable local neighborhood has to be recovered
first, and the respective 3D points within that local neighborhood are subsequently used to extract
the geometric features.

Generally, a variety of neighborhood definitions may be used such as a spherical
neighborhood [25,26] or a cylindrical neighborhood [27]. For densely sampled 3D point cloud
data acquired with mobile mapping systems, a spherical neighborhood definition is to be preferred
to a cylindrical neighborhood definition, since different objects can be expected at different heights.
To parameterize a spherical neighborhood for a considered 3D point X0, we can rely on a radius [25]
or on the k nearest neighbors of X0 [26]. Since the latter allows for more flexibility with respect
to the absolute size of the local neighborhood, we consider this option. However, it often remains
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challenging to find a suitable scale parameter k without using prior knowledge about the scene and/or
the data. Furthermore, recent investigations clearly revealed that using the same value of the scale
parameter for all points of a densely sampled 3D point cloud is significantly outperformed by allowing
for a local data-driven adaptation of the scale parameter for each individual 3D point [6,22]. In these
investigations, a well-suited generic approach for automatically selecting an optimal scale parameter
kopt for each 3D point X0 individually has been presented with eigenentropy-based scale selection
and been proven to outperform a variety of other approaches. Thereby, for different scales k, the
3D covariance matrix also known as the 3D structure tensor and its normalized eigenvalues λj with
j ∈ {1, 2, 3}, λ1 ≥ λ2 ≥ λ3 ≥ 0 and λ1 + λ2 + λ3 = 1 are derived from the 3D coordinates of all 3D
points within the neighborhood of X0. Using the normalized eigenvalues λj, we can define the measure
of eigenentropy Eλ via the Shannon entropy and as a function of the scale parameter k according to:

Eλ(k) = −
3

∑
j=1

λj(k) ln
{

λj(k)
}

(1)

and this measure Eλ(k) indicates the order/disorder of 3D points within the local neighborhood
comprising the 3D point X0 and its k nearest neighbors. Since we favor a robust geometric description
of the local 3D structure, we are interested in locally adapting the neighborhood size so that a minimum
disorder of 3D points within the local neighborhood is achieved. This can be done by minimizing
the eigenentropy Eλ across different scales k and selecting the scale kopt corresponding to the minimal
Eλ as the optimal neighborhood size for the considered 3D point X0. Following our previous
investigations [6,22], we consider all possible scale parameters between kmin = 10 and kmax = 100
with ∆k = 1.

Exploiting the derived locally optimized neighborhoods, the characteristics of neighboring 3D
points can be described via geometric features. In this regard, we consider a set of 18 low-level
geometric features proposed in [6,22]. These features can be categorized into 3D features and
2D features.

Among the 3D features, there are eight local 3D shape features represented by linearity Lλ,
planarity Pλ, sphericity Sλ, omnivariance Oλ, anisotropy Aλ, eigenentropy Eλ, sum of eigenvalues
Σλ and local surface variation Cλ, which according to previous work [28,36] are defined as indicated
in the upper part of Table 1. Furthermore, the 3D features comprise six geometric 3D properties
of the considered local neighborhood, which are given by the height H of the considered 3D point X0,
the radius R3D of the local neighborhood, the local point density ρ3D represented by the ratio of 3D
points within the local neighborhood and the volume of the local neighborhood, the verticality V
relying on the local normal vector and the maximum difference ∆H as well as the standard deviation
σH of the height values corresponding to those 3D points within the local neighborhood. The respective
formulae are provided in the lower part of Table 1.

The use of 2D features is motivated by the fact that urban environments are characterized by
an aggregation of man-made objects, which typically exhibit almost perfectly vertical structures
(e.g., building facades, walls, poles or traffic signs). To describe such characteristics, we consider
features relying on a projection of the considered 3D point X0 and its kopt nearest neighbors
onto a horizontally oriented plane. For the resulting 2D projections, the 2D structure tensor and its
eigenvalues ξ j with j ∈ {1, 2} and ξ1 ≥ ξ2 ≥ 0 can be derived in analogy to the 3D case. Accordingly,
we can define two local 2D shape features represented by the sum Σξ and the ratio Rξ = ξ2/ξ1

of eigenvalues. Furthermore, we may exploit the 2D projections to define two geometric 2D
properties represented by the radius R2D of the local 2D neighborhood and the local point density
ρ2D, respectively.

If the involved acquisition system also allows capturing additional information (e.g., reflectance
information I or color information in the form of RGB values) which could be relevant for the
classification task, that information may be used to define further features.
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Table 1. The involved local 3D shape features (upper part) and the involved geometric 3D properties
(lower part).

Feature Formulae

Linearity Lλ = λ1−λ2
λ1

Planarity Pλ = λ2−λ3
λ1

Sphericity Sλ = λ3
λ1

Omnivariance Oλ = 3

√
3
∏
j=1

λj

Anisotropy Aλ = λ1−λ3
λ1

Eigenentropy Eλ = −
3
∑

j=1
λj ln

(
λj

)
Sum of eigenvalues Σλ =

3
∑

j=1
λj

Local surface variation Cλ = λ3
Σλ

Height H = Z0

Radius R3D = ‖Xkopt − X0‖

Local point density ρ3D =
kopt+1
4
3 πR3

3D

Verticality V = 1− nZ

Height difference ∆H = max
k=0..kopt

Zk − min
k=0..kopt

Zk

Standard deviation of height values σH =

√
1

kopt

kopt

∑
k=0

Zk − Z̄

3.1.2. Feature Selection

To allow a statement about the suitability of the defined features, we select different feature sets
as input for the subsequent classification task. First, we manually select feature sets, which are defined
as follows:

• The feature set Sdim contains the dimensionality features:

Sdim = {Lλ, Pλ, Sλ} (2)

• The feature set SEV,3D contains the eight local 3D shape features:

Sλ = {Lλ, Pλ, Sλ, Oλ, Aλ, Eλ, Σλ, Cλ} (3)

• The feature set S3D contains all defined 3D features, i.e., the local 3D shape features and
the geometric 3D properties:

S3D = {Lλ, Pλ, Sλ, Oλ, Aλ, Eλ, Σλ, Cλ, H, R3D, ρ3D, V, ∆H, σH} (4)

• The feature set S3D+2D contains all 3D and 2D features relying on the k-NN neighborhood,
i.e., the local 3D shape features, the geometric 3D properties, the local 2D shape features and
the geometric 2D properties:

S3D+2D =
{

Lλ, Pλ, Sλ, Oλ, Aλ, Eλ, Σλ, Cλ, H, R3D, ρ3D, V, ∆H, σH , Σξ , Rξ , R2D, ρ2D
}

(5)
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• The feature set S3D+2D+I contains all 3D and 2D features as well as the given
reflectance information:

S3D+2D+I =
{

Lλ, Pλ, Sλ, Oλ, Aλ, Eλ, Σλ, Cλ, H, R3D, ρ3D, V, ∆H, σH , Σξ , Rξ , R2D, ρ2D, I
}

(6)

• The feature set S3D+2D+I+RGB contains all defined 3D and 2D features as well as reflectance and
color information:

S3D+2D+I+RGB =
{

Lλ, Pλ, Sλ, Oλ, Aλ, Eλ, Σλ, Cλ, H, R3D, ρ3D, V, ∆H, σH , Σξ , Rξ , R2D, ρ2D, I, R, G, B
}

(7)

Subsequently, we automatically select feature sets by applying commonly used methods
for filter-based feature selection [72]. One of these feature sets is derived via Correlation-based
Feature Selection (CFS) [73], where the main idea is given by evaluating relations between features
and classes as well as relations among features in order to discriminate between relevant, irrelevant
and redundant features. This is done by defining random variables Xi for the features and C for the
class labels, so that the relevance R of a feature subset comprising n features can be expressed as:

R(X1...n, C) =
nρ̄XC√

n + n(n− 1)ρ̄XX
(8)

where ρ̄XC represents the average correlation between features and classes and ρ̄XX represents
the average correlation between different features. Thereby, the correlation metric is determined
via the measure of symmetrical uncertainty SU [74], which is defined as:

SU(X, Y) = 2
E(X) + E(Y)− E(X|Y)

E(X) + E(Y)
= 2

MI(X, Y)
E(X) + E(Y)

(9)

for two random variables X and Y, where E(·) represents the entropy and MI(·, ·) represents the mutual
information. The most suitable feature subset maximizes the relevance R. Accordingly, a search
in the feature subset space has to be carried out, which is performed by iteratively adding or removing
a feature from the feature subset until the relevance R converges to a stable maximum.

As a second approach for automatic feature subset selection, we use the Fast Correlation-Based
Filter (FCBF) [75], where the SU is used to rank features with respect to their correlation with
the respective label vector. Thereby, relevant features are indicated by an SU value above a certain
threshold. Subsequently, the SU among features is compared to the SU between features and classes in
order to detect and remove redundant features, so that only the predominant features are kept.

Finally, for each of the considered feature sets, the respective features are concatenated
to a feature vector. To account for the fact that the features may address different quantities with
possibly different units and a different range of values, a subsequent normalization across all feature
vectors is carried out. This normalization maps the values of each dimension to the interval [0, 1]. For
that purpose, the minimum and maximum values of each dimension are selected based on the examples
in the training data. The examples in the test data are mapped accordingly, and those values outside
the interval [0, 1] are mapped to the closest interval border.

3.1.3. Supervised Classification

In the scope of our work, the derived normalized feature vectors serve as input to a binary
point-wise classification distinguishing “tree points” and “other points”. For such a classification
task, a good trade-off between accuracy and efficiency can be obtained by using a Random Forest
(RF) classifier [55], which is a representative of modern discriminative methods and easy-to-use (and
easy-to-tune) for non-expert users. The RF classifier consists of an ensemble of decision trees created
via bootstrap aggregating (“bagging”) [76], i.e., numerous subsets of the training data are randomly
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drawn with replacement, and an individual decision tree is trained for each subset. Thus, the trained
decision trees are randomly different from each other so that, for a new feature vector, each decision
tree casts an individual vote, and the majority vote hence represents a prediction with improved
generalization and robustness [77].

3.2. Separation of Individual Trees via Semantic Segmentation

After the binary point-wise classification, we use the “tree points” and focus on a respective
separation of these points into segments corresponding to individual trees. As a generic segmentation
typically results in a high computational burden, we consider adaptations to retain an efficient approach
for individual tree extraction, which is also scalable towards the processing of very large datasets,
while still operating at point-level without requiring a voxelization of 3D space. More specifically, our
approach mainly relies on insights gained in our previous investigations [21,78], and it is given
by successively applying a downsampling of the “tree points” (Section 3.2.1), a 2D projection
of the downsampled “tree points” (Section 3.2.2), a mean shift segmentation on the derived 2D
projections (Section 3.2.3), an upsampling of the segmentation results to all “tree points” (Section 3.2.4),
a refinement of the segmentation results via segment-based shape analysis (Section 3.2.5) and a
localization of the individual trees in the considered scene (Section 3.2.6). As shown in Figure 3, we
apply the second step of our framework only on the “tree points” and intend to derive plausible
segments corresponding to individual trees.

Mean Shift 
Segmentation 

3 

Upsampling 
4 

Shape Analysis 
5 Tree 

Localization 

6 

Downsampling 
1 2D 

Projection 

2 

Figure 3. Illustration of the second step of our framework given by a semantic segmentation of “tree
points” into segments corresponding to individual trees.

To improve computational efficiency for the subsequent parts, we initially discard those 3D points
that are characterized by either a local vertical structure or a local horizontal structure, as we expect that
the local structure should rather be cluttered for vegetation. Hence, we introduce a filtering that relies
on the already calculated feature of verticality V (Section 3.1.1). Since this feature is normalized to the
interval [0, 1], low values (e.g., V ∈ [0, T1]) as well as high values (e.g., V ∈ [1− T1, 1]) indicate almost
horizontally oriented surfaces, whereas a value of V ≈ 0.5 (e.g., V ∈ [0.5− T2, 0.5 + T2]) indicates an
almost vertical structure. Consequently, we apply a thresholding, whereby thresholds of T1 = 0.1 and
T2 = 0.2 are selected heuristically based on the histogram of values for the feature of verticality V.

3.2.1. Downsampling

Since a generic segmentation of 3D point cloud data may be desirable, but computationally
demanding, we focus on improving efficiency with respect to both processing time and memory
consumption. In this regard, we focus on the expected characteristics of the acquired MMS point cloud
data, where we can assume densely sampled object surfaces near the acquisition system. Accordingly,
not all 3D points are required to appropriately describe respective objects in the scene, and the point
density may therefore be decreased significantly while still being able to detect the objects of interest
(in our case, represented by individual trees) in the respective 3D point cloud data.

In the scope of our work, we use a straightforward downsampling of the “tree points” by only
keeping every ν-th point, whereby we heuristically select a parameter of ν = 10 as proposed in [78].
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Instead of such a manual selection of the parameter ν, a parameter tuning based on the local point
density could be introduced [79].

3.2.2. 2D Projection

In addition to a downsampling of the 3D point cloud corresponding to the “tree points”, we
take into account that, due to planning processes as well as human intervention in nature, the
respective point distribution in urban areas is not completely random, but follows certain rules
that can be considered as prior knowledge about the scene and the data. Considering individual trees
as objects of interest, it is reasonable to assume a larger spacing and less overlap for individual trees in
urban areas than for individual trees in forested areas. Furthermore, we may neglect the occurrence of
dominant, co-dominant or dominated trees in urban environments, whereas this may be important
in forested areas. Based on such prior knowledge about the scene and the data, we may assume that
individual trees can still sufficiently be delineated if only a 2D projection of the downsampled “tree
points” onto a horizontally oriented plane is considered.

3.2.3. Mean Shift Segmentation

For segmentation, we use the 2D projections of the downsampled “tree points” onto a horizontally
oriented plane and apply the mean shift algorithm [66,80,81] to derive a meaningful partitioning with
respect to individual trees. In general, the mean shift algorithm is an iterative statistical technique
for locating the maxima/modes of a Probability Density Function (PDF) by only considering discrete
data sampled from that PDF, i.e., there is no need to recover the PDF itself. A further advantage
of the mean shift algorithm is that neither assumptions on a specific geometric model nor prior
knowledge about the number of expected modes are required.

More specifically, we treat the 2D projections of the downsampled “tree points” as discrete 2D
data points sampled from an empirical PDF. For each data point x0, the mean shift algorithm performs
the following steps until convergence (up to numerical accuracy):

1. calculation of the weighted mean µ of all data points within a window centered at x0 and defined
via a kernel K (whereby the kernel is typically represented by an isotropic kernel such as a
Gaussian kernel or an Epanechnikov kernel [81]),

2. definition of the mean shift vector m from the difference between x0 and µ,
3. movement of the data point x0 along the mean shift vector m and
4. consideration of the resulting point as an update of the point x0.

Accordingly, an iterative adaptive gradient ascent is performed, whereby the magnitude of the
mean shift vector m will be larger in those areas of low point density and smaller in those areas of
high point density. The movement converges in stationary points, which correspond to regions of high
point density and represent the modes of the underlying PDF. Each mode corresponds to a segment,
and all data points leading to the same mode form the respective segment. Due to the consideration of
2D projections of the downsampled “tree points” in the scope of our work, the derived segments are
expected to correspond to the individual trees in the considered scene.

It becomes obvious that the number of detected modes and thus the derived segmentation results
strongly depend on the involved kernel. In our experiments, we intend to detect individual trees in the
2D projection of densely sampled 3D point cloud data, and we may therefore involve prior knowledge
about the expected shape and size of these trees. For this reason, we select an isotropic Gaussian kernel,
which is parameterized via the bandwidth parameter h indicating the kernel width. In the context
of our work, the bandwidth parameter h has a physical meaning with respect to the expected size of
trees in the scene, and it has a limited sensitivity, as slight variations of h will typically not change
the segmentation results too much. Based on heuristic tests, we selected a value of h = 3.8 m for our
experiments [21,78].
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3.2.4. Upsampling

When applying the generic mean shift segmentation to the 2D projection of the downsampled
“tree points”, the segmentation results only refer to a subspace of the 3D points classified as “tree
points”, whereas a respective upsampling of the derived segmentation results to those 3D points
obtained after classification would be desirable. To achieve such an upsampling, we apply a rather
intuitive, simple and straightforward approach. To each 3D point classified as a “tree point”, this
approach assigns the segment label of the closest 3D point of the downsampled “tree points”.

3.2.5. Shape Analysis

Among the derived segments, there might be some that do not correspond to individual trees. To
remove such irrelevant segments, we focus on a segment-based shape analysis relying on semantic
rules. These semantic rules, in turn, rely on either segment statistics or on a segment-based extraction
of geometric features (e.g., the low-level geometric features presented in Section 3.1.1), whereby the
features are now extracted on the basis of a segment as the respective neighborhood.

1. The first semantic rule focuses on discarding smaller segments comprising only relatively few
3D points. This is motivated by the fact that, due to the data acquisition with a mobile mapping
system, the meaningful segments corresponding to individual trees should comprise many
densely sampled 3D points, whereas small segments are not likely to correspond to the objects of
interest, i.e., individual trees. Using a superscript s to indicate segment-wise features, we apply
this semantic rule to discard segments that comprise less than Ns = 1000 points.

2. The second semantic rule focuses on failure cases observed in recent investigations, e.g., in the
form of misclassifications of 3D points corresponding to building facades, which for instance
becomes visible in the classification results for one of the approaches presented in [13]. In this
regard, we take into account that building facades are characterized by an almost line-like
structure in their 2D projection onto a horizontally oriented plane. Accordingly, we may consider
the ratio Rs

ξ of the eigenvalues of the 2D structure tensor, and we discard those segments that are
rather elongated in the 2D projection by checking if Rs

ξ is below a certain threshold TRξ
. Thereby,

we select the threshold heuristically to TRξ
= 0.2, which means that, for a segment corresponding

to a tree, the smaller eigenvalue ξs
2 has to be equal to or even above a value of 20% of the larger

eigenvalue ξs
1, i.e., Rs

ξ ≥ 0.2.

3. The third semantic rule focuses on discarding segments that exhibit a structure with almost
no extent in the horizontal direction. This can be done by thresholding the products of the
eigenvalues ξs

j of the 2D structure tensor and their sum Σs
ξ , where we assume that segments

corresponding to individual trees are characterized by ξs
1Σs

ξ ≥ 1 m and ξs
2Σs

ξ ≥ 1 m.

4. The fourth semantic rule focuses on discarding segments that exhibit a low curvature Cλ where
Cλ < 0.07, since such segments typically reveal planar structures.

All involved threshold parameters have been selected via a heuristic search and worked for all of
our experiments.

3.2.6. Tree Localization

Finally, for all plausible tree segments, we define the location of the respective tree via
the corresponding mode derived during the mean shift segmentation relying on 2D projections
of the downsampled “tree points”.

4. Results

In the following, we first describe the involved benchmark dataset (Section 4.1). Subsequently,
we present the derived results for semantic classification (Section 4.2) and semantic segmentation
(Section 4.3).
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4.1. Dataset

To evaluate the performance of our framework, we use the IQPC’15 benchmark dataset [13],
which has been acquired in the vicinity of the campus of TU Delft in the Netherlands with the Fugro
DRIVE-MAP system. This system allows acquiring spatial 3D data in the form of a 3D point cloud
as well as the corresponding reflectance and color information (see Figure 1). In total, the dataset
corresponds to 26 tiles (each covering an area of 25 m × 25 m) and comprises 10,126,500 labeled 3D
points, whereby the labeling distinguishes “tree points” from “other points” (see Figure 4). About
1.78 M 3D points (17.6%) are labeled as “tree points”, and all remaining 3D points are labeled as
“other points”. The provided reference labeling allows performance evaluation for a binary semantic
classification of 3D points with respect to “tree points” and “other points”, whereas a separation of the
“tree points” into clusters corresponding to individual trees has to be verified by visual inspection.

300m 

125m 

Figure 4. Visualization of the IQPC’15 benchmark dataset with about 10.13 M labeled 3D points (top:
nadir view and side view; bottom: more detailed views): those 3D points categorized as “tree points”
are colored in green, and those 3D points categorized as “other points” are colored in red [21,78].

4.2. Task 1: Semantic Classification

The first step of our framework focuses on the point-wise semantic classification of a given 3D
point cloud with respect to “tree points” and “other points”. For this purpose, each 3D point is
(1) assigned a local neighborhood of optimal size via eigenentropy-based scale selection, (2) described
with a feature vector by concatenating the defined low-level geometric (and partially also radiometric)
features, and (3) classified by the Random Forest (RF) classifier.

To train the RF classifier, we take into account that a sufficient number of representative training
examples is required and that an unbalanced distribution of training examples per class might have
a detrimental effect on the training process [77,82]. Hence, we randomly select 1000 training examples
per class, i.e., the training set X comprises 2000 labeled 3D points and their corresponding feature
vectors. The remaining labeled 3D points of the dataset and their corresponding feature vectors
are used as test set Y . Furthermore, we perform a heuristic grid search to define the settings of the RF
classifier. Thereby, the most important parameter is represented by the number NT of involved decision
trees, and this parameter is respectively selected to NT = 100 for all considered feature sets.

For performance evaluation, we consider the global evaluation metrics of overall accuracy (OA)
and Cohen’s kappa coefficient (κ). Furthermore, we consider the class-wise evaluation metrics of recall
(R) and precision (P). To derive objective results allowing one to compare the suitability of each feature
set, we perform 20 repetitions of the corresponding classification task and report the mean value as
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well as the standard deviation for each of the defined classification metrics. The derived classification
results are provided in Table 2. A visualization of the classification results derived with the feature sets
S3D+2D and SFCBF is shown in Figures 5 and 6.

Table 2. Mean value and standard deviation for the different evaluation metrics (averaged across
20 runs): the class C1 comprises “tree points”, whereas the class C2 comprises “other points”.

Feature Set # Features OA (%) κ (%) R(C1) (%) R(C2) (%) P(C1) (%) P(C2) (%)

Sdim 3 74.33± 2.51 35.20± 2.37 73.24± 3.92 74.57± 3.82 38.32± 2.36 92.92± 0.66
Sλ 8 84.04± 1.51 56.53± 2.54 88.18± 2.16 83.15± 2.20 52.96± 2.78 97.07± 0.46
S3D 14 90.08± 1.16 71.36± 2.43 96.21± 2.02 88.77± 1.76 64.85± 3.18 99.11± 0.46
S3D+2D 18 90.02± 1.22 71.39± 2.68 97.08± 1.64 88.51± 1.69 64.51± 3.06 99.31± 0.38
S3D+2D+I 19 88.03± 1.88 67.20± 3.89 98.15± 1.35 85.87± 2.50 60.03± 4.08 99.55± 0.32
S3D+2D+I+RGB 22 84.74± 1.58 60.73± 2.88 99.59± 0.11 81.57± 1.94 53.67± 2.40 99.89± 0.03
SCFS 2− 4 90.72± 0.57 71.52± 1.28 89.30± 3.61 91.03± 1.24 68.12± 2.05 97.57± 0.79
SFCBF 2− 4 90.77± 0.50 71.66± 1.43 89.53± 4.36 91.03± 1.19 68.19± 2.06 97.62± 0.94

Figure 5. Visualization of a classification result derived with the feature set S3D+2D comprising 18
low-level geometric 3D and 2D features (left: nadir view; right: side view): those 3D points categorized
as “tree points” are colored in green, whereas those 3D points categorized as “other points” are
colored in red (the classification result corresponds to an overall accuracy of 90.07% and a kappa value
of 71.54%).

Figure 6. Visualization of a classification result derived with the feature set SFCBF (left: nadir view;
right: side view): those 3D points categorized as “tree points” are colored in green, whereas those
3D points categorized as “other points” are colored in red (the classification result corresponds to an
overall accuracy of 90.71% and a kappa value of 72.14%).
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4.3. Task 2: Semantic Segmentation

The second step of our framework focuses on the separation of the “tree points” with respect
to individual trees. For this purpose, we involve: (1) a downsampling of the “tree points”;
(2) a 2D projection onto a horizontally oriented plane; (3) a mean shift segmentation in 2D space;
(4) an upsampling of the segmentation results to all “tree points”; (5) a segment-based shape analysis
relying on semantic rules; and (6) a tree localization.

To obtain an impression about the quality of the segmentation results derived with the mean
shift algorithm, a visualization of the derived segments is provided in Figures 7 and 8. Here, Figure 7
shows a segmentation relying on a classification result derived for the feature set S3D+2D (Figure 5),
whereas Figure 8 shows a segmentation relying on a classification result derived for the feature set
SFCBF (Figure 6). The effect of applying the different semantic rules during segment-based shape
analysis is shown in Figures 9 and 10, respectively. Finally, a visualization highlighting the individual
trees detected in the considered scene is provided in Figure 11. The estimated location of the respective
trees is given with the corresponding modes derived during the mean shift segmentation (Figures 7
and 8).

Figure 7. Visualization of a segmentation result relying on a classification based on the feature set
S3D+2D (left: mean shift segmentation result; right: segmentation result after the upsampling to the
“tree points”): the segment modes are indicated with a circle in the respective color (the segmentation
result corresponds to the classification result depicted in Figure 5).

Figure 8. Visualization of a segmentation result relying on a classification based on the feature set
SFCBF (left: mean shift segmentation result; right: segmentation result after the upsampling to the
“tree points”): the segment modes are indicated with a circle in the respective color (the segmentation
result corresponds to the classification result depicted in Figure 6).
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Figure 9. Segment-based shape analysis corresponding to the segmentation depicted in Figure 5 and
relying on a classification based on the feature set S3D+2D (left: nadir view; right: side view): segments
with Ns ≥ 1000 points (first row) and segments that additionally satisfy the constraints Rs

ξ ≥ 0.2
(second row), ξs

j Σs
ξ ≥ 1 m for j = 1, 2 (third row) and Cλ ≥ 0.07 (fourth row).
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Figure 10. Segment-based shape analysis corresponding to the segmentation depicted in Figure 6 and
relying on a classification based on the feature set SFCBF (left: nadir view; right: side view): segments
with Ns ≥ 1000 points (first row) and segments that additionally satisfy the constraints Rs

ξ ≥ 0.2
(second row), ξs

j Σs
ξ ≥ 1 m for j = 1, 2 (third row) and Cλ ≥ 0.07 (fourth row).
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Figure 11. Visualization of the individual trees detected in the considered scene when relying on a
classification based on the feature set S3D+2D (top) and when relying on a classification based on the
feature set SFCBF (bottom).

5. Discussion

The derived results provide important insights with respect to semantic classification (Section 5.1),
semantic segmentation (Section 5.2) and the computational effort corresponding to both tasks
(Section 5.3).

5.1. Task 1: Semantic Classification

For the first step of our framework, we can conclude that it is relatively simple and easy-to-use
for non-expert end-users. Furthermore, the consideration of different sets of geometric features as input
for semantic classification allows one to reason about their suitability with respect to the classification
task. In this regard, the derived results clearly reveal that using the feature set Sdim comprising only
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the three dimensionality features of linearity Lλ, planarity Pλ and sphericity Sλ for the classification
task does not lead to accurate results (Table 2). The respective mean values of OA = 74.33% and
κ = 35.20% across all 20 runs are relatively low, whereas the standard deviation σOA = 2.51%
is relatively high. The consideration of the feature set Sλ comprising the three dimensionality features
as well as five further local 3D shape features as input for classification yields a significant improvement
of the derived classification results and thereby decreases the standard deviation σOA by about 1%,
but the mean values of OA = 84.04% and κ = 56.53% across all 20 runs are still not sufficient
to claim appropriate classification results. When further extending the set of considered features
to the set S3D comprising all defined 3D features, mean values of OA = 90.08% and κ = 71.36%
are achieved, and the standard deviation σOA is further reduced to σOA = 1.16%. The additional use
of 2D features, i.e., the consideration of the feature set S3D+2D comprising 18 low-level geometric 3D
and 2D features [6,22], leads to classification results of approximately the same quality (OA = 90.02%,
κ = 71.39%, σOA = 1.22%). In comparison to the feature set Sdim, the feature set S3D+2D

delivers a significant gain of about ∆OA = 15.69% in overall accuracy and ∆κ = 36.19% in kappa,
while the standard deviation σOA is reduced by about ∆σOA = 1.29%. As pointed out in earlier
investigations [5], the computational effort for calculating the low-level geometric 3D and 2D features
in the feature set S3D+2D reveals a linear behavior, i.e., a linear increase of the processing time can be
observed for an increasing number of points in the considered 3D point cloud.

Interestingly, the additional use of reflectance information in the feature set S3D+2D+I decreases
the quality of the derived classification results to values of OA = 88.03% and κ = 67.20%,
i.e., by a difference of ∆OA = 1.99% and ∆κ = 4.19%. The further consideration of color information in
the feature set S3D+2D+I+RGB also reveals a negative effect on the derived classification results, which
is even stronger. The respective values of OA = 84.74% and κ = 60.73% are almost at the level
corresponding to the classification results derived for the feature set Sλ and do not indicate a reliable
classification. The low relevance of the given reflectance information and RGB color information for
the classification task can be motivated by the fact that this kind of information is not really meaningful
to separate “tree points” and “other points”. Considering the colored 3D point clouds in Figure 1,
even for us humans, it remains impossible to separate both classes by only focusing on reflectance
information and color information.

In contrast to manually selecting feature sets based on the respective feature design, the involved
feature selection methods represented by Correlation-based Feature Selection (CFS) and the Fast
Correlation-Based Filter (FCBF) focus on automatically selecting suitable features based on the given
training data. As can be seen in the derived classification results (Table 2), both feature selection
methods perform comparably well. They even improve the predictive accuracy of the involved RF
classifier, while the classification itself is only based on feature sets comprising between two and four
out of the 22 defined features. Since the features are selected based on the training data, there is no
need to calculate and store the less suitable features for the test data. Hence, regarding the test data,
the memory consumption for data storage can be reduced significantly to only about 9.09% and 18.18%,
respectively. Consequently, the main motivation of applying feature selection methods, which is given
by improving predictive accuracy, while simultaneously reducing the computational burden with
respect to processing time and memory consumption [83], also holds for our experiments. A closer
look at the corresponding feature sets SCFS and SFCBF reveals that, across the 20 runs (whereby the
training data are randomly selected and therefore different for each run), the local surface variation Cλ

and the height H are selected in all 20 runs, while the feature of linearity Lλ is selected in nine runs,
and the remaining features seem to be less relevant according to the respective selection criteria of CFS
and FCBF. Intuitively, the feature Cλ should allow distinguishing surfaces of low curvature (as, e.g.,
given for walls or ground) from cluttered surfaces (as, e.g., given for vegetation), whereas the height
should allow distinguishing vegetation at different height levels (e.g., tree foliage and low vegetation)
for the case of an almost flat environment without significant slope.
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To provide a qualitative analysis of the derived classification results, we focus on a visual
inspection of the classified 3D point cloud and on a detailed consideration of failure cases (Figures 12
and 13):

• Incorrect reference labels: A closer look at Figure 4 already reveals that some mislabeling obviously
occurred during the annotation process. Some of the trees in the scene are completely labeled
as “other points”, while the respective label should have been “tree points” instead. Due to the
random sampling of training examples, some incorrectly labeled 3D points might have been
selected for training the involved RF classifier, and hence, its generalization capability might be
reduced. Furthermore, the incorrect labeling has a negative impact on the derived classification
results as a significant number of correctly classified 3D points is considered as classification
errors (Figures 12 and 13).

• Registration errors: The visualization of the classified 3D point clouds in Figures 5 and 6 as well as
the visualization of failure cases in Figures 12 and 13 reveal that certain 3D points corresponding
to building facades are likely to be classified as “tree points”, although they should be labeled as
“other points”. Such misclassifications might be caused by the fact that the local neighborhood of
respective 3D points is characterized by a volumetric behavior instead of a planar behavior. The
volumetric behavior in turn might result from a slight misalignment of different MMS point clouds
or from a degraded positioning accuracy of the involved MMS system due to GNSS multipath
errors, which are more significant in urban canyons. Furthermore, the volumetric behavior could
result from noise effects resulting from limitations of the used sensor in terms of beam divergence
or measurement accuracy, but also from specific characteristics of the observed scene in terms of
object materials, surface reflectivity and surface roughness [22]. Besides these influencing factors,
the scanning geometry in terms of the distance and orientation of object surfaces with respect
to the used sensor might have to be considered as well [84,85].

• Edge effects: For some feature sets, misclassifications might occur at the boundaries of single
tiles, which is due to the separate processing of different tiles [21]. This can easily be solved
by considering a small padding region around each tile so that those 3D points within the padding
region are also used if they are within the local neighborhood of a 3D point within the considered
tile [5].

Due to these issues, most of the misclassifications might mainly be related to the characteristics
of the considered dataset and less to the proposed methodology for a point-wise, binary semantic
labeling of a given 3D point cloud with respect to “tree points” and “other points”.

Figure 12. Visualization of the failure cases in the form of misclassifications that particularly occur
for trees and building facades (left: nadir view; right: side view): those 3D points that are correctly
classified with respect to the provided labeling are colored in green, whereas those 3D points that
are not correctly classified with respect to the provided labeling are colored in red (the classification
result corresponds to an overall accuracy of 90.07% and a kappa value of 71.54%; cf. Figure 5).
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Figure 13. Visualization of the failure cases in the form of misclassifications that particularly occur
for trees and building facades (left: nadir view; right: side view): those 3D points that are correctly
classified with respect to the provided labeling are colored in green, whereas those 3D points that
are not correctly classified with respect to the provided labeling are colored in red (the classification
result corresponds to an overall accuracy of 90.71% and a kappa value of 72.14%; cf. Figure 6).

5.2. Task 2: Semantic Segmentation

For the second step of our framework, we can also conclude that it is relatively simple and
easy-to-use for non-expert end-users. It directly operates at point-level and avoids using a voxelization,
as for instance proposed in [13,15], where the respective segmentation results might be strongly
influenced by the voxel size and the voxel orientation. The consideration at point-level remains
efficient, since time-consuming tasks such as a mean shift segmentation are applied on only a small
subspace of the given data and the respective results are subsequently upsampled. Thereby, the
subspace is defined via a downsampling followed by a 2D projection, where the downsampling by
a factor of 10 still allows detecting individual trees in the given 3D point cloud data [78] and the 2D
projection improves the computational efficiency of a mean shift segmentation, which, in turn, can be
performed much faster in 2D space than in 3D space [67,68].

Furthermore, we may conclude that the derived classification results as input are appropriate
to achieve a meaningful segmentation with respect to individual trees (Figures 11 and 14), even if
efficiency is significantly improved by applying crucial tasks only on a small subspace of the given
data. A closer look at the derived segmentation results reveals that these are sufficiently accurate
for the considered benchmark dataset, i.e., almost all derived segments correspond to an individual
tree in the scene when relying on a classification based on the feature set S3D+2D, and there is only
one of the detected segments that probably corresponds to a different object (Figure 9). When relying
on a classification based on the feature set SFCBF, the derived segmentation results are still appropriate
(Figure 10). However, for that case, there are a few trees in the scene that are not detected (particularly
those trees that are at the boundaries of the considered scene and hence only partially acquired), and
there are also some derived segments that correspond to a building edge. The segmentation results
derived for both feature sets also reveal minor segmentation errors that occur at segment borders
if adjacent trees are relatively close to each other and partially overlapping (see, e.g., Figure 14).
Such minor segmentation errors however also become visible in the results presented in [13].
Furthermore, in the bottom left part of Figure 14, it can be observed that one tree is segmented
into two parts indicated in blue and red. The blue segment contains foliage and the tree trunk, while
the red segment only contains foliage. The latter segment however reveals a significant change in point
density, and here, the mean shift segmentation favors the high density region, although it does not
correspond to a tree trunk.
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Figure 14. More detailed visualization of derived segments (the classification result corresponds
to an underlying overall accuracy of 90.07% and a kappa value of 71.54%; cf. Figures 5 and 9).

5.3. Computational Effort

In contrast to our prototype implementation [21] that was designed to work on a high-performance
computer with a lot of memory, we focus on improved efficiency in the scope of this paper so that
the resulting implementation can also be run on a standard laptop computer (Intel Core i7-6820HK,
2.7 GHz, four cores, 16 GB RAM) with reasonable processing time. For this reason, we take into
account that some of the features used in [21] can only be extracted with non-linear computational
effort, whereas the computational effort for extracting local 3D shape features, geometric 3D properties,
local 2D shape features and geometric 2D properties reveals a linear behavior [5]. The significant
savings with respect to processing time and memory, in turn, allow for a parallel processing of crucial
steps on multiple cores, which further reduces the processing time. As a consequence, we expect
a significantly faster processing for the crucial steps of neighborhood selection (tN) and feature
extraction (tFEX), which indeed can be verified in Table 3. Note that, for neighborhood selection, which
exhibits a linear complexity, the speed-up roughly corresponds to the distributed processing on four
cores. In contrast, the processing time tFEX required for feature extraction is significantly less than
about a fourth of the processing time reported in [21], since only those features are considered that can
be extracted with linear complexity. Here, the speed-up corresponds to a factor of about 54.

Table 3. Specifications for our prototype framework presented in [21] and for our proposed framework.

Specifications Prototype [21] Proposed Framework

System Intel Core i7-3820, 3.6 GHz, 64 GB RAM Intel Core i7-6820HK, 2.7 GHz, 16 GB RAM
Implementation MATLAB MATLAB
Parallelization – 4 cores
# Geometric Features 21 18
tN 8.34 h 2.00 h
tFEX 10.84 h 0.20 h
ttrain 0.34 s 0.05 s
ttest 23.81 s 18.10 s

For the second step of our framework, the required processing time is significantly less than
1 min in total. Thereby, the mean shift segmentation is performed in 4.09 s and the segment-wise
feature extraction in 0.41 s. Furthermore, during the segment-based shape analysis, each of the applied
semantic rules takes between 0.29 s and 0.39 s. Consequently, the computational effort required for
the second step of our framework is not significant in comparison to the computational effort required
for the first step of our framework (Table 3).
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6. Conclusions

In this paper, we have focused on an instance-level segmentation in the form of a detection
of individual trees in dense 3D point cloud data acquired in urban areas. To solve this task, we
have presented a novel two-step classification-segmentation framework operating at point-level and
representing an end-to-end processing workflow from raw data to individual trees in the scene.
The first step of our framework is given by a semantic classification in terms of assigning semantic
class labels to the irregularly distributed 3D points, whereas the second step is given by a semantic
segmentation in terms of separating individual objects within the labeled 3D points. For both steps, we
have focused on the simplicity and applicability of the involved methods so that non-expert end-users
can easily apply the complete framework on a standard laptop computer without requiring expert
knowledge about single methods. The results derived for a benchmark dataset clearly indicate that
a point-wise semantic classification relying on geometric features is able to deliver an appropriate
semantic labeling with respect to “tree points” and “other points”, even for very few involved geometric
features. Furthermore, the derived results indicate a reliable segmentation of individual trees from
those 3D points that are classified as “tree points”. Thereby, the high quality of the segmentation
results mainly depends on the use of semantic rules involving segment-based features, since these
rules allow discarding implausible segments and thus retaining only those segments that are likely to
correspond to an individual tree.

In future work, we plan to integrate parts of the proposed framework into the IQmulus
platform [86] focusing on the processing of large geospatial data, where one of the defined showcases
addresses large-scale scene analysis in the form of extracting individual trees from densely sampled
MMS point cloud data. Furthermore, we intend to test our framework for the extension of the
IQPC’15 benchmark dataset by 483 additional tiles that are unlabeled [13] as well as for a dataset
corresponding to about 10 km of streets acquired in the city of Toulouse, France. Finally, it might be
worth addressing planned benchmarks on tree detection and tree species classification relying on the
TorontoCity dataset [87], for which airborne and ground-based acquisition systems have been used to
collect different types of data for an area of about 712 km2.
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