
HAL Id: hal-01557352
https://hal.science/hal-01557352v1

Submitted on 6 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Travelling-wave solutions bifurcating from relative
periodic orbits in plane Poiseuille flow

Subhandu Rawat, Carlo Cossu, François Rincon

To cite this version:
Subhandu Rawat, Carlo Cossu, François Rincon. Travelling-wave solutions bifurcating from relative
periodic orbits in plane Poiseuille flow. Comptes Rendus Mécanique, 2016, vol. 344 (n° 6), pp.
448-455. �10.1016/j.crme.2015.12.005�. �hal-01557352�

https://hal.science/hal-01557352v1
https://hal.archives-ouvertes.fr


 
  

Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an  author-deposited version  published  in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 18017

To link to this article : DOI:10.1016/j.crme.2015.12.005 
URL : http://dx.doi.org/10.1016/j.crme.2015.12.005 

To cite this version :  Rawat, Subhandu and Cossu, Carlo and Rincon,
François  Travelling-wave solutions bifurcating from relative periodic
orbits in plane Poiseuille flow. (2016) Comptes Rendus de l'Academie
des Sciences - Series IIB - Mechanics, vol. 344 (n° 6). pp. 448-455.
ISSN 1631-0721 

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1016/j.crme.2015.12.005
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Travelling-wave solutions bifurcating from relative periodic 

orbits in plane Poiseuille flow

Subhandu Rawat a, Carlo Cossu a,∗, François Rincon b,c

a Institut de mécanique des fluides de Toulouse, CNRS and Université de Toulouse, allée du professeur Camille Soula, 31400 Toulouse, France
b Université de Toulouse, UPS–OMP; IRAP, 31400 Toulouse, France
c CNRS, IRAP, 14, avenue Édouard-Belin, 31400 Toulouse, France

a b s t r a c t

Keywords:
Fluid dynamics
Hydrodynamic stability
Transition to turbulence

Travelling-wave solutions are shown to bifurcate from relative periodic orbits in plane 
Poiseuille flow at Re = 2000 in a saddle-node infinite-period bifurcation. These solutions 
consist in self-sustaining sinuous quasi-streamwise streaks and quasi-streamwise vortices 
located in the bulk of the flow. The lower branch travelling-wave solutions evolve into 
spanwise localized states when the spanwise size Lz of the domain in which they are 
computed is increased. On the contrary, the upper branch of travelling-wave solutions 
develops multiple streaks when Lz is increased. Upper-branch travelling-wave solutions 
can be continued into coherent solutions to the filtered equations used in large-eddy 
simulations where they represent turbulent coherent large-scale motions.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 

1. Introduction

The dynamics of transitional and turbulent wall-bounded shear flows is the subject of continued interest because of 
its numerous applications, ranging from drag-reduction for transport applications to the physics of planetary boundary 
layers. A fruitful line of research has been to apply the dynamical systems approach to the understanding of subcritical 
transition in wall-bounded shear flows. In this context, the subcritical transition to turbulence has been related to the 
appearance of invariant solutions to the Navier–Stokes equations disconnected from the laminar basic state, and in particular 
of travelling-wave (TW) and relative periodic orbit (RPO) solutions. Travelling-wave solutions, representing saddles in phase 
space, have been found at Reynolds numbers lower than the transitional ones in Couette flow, [1], plane channel flow [2,3], 
and pipe flow [4,5]. Relative periodic orbit solutions have also been computed in plane Couette flow [6–8], plane channel [9], 
and pipe flows [10], and in the asymptotic suction boundary layer [11]. Global bifurcations of relative periodic orbits have 
been shown to be related to the transition to chaotic dynamics in plane Couette flow [12] and in magnetohydrodynamic 
Keplerian shear flows [13].

Invariant solutions are thought to be important not only to understand the subcritical transition, but also to gain under-
standing of the mechanisms of self-sustained turbulent motions at high Reynolds numbers. In particular, it was shown in 
a recent study [14] that the Nagata–Clever–Busse–Waleffe steady solution to the Navier–Stokes equations is connected to a 
solution to the filtered equations used in large-eddy simulations. This suggests that this coherent steady solution is related 
to turbulent large-scale motions, which are believed to be the dominant feature of the flow at high Reynolds numbers.
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In a previous study [15], we have computed relative periodic orbit solutions to the Navier–Stokes equations in a plane 
channel at Reynolds numbers ranging from Re = 2000 to Re = 5000 in a domain periodic in the streamwise and span-
wise directions with extension 2 π h × 2 h × 2.416 h, where h is the channel’s half-width. These dimensions are typical of 
large-scale motions in fully developed turbulent flows. The computed solutions occupy the bulk of the flow, even at large 
Reynolds numbers, similarly to large-scale motions. Other solutions computed in the same flow at high Re do not have this 
feature, and are most likely relevant to the dynamics in the buffer layer [16,9].

The computed relative periodic orbit solutions [15] displayed the features of lower-branch solutions, which are relevant 
to the transition problem. In order to track their ‘birth’ through a bifurcation and to compute the related upper branch 
solutions (which are expected to provide features more related to the developed turbulent flow), we attempted to continue 
these solutions to lower Reynolds numbers, but were unable to extend the continuation much below Re = 2000. In an 
alternative attempt, we therefore also tried to continue the solutions by extending the size of the domain. The main objec-
tive of this paper is to show that the periodic solution disappears in an infinite-period saddle-node bifurcation as the box 
spanwise size is increased, giving birth to two branches of travelling-wave solutions. In the process, we found out that the 
upper branch displays the features of turbulent large-scale coherent motions and can be continued into a coherent solution 
to filtered large-eddy simulation equations, while the lower-branch solution evolves into a localized edge-state when the 
spanwise size of the box is further increased. A summary of the formulation of the problem and of the techniques used to 
isolate the periodic solutions in a plane channel flow is given in §2. The main results of the continuation are reported in §3, 
and discussed in §4.

2. Formulation of the problem and methods

The pressure-gradient-driven flow of an incompressible viscous fluid of constant density ρ and kinematic viscosity ν in 
a plane channel of height 2 h is considered. The flow satisfies the Navier–Stokes equations:

∇ · u = 0 (1)
∂u

∂t
+ u · ∇u = −∇p + 1

Re
∇2u (2)

where the Reynolds number Re = U0 h/ν is defined with respect to the peak velocity U0 of the usual laminar (parabolic) 
Poiseuille solution. Dimensionless velocities have been defined with respect to U0, pressures with respect to ρU 2

0 , lengths 
with respect to h and times with respect to h/U0. The streamwise axis aligned with the pressure gradient is denoted by 
x, while the wall-normal and spanwise coordinates are denoted by y and z, and u, v and w are the velocity components 
along x, y and z, respectively. The flow is studied in the domain [−Lx/2, Lx/2] × [−1, 1] × [−Lz/2, Lz/2]. No-slip conditions 
are enforced in y = ±1 (walls), while periodic boundary conditions are enforced on the other boundaries.

In the final part of the study, new turbulent coherent solutions to the plane Poiseuille flow are sought by solving the 
dynamical equations for filtered motions routinely used in large eddy simulations [17,18]. The equations for the filtered 
motions are the usual ones (see, e.g., [19,20]):

∂ui

∂xi
= 0; ∂ui

∂t
+ u j

∂ui

∂x j
= − ∂q

∂xi
+ ν

∂2ui

∂x2
j

− ∂τ r
i j

∂x j
(3)

where filtered quantities are denoted by an over-bar and τ r = τ R − tr(τ R) I/3, with τ R
i j = uiu j − uiu j and q = p + tr(τ R)/3. 

We use Smagorinsky’s [21] subgrid model based on the eddy viscosity νt for the anisotropic residual stress tensor τ i j : τ r
i j =

−2νt Sij , where Sij is the rate of strain tensor associated with the filtered velocity field, νt = D(Cs�)2S and S ≡ (2Sij Si j)
1/2, 

� = (�x�y�z)
1/3. The Smagorinsky constant reference value is set to Cs = 0.05, as in [22,18], which is known to provide 

the best performance for a posteriori tests [23]. To avoid non-zero residual velocity and shear stress at the wall we use the 
wall (damping) function D = 1 − e−(y+/A+)2

with A+ = 25.
Travelling-wave solutions are computed with a Newton-based iterative method implemented in the code peanuts

[24,13], which includes parameter continuation, and is also used to analyze the linear stability of the converged solu-
tions. Peanuts relies on repeated calls to numerical time-integrations of the Navier–Stokes or of the filtered equations 
to perform Newton iterations using a matrix-free iterative method. As in many of previous similar investigations (e.g., [3,
15,11]), the search space of the solutions is restricted to those with mid-plane reflection symmetry {u, v, w}(x, y, z) =
{u, −v, w}(x, −y, z), which reduces the number of degrees of freedom and is known to improve convergence.

The Navier–Stokes simulations are performed with channelflow, which is based on a Fourier–Chebyshev–Fourier spa-
tial pseudo-spectral discretization [25]. Solutions are advanced in time using a second-order Crank–Nicolson Runge–Kutta 
time stepping. Converged solutions were obtained with 32 × 65 × 32 points in the streamwise, wall-normal, and spanwise 
directions and enforcing a constant volume flux during the simulation. These solutions are almost identical to those com-
puted on a coarser grid 16 × 41 × 16. The numerical results were further tested by recomputing the same periodic solutions 
on the same grid with the diablo code [26]. diablo was also used to perform the time-integrations of the filtered 
equations (LES) as in previous related investigations [17,18,14].



Fig. 1. Perturbation energy associated with the relative periodic orbit solutions computed with the edge-tracking procedure for the selected increasing 
values of the spanwise size Lz = 3.525, Lz = 3.535, Lz = 3.540, Lz = 3.548 (panels (a) to (d)). The initial transient before the convergence to the edge state 
is discarded. Remark the increasing period of the solutions as Lz is increased.

3. Results

3.1. From relative periodic orbits to travelling waves

In a previous investigation [15], relative periodic solutions were computed in plane Poiseuille flow in the domain of 
extension 2 π × 2 × 2.416, for which Waleffe’s travelling-wave solutions appear at the lowest Reynolds number [3], and for 
Reynolds numbers ranging from Re = 2000 to 5000. The period T of these solutions increased with the Reynolds number 
(T = 368 for Re = 2000, T = 739 for Re = 3000, T = 1090 for Re = 4000 and T = 1418 for Re = 5000) and the solutions 
were found to travel in the streamwise direction with a phase speed Cx ≈ 0.98. We have not found it possible to continue 
these periodic solutions much below Re = 2000, leaving obscure their origin. Previous investigations of plane Couette flow, 
however, showed that the Nagata–Clever–Busse–Waleffe branch of steady solutions can be connected to a branch of periodic 
solutions by changing the size of the box [7]. We have therefore continued the relative periodic orbit solution obtained at 
Lz = 2.416 to higher values of Lz by using edge-tracking in the ±y symmetric subspace while keeping constant the Reynolds 
number to Re = 2000 and the streamwise box dimension to Lx = 2 π.

When Lz is increased the periodic solutions display increasingly long quiescent phases separated by relatively quick 
bursts, as shown in Fig. 1. This leads to an increase in the period T of the solutions with Lz . For values above Lz ≈ 3.55 the 
edge tracking converges to a travelling wave (TW) solution instead of a relative periodic orbit. The continuation of the TW 
solution in Lz using pseudo-arclength continuation based on the Newton-based iterations of peanuts reveals the existence 
of an upper and of a lower branch of solutions connected by a saddle node bifurcation at L∗

z = 3.55, as shown in Fig. 2(a) 
and in Fig. 3.

The bifurcation observed at L∗
z is global and is associated with a divergence of the period T of the periodic solutions 

while approaching the bifurcation. As shown in Fig. 2(b), the data are well matched by the fit T = 240/
√

μ, where μ =
(L∗

z − Lz)/L∗
z . The divergence of T as μ−1/2 and the O (1) amplitude of the periodic solution while approaching the critical 

value L∗
z are the hallmark of the saddle-node infinite-period bifurcation, where a periodic solution is replaced by a pair of 

fixed points (see, e.g., [27]). The same type of global bifurcation has already been found, e.g., in the study of axisymmetric 
convection [28] and, more recently, in the homotopy of plane Couette flow travelling-wave solutions that are continued to 
asymptotic suction boundary layer (ASBL) solutions by increasing the suction velocity on the lower wall [12]. In all these 
cases, including ours, an upper and a lower branch travelling-wave solutions and their spanwise shifted heteroclinically 
connected copy collide in phase space at L∗

z , in a pair of saddle-node bifurcations, which results in the formation of a 
periodic solution, which repeats itself with a shift symmetry every T /2.



Fig. 2. (a) Bifurcation diagram in Lz , with Lx = 2π and Re = 2000, where the relative periodic orbit solution disappears in a global saddle-node infinite-
period bifurcation originating a pair of travelling-wave solutions. The periodic solution is reported with its maximum (empty symbols) and minimum (filled 
symbols) values of the spatially-averaged wall-normal velocity. The symbols correspond to the Lz values considered in Fig. 1. The point where the upper-
and lower-branch travelling-wave solutions are generated is denoted by the X symbol. (b) Variation of time period T close to the bifurcation point. The 
function T ≈ 240/

√
μ (solid line), where μ = (L∗

z − Lz)/L∗
z , fits well the data (symbols). The four leftmost symbols correspond to the time-series reported 

in Fig. 1.

Fig. 3. Continuation diagram for travelling-wave solutions as a function of Lz , with Lx = 2π and Re = 2000. The left-most part of the diagram is already 
reported in Fig. 2(a). The turning point where the upper and lower branch of the travelling-wave solution originate corresponds to the saddle-node infinite 
period global bifurcation.

3.2. Structure of travelling-wave solutions

The flow structures associated with the travelling-wave solution at the bifurcation consist of the usual sinuously bent 
low-speed streak flanked by a pair of quasi-streamwise vortices, as shown in Fig. 4(a). When this solution is continued to 
higher values of Lz along the lower branch, at least up to Lz = 10.5, the streaky structure remains unique and becomes 
localized in the spanwise direction, leaving an increasingly large portion of the domain almost unperturbed, as shown 
in Fig. 4(b) and (c)) These localized structures, which arise ‘naturally’ through continuation without the need to use a 
windowing function as, e.g., in [29], are unstable. For Lz = 10.5 the unique unstable eigenvalue found is 5.79 × 10−3 and 
is therefore an edge state as can be verified by perturbing the solution along its unstable manifold, i.e. with the unstable 
eigenfunction. It is indeed found that this perturbation leads to a turbulent state or to a fast decay to the laminar state 
depending on the sign of the perturbation, as shown in Fig. 5. The observed spanwise localization of the lower-branch 
solution is similar to that observed in a number of other flows [30–32,29], and therefore seems to be a generic property of 
lower-branch solutions in shear flows.

The evolution of the upper-branch travelling-wave solution is completely different. In this case, indeed, continuation to 
higher values of Lz leads to an increase in the number of streaky structures. For instance, at Lz = 5.55, as reported in 
Fig. 6(b), the upper-branch solution contains three low-speed streaks and three pairs of quasi-streamwise vortices, which 
correspond to a streak spacing λz ≈ 1.8, in good agreement with the size of large-scale motions (LSM) in the turbulent 
channel [33,22]. This spacing is confirmed by the analysis of the spanwise premultiplied spectrum of the streamwise velocity 
(not shown). The energy of the upper-branch solutions increases for increasing Lz . In Fig. 7, it can be seen that during the 
continuation the rms (x − z averaged) profiles of the three velocity components preserve a qualitatively similar shape, which 
is also similar to that of the relative periodic solutions existing before the global bifurcation and this despite the changing 
nature of the underlying solutions.



Fig. 4. Flow fields associated with the travelling-wave solutions corresponding to (a) the saddle node Lz ≈ 3.55 (× symbol in Fig. 3), while (b) and (c) 
are the lower branch solution respectively computed for Lz = 5.55 (empty square symbol in Fig. 3) and Lz = 10.5 (empty triangle symbol in Fig. 3). The 
iso-surfaces at u+ = −2 are plotted in green, while red and blue surfaces correspond to positive and negative streamwise vorticity at ωx = ±0.65 max(ωx).

Fig. 5. Trajectories initialized along the unstable eigendirection of the lower branch spanwise localized travelling-wave solutions (Lx = 2π, Lz = 10.5, 
Re = 2000) and represented in the t − ‖u′‖ (left panel) and ‖u′‖ − ‖v ′‖ (right panel) planes respectively. When initialized along one direction of the 
unstable manifold, the flow rapidly relaxes to the laminar Poiseuille solution (blue line). When initialized in the opposite direction, a turbulent state is 
attained (green line). This indicates that the lower branch localized state (red cross in the figure) sits on the edge of chaos.

Fig. 6. Flow field associated with the upper branch solution computed at Lz = 5.55 corresponding to the filled square symbol in Fig. 3. The iso-surfaces at 
u+ = −2 are plotted in green, while red and blue surfaces correspond to positive and negative streamwise vorticities at ωx = ±0.65 max(ωx).

Despite the changing nature of these solutions, it has been impossible to continue the upper branch to values larger than 
Lz ≈ 5.57. The relevance of the upper-branch solution to the dynamics of turbulent large-scale coherent structures is further 
investigated using filtered large-eddy simulations to include the locally averaged effect of small-scale motions, as discussed 
in the next section.



Fig. 7. Comparison of the rms velocity profiles of the travelling-wave upper branch solutions for selected values of Lz to the rmr profiles of the relative 
periodic orbit solutions existing for Lz < L∗

z .

Fig. 8. Flow field associated with the upper branch solutions to the filtered (LES) equations computed at Lz = 5.55 for Cs = 0.05. The iso-surfaces at 
u+ = −2 are plotted in green. In panel (a) red and blue surfaces correspond to positive and negative streamwise vorticity at ωx = ±0.65 max(ωx), while in 
panel (b) the yellow surface corresponds to νt/ν = 0.065.

3.3. Continuation from Navier–Stokes solutions to coherent solutions of the filtered equations

In a recent investigation [14], it was shown that invariant solutions to the Navier–Stokes equations can be continued to 
invariant solutions to the equations for filtered turbulent motions used in large-eddy simulations. In the equations used in 
large eddy simulations, small-scale motions are averaged by filtering and modelled by a sub-grid model. In [14] Smagorinky’s 
1963 model [21] was used along the lines of previous investigations of the self-sustained processes at large scale in tur-
bulent shear flows [22,18]. In this context, the Smagorinsky constant Cs is used as a continuation parameter. The value 
Cs = 0.05 corresponds to large eddy simulations having good a posteriori agreement with direct numerical simulations [23], 
while Navier–Stokes solutions are obtained with Cs = 0.

We have therefore continued the travelling-wave upper branch solution from Cs = 0 (Navier–Stokes solution) to 
Cs = 0.05, keeping constant the Reynolds number to Re = 2000 and the grid. This corresponds to taking into account 
the locally averaged effect of dissipative small scale turbulent motions. Proceeding along these lines makes sense because 
Re = 2000 is more than twice the value of the Reynolds number at which transition is usually observed. The continuation 
proceeds without major problems and convergence is obtained in less than ten steps in Cs . It is found that the introduction 
of small-scale dissipation does not significantly alter the solutions, except for a slight reduction of the streamwise vorticity 
and of the streamwise velocity, and for the appearance of the sub-grid eddy viscosity shown in Figs. 8 and 9. The com-
puted upper-branch travelling-wave solutions therefore can also be connected to large-scale coherent structures in a fully 
developed flow. To our knowledge, these solutions are the first coherent invariant solutions to the filtered (LES) equations 
computed for a plane pressure-driven channel.

4. Discussion and conclusions

This study has considered invariant solutions in plane Poiseuille flow. The main results can be summarized as follows:



Fig. 9. Comparison of the rms velocity profiles of the TW upper branch solutions for Cs = 0 and Cs = 0.05 (with Lz = 5.55 and Re = 2000). In panel (d) is 
displayed the eddy viscosity νt/ν associated with the subgrid motions modelled in the solution to the filtered (LES) equations at Cs = 0.05.

– the relative periodic orbit solutions to the Navier–Stokes equations described in Ref. [15] are connected to two branches 
of travelling-wave solutions via a global saddle-node-infinite-period bifurcation when they are continued by increasing 
the spanwise size Lz of the numerical domain at Re = 2000,

– lower-branch travelling-wave solutions remain spanwise localized when Lz is further increased,
– upper-branch travelling-wave solutions develop multiple streaks when Lz is further increased,
– upper-branch solutions are not qualitatively changed when continued from Navier–Stokes solutions into coherent solu-

tions to the filtered equations (used in large-eddy simulations) by increasing the Smagorinsky constant from Cs = 0 to 
Cs = 0.05 as in [14]. In the latter case, these solutions represent turbulent coherent large-scale motions associated with 
small-scale turbulent dissipation.

Many of these results suggest the existence of some kind of generic dynamics of invariant solutions in wall bounded flows. 
For instance, the dynamics of the relative periodic orbits from where our continuations start (see also [15]) is similar to 
that of relative periodic orbit solutions in the asymptotic boundary layer [12] in their T /2 − Lz/2 shift property and with 
their bursting behaviour. Also, the saddle-node infinite-period bifurcation found by increasing Lz is of the same type as 
that found in axi-symmetric Rayleigh–Bénard convection [28] or in the bifurcation found by homotopy continuation from 
Couette’s flow to the asymptotic suction boundary layer by [12]. The spanwise localization of the lower-branch solution is 
also in accordance with the results of recent investigations, which revealed the spanwise localization of other lower-branch 
solutions [34,31,32,29].

One of the most relevant results shown in this study, however, is probably that the upper branch travelling-wave solu-
tions are seen to develop multiple streaks in the spanwise direction when Lz is increased and that these solutions preserve 
their structure in the presence of small-scale dissipation. The wall-normal structure of the upper branch travelling-wave 
solutions, just as the one of the relative periodic orbits from which they are issued, is reminiscent of large-scale motions 
in the outer region, even if further work is needed to asses the dynamic relevance of these solutions. Further investigations 
are needed to determine if other travelling-wave or relative periodic-orbit solutions can be continued to the fully turbulent 
regime.
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