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Abstract

Context: Spectral Computed Tomography (SPCT) acquires energy-resolved projections
that can be used to evaluate the concentrations of the different materials of an object. This
can be achieved by decomposing the projection images in a material basis, in a first step,
followed by a standard tomographic reconstruction step. However, material decomposition
is a challenging non-linear ill-posed inverse problem, which is very sensitive to the photonic
noise corrupting the data.

Methods: In this paper, material decomposition is solved in a variational framework.
We investigate two fidelity terms: a weighted least squares (WLS) term adapted to Gaussian
noise and the Kullback-Leibler (KL) distance adapted to Poisson Noise. The decomposition
problem is then solved iteratively by a regularized Gauss-Newton algorithm.

Results: Simulations are performed in a numerical mouse phantom and the decompo-
sitions show that KL outperforms WLS for low numbers of photons, i.e., for high photonic
noise.

Conclusion: In this work, a new method for material decomposition in SPCT is pre-
sented. It is based on the KL distance to take into account the noise statistics. This new
method could be of particular interest when low-dose acquisitions are performed.
Keywords: Spectral CT, material decomposition, Kullback-Leibler distance, inverse
problem

1. INTRODUCTION

Standard Computed Tomography (CT) is currently one of the most useful imaging
modalities. However, X-ray detectors integrate the whole energy spectrum and since mate-
rial attenuation depends on the incident X-ray photons energy, there is a loss of information.
By performing energy-resolved acquisition, spectral CT is promising to further improve the5

interest of CT. In particular, 3D mono-energetic images or 3D density map of materials can
be retrieved. SPCT has many potentials for clinical applications, in particular, to image
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high Z contrast agents [1, 2]. While, dual-energy CT have been proposed to acquire energy-
resolved data [3], but with a large irradiation dose. Photon-counting detectors based on a
new technology can count photons that are hitting the detector and retrieve their energy10

[4].
Three different approaches for decomposing SPCT data into material volumes are avail-

able. A first approach consists in the tomographic reconstruction of the energy-resolved
measurements followed by a material decomposition step in the object domain [5]. A second
approach is to do the tomographic reconstruction and the decomposition at the same time,15

which is usually referred to as the one-step approach [6]. A third approach is to perform
material decomposition in the projection domain followed by a tomographic reconstruction
step [7]. The last approach is highly parallelizable (each projection angle can be processed
individually) and it embeds all the non-linearities of the forward problem, i.e., tomographic
reconstructions can then be performed linearly without any simplifying assumptions. In this20

work, material decomposition in the projection domain is considered.
Material decomposition is a non-linear ill-posed inverse problem that can be solved by

minimizing a cost function composed of a data fidelity term and a regularization term. A
regularization parameter is chosen to balance the two terms of the cost function. SPCT data
are corrupted by photonic noise, which is Poisson distributed. Roessl et al. and Schlomka et25

al. have proposed decomposition methods that take into account the statistics of the noise in
the projection domain [8, 7], e.g., using negative log likelihood. However, the latter methods
rely on zero-th or first-order minimization algorithms [9, 10] that have slow convergence
rates. Recently, a fast method based on a Gauss-Newton algorithm was proposed [11].
Unfortunately, it uses a weighted least squares fidelity term that is not perfectly adapted to30

Poisson noise. In this work, the Kullback-Leibler distance is proposed to better handle the
noise statistics and a Gauss-Newton algorithm is implemented to get fast decomposition.

This paper is organized as follows. In Section II, the forward model that maps the
projected mass of the material onto the number of photons detected is presented. In Section
III, we detail the regularization functional considered and the minimization algorithms used.35

Numerical experiments are presented in Section IV before the conclusion.

2. THEORY

2.1. Object model
Assuming that the object of interest can be decomposed on a basis of M materials [12],

the linear attenuation coefficient is written40

µ(E,x) =
M∑
m=1

ρm(x)τm(E) (1)

where µ(E,x) is the linear attenuation coefficient (in cm−1) at point x and energy E, ρm(x)
is the mass density (in g.cm−3) of the m-th material at point x, and τm(E) is the mass
attenuation (in cm2.g−1) of the m-th material.
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2.2. Forward model
The standard SPCT forward model [11, 13] is written as45

si(u) =
∫
R
di(E)n0(E,u) exp

(
−

M∑
m=1

am(u)τm(E)
)

dE (2)

where
am(u) =

∫
L(u)

ρm(x)dx (3)

is the projection of all the mass of the m-th material along the x-ray path L(u), si(u) is
the number of photons hitting the detector in the i-th energy bin at pixel u, n0(E,u) is the
emitted X-ray spectrum, and di(E) is the response function of the i-th energy bin of the
detector [7].50

2.3. Discretization and noise
The detector is assumed to have P pixels, with up the location of the p-th pixel, and I

energy bins. We define the measurement vector s ∈ RIP as

s = [s1,1, . . . si,p, . . . sI,P ]> (4)

where si,p is the photon count measured in the i-th energy bin at pixel up, i.e. si,p = si(up).
Similarly, the projected mass density (PMD) vector a ∈ RMP is defined by55

a = [a1,1, . . . am,p, . . . aM,P ]> (5)

where am,p is PMD of the m-th material at pixel up, i.e. am,p = am(up).
Data is assumed to be corrupted by Poisson noise. Let s∗ be the noiseless data vector, s

the noisy data, and P(γ) the Poisson distribution with mean γ. We have:

s ∼ P(γ = s∗). (6)

2.4. Inverse problem
Material decomposition is an ill-posed problem that consists in recovering the projected60

mass density a from the data s. Let s = F(a) be the forward model defined in (2). The
PMD is recovered by minimizing the following cost function

C(s,F(a)) = D(s,F(a)) + αR(a) (7)

where D(s,F(a)) is the fidelity term, α the regularization parameter and R(a) the regular-
ization term used to stabilize the solution. The Tikhonov regularization terms used in [11]
is chosen65

R(a) = ||∆asoft||22 + ||∇abone||22 (8)

where ∆ and ∇ are first- and second-order differential operator.
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3. PROPOSED MATERIAL DECOMPOSITION

3.1. Fidelity term
The usual fidelity term is the WLS, defined by

DWLS(s,F(a)) = ||W(s−F(a))||2 (9)

where ||.||2 is the `2-norm and W is the weighting matrix defined as W = diag( 1√
s+1) where70

diag(x) represents a diagonal matrix with the elements x.
However the noise associated with photon detection problem is Poisson noise. The

Kullback-Leibler divergence is the distance associated to Poisson noise [14]. The KL distance
between two Poisson-distributed data s and F(a) is written [15]

DKL(s,F(a)) =
∑
i

(si + ζ) log
(

si + ζ

F(a)i + ζ

)
+ F(a)i − si (10)

where ζ is a small integer that avoids to dividing by zero and having the log of zero.75

The corresponding data fidelity terms will be denoted DKL and DWLS.

3.2. Minimization of the cost function
The cost function (7) is minimized by using a Gauss-Newton’s algorithm. This second-

order algorithm provides faster convergence than first order methods. Starting with an
initial guess a0, the solution is computed iteratively with the following update formula80

ak+1 = ak + λkδak (11)

where ak is the solution at the iteration k, δak is the Newton’s step and λk a scalar optimizing
the minimization in the direction δak. The Newton’s step is computed by solving

(J>ZhJ + αHreg)δak = −(J>Zg(F(ak)− s) + αgreg) (12)

where J is the Jacobian of the forward problem, Hreg and greg is the Hessian and the gradient
of the regularization term, respectively. Zh and Zg are diagonals matrices which depend on
the fidelity term. They can be written as follow [16]

WLS :
{

Zg = 2WTW
Zh = 2WTW , KL :

{
Zg = Y−1

Zh = Y−2S

where W is the weighting matrix of the WLS term, Y = diag(F(a)+ζ) and S = diag(s+ζ).
The step length λk is computed as

λk = argmin
λ

C(s,F(ak + λδak)). (13)
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4. NUMERICAL EXPERIMENTS AND IMAGE ANALYSIS85

Material decomposition is performed in the numerical phantom DigiMouse [17]. Pro-
jections are generated with the radon Matlab function. The goal is to decompose M = 2
materials (soft tissues and bones) from projections of P = 437× 992 pixels.

We define the number of photons N0 send at each pixel detector

N0 =
∫
R
n0(E,u)dE (14)

Since N0 controls the signal-to-noise ratio, a wide range is tested: N0 = [102, 102.2, ..., 104].90

The X-ray spectrum used is generated with a 90 kV source [18]. Considering a detector with
I = 3 energy bins (14− 39keV , 40− 64keV and 65− 90keV as energy bins).

The regularization parameter values tested are α = [10−2, 10−1.8, ..., 104]. Our initial
guess a0 was set as uniform material maps with a0

soft = 2 g.cm−2 and a0
bone = 0 g.cm−2. The

algorithm is stopped when the relative decrease of the cost function is below 0.1%, if the95

computed step λk is below 10−2 or if the maximum iteration number 50 is reached. The
relative error is computed as

ξ =
M∑
m=1

||adec
m − atrue

m ||2

||atrue
m ||2

(15)

where adec
m is the decomposed map of the mth material and atrue

m is the ground truth for the
material m. Moreover, α̂ denotes the regularization parameter that minimizes the relative
error ξ100

α̂ = argmin
α

ξ(α) (16)

5. RESULTS AND DISCUSSION

In this section, we present results from experiments on DigiMouse.
In Figure 1 (left), the evolution of the fidelity termsDKL andDWLS is plotted as a function

of the number of iterations. There is an apparent decrease of the regularized functionals,
and local minima are obtained after four iterations. The algorithm stops since there is a low105

decrease of the cost function or a small step length λk, which represents a local minimum
because δak is, by construction, a descent’s direction.

Figure 1 (right) shows the evolution of the decomposition error for α̂ with increasing
numbers of photons N0 for the fidelity terms DKL and DWLS. For real projections, the
ground truth is not known and thus from this figure the improvement of the reconstruction110

results with the KL distance for the lower number of photons is highlighted. For these low
numbers of photons the weighted least square is not a good approximation of the KL distance
and this statistical divergence is more efficient to take into account the noise statistic. Similar
curves are obtained when relative errors for a given material are considered.

Figure 2 shows the ground truth images of the PMD images and decompositions with115

WLS and KL for N0 = 102.2. A low number of photons is chosen to highlight the performance
of KL. The KL distance clearly retrieves more faithfully soft tissues and bones than WLS
at a small number of photons.
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Figure 1: Evolution of the fidelity terms for α̂ and for N0 = 102.2 (left) and of the decomposition error with
the number of photons (right)

Figure 2: Ground truth of the material map of soft tissues and bones (left), decomposition with WLS
(middle) and with KL (right) for N0 = 102.2 photons for α̂

In Table 1, the average time required in order to make one iteration (3.5 GHz Xeon E5-
1650 v3 and 64 GiB of RAM) as well as the standard deviation for α = [10−2, 10−1.8, ..., 104]120

are shown for N0 = 102.2. The minimum and the maximum number of iterations required for
convergence are also displayed. Table 2 provides the value of the optimal α, the computation
time and the iterations number in order to converge for N0 = 102.2. Both KL and WLS
converge rapidly for a large range of α’s and take almost the same CPU time. KL is found
to outperform WLS for a low numbers of photons.125

6. CONCLUSION

In this work, methods for material decomposition are carried out in the projection domain
in SPCT. The non-linearity of the forward problem is taken into account. Two data fidelity
terms, one based on weighted least squares and the other on the Kullback-Leibler divergence,
are compared. The regularized cost functions are minimized with a Gauss-Newton scheme.130

The methods are compared for 2D projections of a 3D realistic phantom for different numbers
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Time (sec) Iterations
WLS 3.28 ± 1.57 [3-4]
KL 2.45 ± 0.09 [3-4]

Table 1: Mean and standard deviation of time and the minimum and maximum of iterations to converge
for n0 = 102.2 with α = [10−2, 10−1.8, ..., 104]

α̂ Time (sec) Iteration number
WLS 102 2.74 4
KL 101.4 2.47 4

Table 2: Value, time and number of iteration require to converge for α̂ at n0 = 102.2

of photons. The Kullback-Leibler distance gives the best results for the lower number of
photons. In the future, we plan to assess the method with other phantoms and a larger
number of materials and to develop methods for automatic selection of the regularization
parameter.135
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