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ABSTRACT

While standard computed tomography (CT) data do not depend on energy, spectral computed tomography
(SPCT) acquire energy-resolved data, which allows material decomposition of the object of interest. Decom-
positions in the projection allow creating projection mass density (PMD) per materials. From decomposed
projections, a tomographic reconstruction creates 3D material density volume. The decomposition is made pos-
sible by minimizing a cost function. The variational approach is preferred since this is an ill-posed non-linear
inverse problem. Moreover, noise plays a critical role when decomposing data. That is why in this paper, a
new data fidelity term is used to take into account of the photonic noise. In this work two data fidelity terms
were investigated: a weighted least squares (WLS) term, adapted to Gaussian noise, and the Kullback-Leibler
distance (KL), adapted to Poisson noise. A regularized Gauss-Newton algorithm minimizes the cost function
iteratively. Both methods decompose materials from a numerical phantom of a mouse. Soft tissues and bones are
decomposed in the projection domain; then a tomographic reconstruction creates a 3D material density volume
for each material. Comparing relative errors, KL is shown to outperform WLS for low photon counts, in 2D and
3D. This new method could be of particular interest when low-dose acquisitions are performed.

1. INTRODUCTION

Spectral computed tomography (SPCT) is a new modality that is expected to be the future of computed to-
mography (CT). While conventional CT data are obtained integrating the whole energy spectrum received, new
detectors, called photo-counting detectors, allow counting how many photons have hit the detectors in several
energy bins. Since material attenuation depends on the incident energy of the photon the concentration of
the object in a basis of different materials can be estimated from energy-resolved data. Thus SPCT produces
more information from a single imaging exam than standard CT. This new modality is expected to have many
applications in the medical field, such as imaging high Z contrast agents.1,2

From 2D energy-resolved projections, three differents approaches are available to estimate the 3D volumes of
material density for a chosen basis of materials. A first approach consists in performing tomographic reconstruc-
tion for the different energy bins, thus creating 3D energy-resolved volumes. From those, materials decomposition
can be achieved3 in the object domain. A second approach consists in solving the joint problem of decomposi-
tion and tomographic reconstruction, and can be referred as the one-step approach.4 The last possibility is to
decompose materials in the projection domain,5–7 creating material density map (called projected mass density,
PMD) and performorm the tomographic reconstruction from the decomposed data to created the 3D volumes
of material density. This decomposition approach is highly parallelizable since each can be processed indepen-
dently of the others. Decomposition in projection domain also embeds all the non-linearities of the forward
model. While tomographic reconstruction is linear. For all these reasons, we have selected this approach, thus
performing material decomposition in the projection domain followed by the standard filtered-back-projection
to create 3D volumes of material density.
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Material decomposition in SPCT is a non-linear ill-posed inverse problem. It can be solved by minimizing
a cost function, composed of a data fidelity term (representing the distance between the data and the forward
model) and a regularization term (which make the solution stable regarding the noise). Material decomposition
was achieved by minimizing such cost function with different type of algorithms. Both zero-th and first-order
algorithms succeeded to that task.5,7–9 However, recent work proposed a second-order iterative algorithm (Gauss-
Newton scheme) and proved to be more efficient than lower order algorithms.6 Ducros et al. introduced a cost
function with a weighted least squares (WLS) data fidelity term, that was minimized with a Gauss-Newton
algorithm. However, the noise in SPCT is Poisson distributed, and WLS is adapted to Gaussian noise. In this
work, we consider a data fidelity term is proposed based on the Kullback-Leibler distance to take into account
the Poisson nature of the noise.10 From this change, one can expect to improve the quality of the decomposition.

This paper is organized as follow. In Section II, the forward model, the inverse problem, and the minimization
algorithm are presented. Section III presents the KL distance as new data fidelity. Numerical experiments are
described in Section IV. Section V displays results of experiments and discusses them. Finally, Section VI
concludes this paper.

2. MATERIAL DECOMPOSITION IN SPECTRAL CT

2.1 Object model

Alvarez and Macovski showed that11 the object of interest can be decomposed on a basis of M materials. This
allows to write the linear attenuation coefficient of the object as the following linear combination:

µ(E,x) =

M∑
m=1

ρm(x)τm(E) (1)

where µ(E,x) is the linear attenuation coefficient (in cm−1) at point x and energy E, ρm(x) is the mass density
(in g.cm−3) of the m-th material at point x, and τm(E) is the mass attenuation (in cm2.g−1) of the m-th material.

2.2 Forward model

The standard SPCT forward model6,12 is written as

si(u) =

∫
R
di(E)n0(E) exp

(
−

M∑
m=1

am(u)τm(E)

)
dE (2)

where si(u) is the number of photons hitting the detector in the i-th energy bin at pixel u, di(E) is the response
function of the i-th energy bin of the detector,5 n0(E) is the emitted X-ray spectrum and am(u) is the projection
of all the mass of the m-th material along the x-ray path L(u):

am(u) =

∫
L(u)

ρm(x)dx (3)

2.3 Discretization and noise

The detector is assumed to have P pixels, with up the location of the p-th pixel, and I energy bins. We define
the measurement vector s ∈ RIP as

s = [s1,1, . . . si,p, . . . sI,P ]> (4)

where si,p is the photon count measured in the i-th energy bin at pixel up. Similarly, the projected mass density
(PMD) vector a ∈ RMP is defined by

a = [a1,1, . . . am,p, . . . aM,P ]> (5)

where am,p is PMD of the m-th material at pixel up.

Data is assumed to be corrupted by Poisson noise. Let s∗ be the noiseless data vector, s the noisy data, and
P(γ) the Poisson distribution with mean γ. We have:

s ∼ P(γ = s∗). (6)



2.4 Inverse problem

Material decomposition is an ill-posed problem that consists in recovering the PMD a from the data s. Let
s = F(a) be the forward model defined in (2). The PMD can be recovered by minimizing the following cost
function

C(s,F(a)) = D(s,F(a)) + αR(a) (7)

where D(s,F(a)) is the fidelity term, α the regularization parameter and R(a) the regularization term used to
stabilize the solution. The regularization terms used by Ducros et al.6 was chosen as

R(a) = ||∆asoft||22 + ||∇abone||22 (8)

where ∆ and ∇ are first- and second-order differential operator. The usual fidelity term is the WLS defined by6

DWLS(s,F(a)) =
1

2
||W(s−F(a))||2 (9)

where ||.||2 is the `2-norm and W is the weighting matrix defined as W = diag( 1√
s+1

) where diag(x) represents

a diagonal matrix with the elements x.

2.5 Minimization of the cost function

In this work, the cost function (7) is minimized by using a Gauss-Newton’s algorithm. This second-order
algorithm provides faster convergence than first order methods. Starting with an initial guess a0, the solution is
computed iteratively with the following update formula

ak+1 = ak + λkδak (10)

where ak is the solution at the iteration k, δak is the Newton’s step and λk a scalar optimizing the minimization
in the direction δak. The Newton’s step is computed by solving

(J>ZhJ + αHreg)δak = −(J>Zg(F(ak)− s) + αgreg) (11)

where J is the Jacobian of the forward problem, Hreg and greg is the Hessian and the gradient of the regularization
term, respectively. Zh and Zg are diagonals matrices which depend on the fidelity term. The step length λk is
obtained by solving

λk = argmin
λ

C(s,F(ak + λδak)) (12)

Zg and Zh are, in the WLS data fidelity term case, as follow13

WLS:

{
Zg = WTW
Zh = WTW

3. A NEW APPROACH: THE KULLBACK-LEIBLER DISTANCE

3.1 Noise in spectral CT

The standard data fidelity term WLS is adapted to Gaussian noise. However, in SPCT the noise is Poisson
distributed since it is a comes from the detection process of the photons. The WLS is thus not well adapted to
our problem for low signal-to-noise ratios. That is why in this work the cost function uses the Kullback-Leibler
distance as data fidelity term. The KL term allows taking into account the statistics of the noise more faithfully.10



3.2 A noise adapted fidelity term

The KL distance between two Poisson-distributed data s and F(a) is written14

DKL(s,F(a)) =
∑
i

(si + ζ) log

(
si + ζ

F(a)i + ζ

)
+ F(a)i − si (13)

where ζ is a small integer that avoids dividing by zero and having the log of zero. The Gauss-Newton algorithm
requires the computation of the Jacobian and the approximation of the Hessian, as seen in Equation (11). For
KL, we have:

KL:

{
Zg = Y−1

Zh = Y−2S

where Y = diag(F(a) + ζ) and S = diag(s + ζ).

4. NUMERICAL SIMULATIONS

Both methods are tested on the numerical phantom DigiMouse.15 It is a volume of 104 × 190 × 496 voxels
composed by M = 2 materials: soft tissues and bones. As mentioned earlier, PMD are first decomposed, then, a
tomographic reconstruction is performed to retrieve a 3D volume per material. The projection data are obtained
with the Radon function of Matlab (219× 496 pixels). 360 projections angles are used over 360◦.

We consider a X-ray spectrum generated by a 90KeV source using the spekCalc software.16 Three bins of
energy (I = 3) are used by the photon-counting detectors to detect photons. We define N0 as the number of
photons send at each pixel detector:

N0 =

∫
R
n0(E)dE (14)

N0 controls the signal-to-noise ratio, thus a large range of N0 values is used: N0 ∈ [102, 104].

The initial guess of the iterative algorithm are uniform PMD maps with a0
soft = 2 g.cm−2 and a0

bones = 1
g.cm−2. The algorithm stops when the relative decrease of the cost function is lower than 0.1%, if λk is lower
than 10−3 or if the maximum number of iteration is reached. This maximum number of iterations is set at 50.
A large range of regularization parameter is used in order to find the best decomposition, α ∈ [10−2, 104].

We define the relative error ξθ in the projection domain for each angle θ as follows:

ξθ =

M∑
m=1

||adec
m (θ)− atrue

m (θ)||2

||atrue
m (θ)||2

(15)

where adec
m (θ) is the decomposed PMD of the mth material and atrue

m (θ) is the ground truth for the material m,
for one projection at angle θ. Similarly we define δZ as the relative error in the object domain at the z slice
number with:

δZ =

M∑
m=1

||ρrecm (Z)− ρtruem (Z)||2

||ρtruem (Z)||2
(16)

with ρtruem (Z) the reconstructed ground truth of the material m for a given slice Z and ρrecm (Z) the reconstruction
material density in 3D at the same slice.

For each projection at angle θ, α̂θ represents the α that minimizes the relative error, such as

α̂θ = argmin
α

ξθ(α) (17)

The 3D volumes (154 × 154 × 496 voxels) are reconstructed from the Filtered Back Projection algorithm
implemented by the iradon function of Matlab. We used the Hann filter and a v5cubic interpolation method
(cubic interpolation from Matlab 5).



(a) θ = 0◦ (b) θ = 90◦

Figure 1: Evolution of the relative error with the number of photons at 0◦ (left) and 90◦ (right)

θ(◦) α̂θ Time (sec) Iteration number
WLS 0 102 3.37 5

90 101.5 3.49 4
KL 0 101.4 2.95 4

90 10 3.56 4
Table 1: Optimal α value, time per iteration and number of iterations required to converge for α̂ at N0 = 102.2

for two different projection angle θ

5. RESULTS AND DISCUSSION

The PMD are first obtained on the DigiMouse phantom. The computation of the relative errors is very relevant
to evaluate the quality of the decompositions.

Figure 1 shows the evolution of the relative error ξ on the projections for the optimized α̂θ and for the
projection angles θ = 0◦ (left) and θ = 90◦ (right) with an increasing numbers of photons N0. At a low number
of photons, the WLS is not a good approximation of the KL distance, which takes account of the photonic noise.
For both projection angles, KL outperforms WLS at a small number of photons. At a higher signal-to-noise
ratio, the quadratic approximation is good, and both WLS and KL lead to the same relative error. Similar
curves can be found by considering each material (soft tissues and bones).

Table 1 provides quantitative results from the decompositions at N0 = 102.2 photons, for θ = 0◦ and θ = 90◦.
This table presents the optimal value of α, the time of computation of one iteration and the number of iteration
required to converge. KL and WLS are taking almost the same CPU time (3.5 GHz Xeon E5-1650 v3 and 64
GiB of RAM) to make an iteration and also the same number of iterations to converge. This comes from the
calculation of the Jacobian and Hessian where they are almost the same.

Previous results show that KL outperforms WLS at a low number of photons. To highlight this trend, and to
validate it, decomposition of soft tissues and bones were done for θ ∈ [0, 360], at N0 = 102.2 photons. Evolution
of relative error ξ, for α̂θ, for different θ is depicted on Figure 2 (top). It shows that KL outperforms WLS for
any projection angle. On the last two rows decomposition of soft tissues (middle row) and bones (bottom row)
are shown for θ = 180◦. The first column corresponds to the ground truth, the second one to WLS and the
last to KL. From those images we can see that KL retrieves more faithfully the PMD from the data. A video is
available to see the evolution of the PMD along the angle projection.

A tomographic reconstruction was performed from each material. Figure 3 shows the relative error δ for each
slice z. This figure presents the slice 274 since it highlights the best performance of KL with respect to WLS. On
soft tissues, KL allows having more details inside the volume than WLS. On bones, KL retrieves more faithfully
the value of interest ρbones. Yet, bones and soft tissus regions are mixed in some slices. A video is also available
to see the evolution of the error with the slice number.



Figure 2: Video1: Ground truth of the material density map of soft tissues and bones in the projection domain
(left), decomposition with WLS (middle) and with KL (right) for N0 = 102.2 photons for α̂ at θ = 180◦.
http://dx.doi.org/doi.number.goes.here

Figure 3: Video2: Ground truth of the material volume of soft tissues and bones in the object domain (left),
decomposition with WLS (middle) and with KL (right) for N0 = 102.2 photons for α̂ at the slice number 274.
http://dx.doi.org/doi.number.goes.here

http://dx.doi.org/doi.number.goes.here
http://dx.doi.org/doi.number.goes.here


6. CONCLUSION

In this work, a new algorithm of material decomposition in the projection domain for SPCT is presented. The
cost function uses the KL distance instead of the standard WLS data fidelity term. This allows taking into
account the Poisson noise statistics. Since WLS is adapted to Gaussian noise and KL to Poisson noise, the latest
divergence should produce better decompositions. Numerical experiments on a mouse phantom, with a large
range of signal-to-noise ratios (which controls the approximation of the noise as Gaussian), allow comparing the
WLS and KL methods. We obtain PMD maps with the two decomposition methods on the projection domain.
Results from experiments show that KL outperforms WLS, considering the relative decomposition error, for any
angle of projection θ, at a low number of photons. This efficiency comes from the fact that at a low signal-to-noise
ratio the KL distance is more adapted to the noise structure. A tomographic reconstruction is carried out to
create a 3D volume of materials. Those volumes are reconstructed from low signal-to-noise projection, where
KL is a more adapted data term. In the object domain, KL still has a lower relative error for each slice of the
object. In the future, we plan to assess the method with other phantoms, a larger number of materials and to
develop methods for automatic selection of the regularization parameter.
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