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Abstract: We investigate the epistemological complexity of modeling students’ knowing of 

mathematics with the goal of achieving models that acknowledge both the possible lack of coherency and 

the local efficiency of such knowing. We propose a model of “conception” as a possible tool to answer 

the epistemological complexity we identify. We then provide an illustration of the usefulness of this 

model by exploring conceptions of “function” as a case in point. 

 

1.  FROM BEHAVIOR TO KNOWING 

The possibility to observe students’ learning relies heavily on the indications 

given by students’ behaviors and creations, which are hypothesized to be consequences 

of the knowings1 they have constructed. Such an appraisal is possible and its results are 

significant only if one is able to establish a valid relationship between the observed 

behaviors and the inferred knowings. This relationship between behaviors and knowing 

is crucial, but also problematic. Its problematic nature has been concealed perhaps as a 

byproduct of the struggle with behaviorism, but it has always been implicitly present in 

educational research at least at the methodological level. Indeed, a knowing cannot be 

                                                 

1 We follow the choice made in the translation of Brousseau’s work (1997) to use the word knowing as a noun and as 

such to denote a distinction between knowing and knowledge.  Knowing refers to students’ personal constructs 

whereas knowledge refers to intellectual constructs recognised by a social body, such as the discipline of 

mathematics. This distinction corresponds to the distinction made in romance languages between those words that 

derive from the Latin “cognoscere” and those words that derive from the Latin “sapere”.   



2 

 

reduced to its associated behaviors, but on the other hand it cannot be diagnosed, 

understood, or taught without a characterization based on these associated behaviors. 

 

The importance of this link between behaviors and knowing was clearly pointed 

out by Schoenfeld (1987) in his introduction to  “Cognitive Science and Mathematics 

Education”.  Schoenfeld described the cognitive science approach in relation to the 

effort made to describe in detail problem-solving strategies so that they could be taught 

and reproduced.  We would like to focus on and bring into question the level of 

description of the behaviors and of their outcomes, as tangible expressions of the 

problem-solving strategies that Schoenfeld was interested in teaching. In synthesizing 

his own research at the time Schoenfeld (1987) indicated:   

My intention was to pose the question of problem-solving 

heuristics from a cognitive science perspective: What level of 

details is needed to describe  problem-solving strategies so that 

students can actually use them? (p.18)  

Such inquiry raises for us two essential questions: 

 - On one hand, to what extent would a finer granularity of the description 

of these strategies guarantee a better reliability of the learning of a problem-solving 

strategy?  Or, rather, given a competency, does there exist a level of granularity of its 

description that guarantees the efficient learning of such competency?  

 - On the other hand, to what extent does a finer description of problem-

solving strategies inform us about the relationships between behaviors and 

knowings? 

 In their “microgenetic analysis of one student’s evolving understanding of a 

complex subject domain,” Schoenfeld, Arcavi and Smith (1993) show that the challenge 

to be taken up is difficult. Two reasons, which are the main lessons we can learn from 
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their seminal study, are at the origin of this difficulty: first, the “highly subjective” 

character of the empirical data analysis, second what Schoenfeld and his colleagues 

called the “burden of proof” in showing how behaviors and knowing are related. A way 

to overcome these difficulties consists of adopting a definition in relation to an explicit 

characterization likely to reinforce the grounding of the analysis. The present article 

explores this possibility and provides an illustration. But first, we would like to develop 

further the issues related to the relationship between behaviors and knowing on which 

the questions we consider depend.  

The question of the relationships between behaviors and knowings is considered 

as fundamental to the theory of didactical situations (Brousseau 1997).  One of the 

postulates of this theory is that for each knowing that a student could have, there are one 

or more problem-situation whose demands require certain behaviors from the student 

that embody that knowing. This fundamental correspondence, established case by case, 

is justified by the interpretation of problem-situations in terms of games. In the context 

of this game interpretation, behaviors are seen as expressions of strategies adapted to 

the representation of the problem-situation attributed to the student (Brousseau 1997, 

p.215).  The basis of that postulate is shared by some approaches to cognitive science: 

Pichot, (1994, p.206) for example, writes “all behavior implies a knowing.” Indeed, this 

postulate arguably justifies most of our field’s research on learning since students’ 

behaviors are the source of the corpus on which we perform our analyses.   

Yet  the excision of a behavior from the observation of a so-called reality, which 

could be that of a classroom or a laboratory experiment, requires us to deal at the same 

time with a methodological and a theoretical problem. An observed behavior is not 

given by the “reality” but taken out of it as a result of a decision made by an observer 

(Robert, 1992, p.54). 
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If a behavior expresses a relationship between a person and her environment, 

then it depends on the characteristics of the person as well as on the characteristics of 

her environment.  A good example is the case of instruments: While instruments 

facilitate action—if the user holds the knowing required to use them—they also restrict 

the action due to their own limitations (Rabardel 1995, Resnick & Collins 1994, p.7).  

One should notice that these limitations could be related to material constraints as well 

as to the knowings involved in the design of the instruments. 

“Person” and “environment” refer to complex realities, not all of their aspects 

are relevant to the questions we are considering in this paper. About the person, what is 

of interest to us is her relationship to a piece of knowledge. Thus we refer to the subject 

as a kind of projection of the person onto her cognitive dimension. In the same way, we 

are not interested in the environment in all of its complexity, but only in those features 

that are relevant to a given piece of knowledge. We call milieu such a subset of the 

environment of a subject; the milieu is a kind of projection of the environment onto its 

epistemic dimension. In the case of mathematics, the interactions between the subject 

and the milieu are based on systems of signifiers produced by the subject herself, or by 

others.  We must then extend the classical idea of milieu in order to include symbolic 

systems and social interaction as means for the production of knowings, as well as the 

physical milieu to which we generally refer.  This is the meaning of Brousseau’s 

proposal to define the milieu as the system antagonist to the subject in the learning 

process (Brousseau,1997 p. 57).  

So, a knowing is neither to be ascribed solely to a subject, nor solely to the 

milieu.2  On the contrary, a knowing is a property of the interaction between the subject 

                                                 

2 Taking into account a remark on a previous version of this article, it appears necessary to state clearly the close 

relationship between what is stated in this paper and the Piagetian model of knowing. However, there is a difference 
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and the milieu—his or her antagonist system. This interaction is meaningful because its 

purpose is to fulfill the necessary conditions brought by the situation for the viability of 

the subject/milieu system.  By viability we mean that the subject/milieu system has a 

capacity to return to equilibrium after some perturbations (for example, a contradiction 

or an uncertainty) the subject was aware of. The knowing may evolve if the 

perturbations are such that this is necessary, requiring for this purpose the 

implementation of a learning process. This is, in other words, a formulation of 

Vergnaud's postulate that problems are the source and the criteria of knowings 

(Vergnaud, 1981, p. 220). 

In what follows, we introduce the classical problem raised by the possible 

inconsistency in learner behaviors and ways of understanding (Harel 2006). We present 

a solution which takes the form of a characterization of students’ conceptions and which 

accounts for their complexity by relating three main features of those conceptions 

(action, representation, and validation) to the domain in which they are operational. We 

illustrate the use of this characterization for the case of the concept of function. 

 

2.   AN EPISTEMOLOGICAL PROBLEM 

2.1. COHERENCE AND SPHERE OF PRACTICE 

The following quotation illustrates the problem of coherence in practice. It 

comes from the seminal work of the sociologist Pierre Bourdieu on the practices of 

Algerian farmers over a year’s cycle: 

                                                                                                                                               

to be emphasized: our focus is on the whole system [S (subject) ↔M (milieu)] and not on one of its parts. In other 

words, our concern is not to know “how the subject thinks”, but to be able to give account of the whole system in a 

way relevant to a didactical project—the cognitive system we consider is not S but [S↔M]. 
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 “In the diagram of the calendar, the complete series of the temporal 

oppositions which are deployed successively by different agents in 

different situations, and which can never be practically mobilized 

together because of the necessities of practice never require such a 

synoptic apprehension but rather discourage it through their urgent 

demands, are juxtaposed in the simultaneity of a single space. The 

calendar thus creates ex nihilo a whole host of relations […] between 

reference-points at different levels, which never being brought face to 

face in practice, are practically compatible even if they are logically 

contradictory.” (Bourdieu 1990, p. 83). 

Thus the location of farmers’ practices in a calendar offers a view of practices 

that allows the observer to find logical contradictions among them; yet those logical 

contradictions are not necessarily relevant for the farmer who relates to different 

practices at different times.  Bourdieu’s explanation of the paradox of the co-existence 

of rational thinking on the part of the farmer and of knowings which look contradictory 

from the observer’s point of view, can easily be extended to the case of a single person 

observed in different situations.  The core of this explanation is time on one hand, and, 

on the other hand, the diversity of the situations. Time organizes the person’s actions 

sequentially in such a way that the contradictory knowings are equally operational 

because they appear at different periods of his or her history: It is reasonable to expect 

that knowings which are logically contradictory may still ignore each other if they 

emerge in different situations.  The issue of the diversity of situations introduces an 

element of a different type. This diversity could have several different origins. It may 

come from a variation of the characteristics of the context (as in the case of problems 

raised in or out of school), or a variation of the resources (as by making available or not 

a pocket calculator or a computer), or a variation on the stake of the situation (as in the 
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case of a problem being proposed for an assessment or as home work). The existence of 

this diversity could be seen as an explanation insofar as one recognizes that a knowing 

is not of a “universal” nature but that, on the contrary, it is related to a specific and 

concrete domain of validity. Eventually, this means that the transfer from one situation 

to another is not an obvious process, even if in the eyes of an informed observer the 

considered situations look isomorphic. For example, the pupils from a primary 

mathematics classroom may not use the same procedures to compute the total price of a 

set of items out of school as they do when they add decimal numbers in order to solve a 

problem proposed by the teacher.  Following Bourdieu, we refer to spheres of practice 

in order to designate these mutually exclusive domains of validity in the history of the 

subject. 

We must insist that although an observer who is able to relate different 

situations could recognize contradictions, a subject who considers the situations as 

independent and completely different could ignore these contradictions.  However, in 

the observer’s referential system—which is where we are as researchers—these states 

of the observed subject/milieu system should be labeled in order to show that they relate 

to the same knowledge, no matter their contradictory nature. So, one often speaks of the 

subject’s knowing of decimal numbers, of continuity of functions, or of line reflection 

although asserting later that this knowing is not coherent. 

To accept the existence of contradictory knowings does not contradict the 

theoretical principle that these knowings are products of a process of adaptation 

between the subject and the milieu, ruled by criteria like performance reliability or 

problem relevance. But this raises educational problems for which solutions have been 

looked for in different directions. In the following section we review the most 

significant ones in the case of mathematics. 
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2.2   A DEFINITION FOR A FAMILIAR NOTION: CONCEPTION 

In a survey she presented at the 1986 annual meeting of the American 

Educational Research Association, Jere Confrey linked the development of research on 

misconceptions to the acknowledgement of a failure of teaching. Despite all efforts, she 

argued, many students held major misconceptions in mathematics and science. Confrey 

noticed that the mathematics education community had a rather pragmatic approach to 

this problem:  

“misconceptions were defined empirically as documented failures of 

large numbers of students to solve problems which appeared to be related 

to fundamental concepts.” (Confrey 1986, p. 4). 

In a paper published later, Confrey (1990) distinguished different approaches to 

the question, issued from Piagetian genetic epistemology, scientific epistemology, and 

the information processing approach. In all of them the child-student is seen as a subject 

fundamentally different from the adult-expert who appears as the owner of the 

knowledge of reference.3 But this view does not exclude the recognition of some sort of 

cognitive legitimacy of these misconceptions:4  

“ […] a child may not be ‘seeing’ the same set of events as a teacher, 

researcher or expert. It suggests that many times a child’s response is too 

quickly labeled as erroneous and that if one were to imagine how the 

child was making sense of the situation, then one would find the errors to 

be reasoned and supportable ” (ibid. p. 29) 

Indeed, within the student frame of reference—as opposed to an external one—

misconceptions fall under the common rules of knowing: 

                                                 

3 In the case of the former one speaks of “naive theory”, “private concepts”, “beliefs” or even of the “mathematics of 
the child” (Confrey 1990 p. 29). 
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“a misconception does not require the postulation of an inadequate 

‘picture’ of the world; it does require the notion of a successful 

completion of a number of problems wherein the cycle of problem 

formulation (expectation), problem-solving (action) and problem 

reconstruction (re-viewing) are successfully carried out.” (ibid.) 

In other words: a misconception has a domain of validity, otherwise it would not 

exist as such.  Eventually, there is a very short distance between a misconception and a 

knowing. The key difference is that for a misconception there exists a refutation known 

at least to the observer.  But even when ascribing the status of a knowing to a 

misconception5, the idea that an intrinsically correct knowledge of reference exists 

remains a corollary of the initial definition. And yet, such idea is clearly refuted by our 

current knowledge of the history of science and mathematics. Let us consider, as an 

example, the evolution of the concept of function. 

Bachelard (1938, p.13) wrote in a nice manner that reality is never what one 

could believe, but is always what one should have thought of.6 This statement, 

formulated in the first half of the twentieth century, expressed that knowing is always in 

progress. If we accept this, then errors witness the inertia of the instrumental power of a 

knowing which has proved itself by its efficiency in enough situations, but which 

appears badly adapted in new situations. 

A main achievement of research of the 80’s on students’ ways of understanding 

is the recognition that errors are not only the effect of ignorance, of uncertainty, of 

chance, but the effect of previous knowings which were interesting and successful, but 

which now are revealed as false or simply not adapted (Brousseau 1997, p. 82). In one 

                                                                                                                                               

4 This remark, made in the case of the scientific epistemology, is in fact valid for all the three mentioned approaches, 
even for the Piagetian approach as we emphasise it in the following paragraph. 
5 What led most authors to abandon the word misconception. 
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of the first studies within this paradigm, Salin (1976) proposed cognitive characteristics 

of errors that became essential to the development of the theory of didactical situations. 

On the one hand an error is a point of view of a knowing about another knowing 

(possibly for a subject, the evaluation of an older knowing from the point of view of a 

new one), and, on the other hand, an error can be identified only if the feedback from 

the milieu can be “read” by the subject as the indication of a failure (a non satisfied 

expectation). 

The main difference between the previous position and the current one lies in 

their epistemological meaning; the status of a knowing is different in each case. The 

first position implies the existence of a knowing-of-reference general and true (what 

encapsulates the common use of the word knowledge in English).  The second position 

requires only establishing a relationship between two knowings with the idea of an 

evolution, without judgment on them.  More precisely, from the second perspective a 

knowing is considered as a set of conceptions which are activated depending on 

contextual characteristics. These conceptions, whether they appear erroneous, partial, or 

ill-adapted to an observer, are first of all the results of an optimal adaptation of the 

subject/milieu system following criteria of relevance and of efficiency to a situation—in 

other words, an adaptation to a problem-situation. The corollary of this perspective is 

that a conception has a provisional character: It could be revisited in the course of the 

adaptation process to produce a new conception; this is especially desirable when the 

new conception corresponds to a content to be taught (Balacheff and Margolinas 2005).  

2.3.   A  PRAGMATIC  DEFINITION OF CONCEPTION 

The word “conception” has been used for years in research on teaching and 

learning mathematics. It functions as a tool, but its definition remains implicit; it has not 

                                                                                                                                               

6 “Le réel n’est jamais “ ce qu’on pourrait croire ” mais il est toujours ce qu’on aurait dû penser” (Bachelard, 1938,  
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yet been taken as an object of study per se. According to Artigue (1991, p. 266), 

“conception” refers to a local object; in this sense its epistemological status does not 

really differ from the one of the word “misconception.” Together with Vinner (1983, 

1987), we think that there is a need for a better-grounded definition of conception. The 

expectation is that a better definition will allow us to analyze the differences and 

commonalties between conceptions, in such a way that we will have a better ground to 

design learning situations. 

The first raison d’être of the notion of conception in educational research is the 

need to conceptualize the specific states of equilibrium achieved by the subject/milieu 

system satisfying some viability constraints of a situation. These constraints do not 

address the way the equilibrium is recovered but the criterion of this equilibrium.  

Following Stewart (1994, pp. 25-26) we would say that these constraints (a) are 

proscriptive, which means that they express necessary conditions to ensure the system’s 

viability and (b) are not prescriptive since they do not tell in detail how an equilibrium 

must be reached. 

We can now propose a definition of “conception” which can be pragmatically 

and efficiently used in a didactical problématique. 

 

A conception is the state of dynamic equilibrium  

of an action/feedback loop between a subject and a milieu  

under proscriptive constraints of viability. 

                                                                                                                                               

p.13). 
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Figure 1 

. 

From a didactical perspective, we are interested in the nature of the proscriptive 

constraints that the subject/milieu system must satisfy.  Among these constraints, not 

known exhaustively, we can mention two that are specific of didactical systems:  time 

constraints and epistemological constraints (Arsac et al. 1992).  The former are due to 

the way schooling is organized (duration of school life, organization of the school year, 

organization of the lessons, etc.).  The latter is due to the existence of a domain of 

knowledge of reference which underlies the content to be taught and learned and which 

de facto provides criteria to the acceptability of any learning outcomes. 

The role of the teacher, with respect to a given content to be taught, is to 

organize the encounter between a subject and a milieu so that a conception (acceptable 

to the didactical intention) can be identified as a result of the evolution of their 

interactions.  Such an encounter is not a trivial event. To create an environment that 

facilitates it, it is not enough for the student to just be able to “read” in her environment 

the milieu relevant to the teaching purpose (Balacheff, 1998).  The student also needs to 

select the relevant features of the environment, to identify the feedback, and to 

understand it with respect to the intended target of action.  To succeed in this task, the 

teacher must construct a situation that allows the devolution to the students of both the 

milieu and the relevant relationships (action/feedback) to this milieu.  But the didactical 
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intention of such a situation can act as a constraint; this is the case when the student 

believes in a teacher expectation, what could modify the nature of the subject/milieu 

system equilibrium and then the nature of the related conception. There resides the basic 

complexity of didactical systems. 

Learning is a process of reconstruction of an equilibrium of the subject/milieu 

system which has been lost following perturbations of the milieu, or perturbations of the 

constraints on the system, or even perturbations of the subject herself (modification of 

her intentions, or as a consequence of a brain disease, etc.).  The didactical 

problématique considers the case of perturbations provoked on purpose, with the 

intention to stimulate learning.  The indicator of a perturbation is the gap, recognized by 

the subject, between the expected result of an action and the actual feedback from the 

milieu.  This means on one hand that the subject is able to recognize the existence of a 

gap not acceptable with respect to her intention, and, on the other hand, that the milieu 

can provide identifiable feedback. 

Sometimes the subject does not identify a gap whereas we, as observers, see that 

a gap should have been recognized. We call this unnoticed gap an error when it is the 

symptom of a conception, that is:  the symptom of the resilience of a previous 

equilibrium of the subject/milieu system. 

In the following section we propose a model of “conception” complementary to 

its definition, which intends to provide an effective tool to concretely represent and 

analyze the corpora of data that can be constructed from the observation of students’ 

activities. We will then take an example, the case of function. 

2.4. FROM A DEFINITION TO A MODEL OF CONCEPTION 

We model a conception C by a quadruplet (P, R, L, ∑) in which: 

- P is a set of problems; 
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- R is a set of operators; 

- L is a representation system; 

- ∑ is a control structure. 

Relating this model to the definition proposed in the preceding section, one can 

see that: 

- P corresponds to the class of the disequilibria the considered 

conception is able to recover; in mathematical terms: the problems it allows to be 

solved—in pragmatic terms we will speak of the sphere of practice of the related 

conception; 

- R corresponds to the set of operators needed either to perform 

“concrete” actions on the milieu, or  to transform and manipulate linguistic, symbolic or 

graphical representations. 

- L describes the linguistic, graphical or symbolic means which supports 

the interaction between the subject and the milieu, either actions or feedback, as well as 

their outcomes. 

- ∑ is needed to describe the components which support the monitoring 

of the equilibrium of the [S↔M] system; 

The first three components of this quadruplet, have been borrowed from the 

characterization that Vergnaud (1991, p. 145)7 proposed for a conceptual field. We have 

introduced the fourth component in order to explicitly take into account the dimension 

of validation which is critical to mathematics and mathematics learning. 

The very first question that this model must contend with is that of how it relates 

to the “reality” of students ways of understanding as they have been studied and 

                                                 

7 This definition proposed by Vergnaud was in fact coined at the beginning of the 80's. 
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reported until now in our community of researchers. We consider this question for each 

of the four elements of the quadruplet. 

The question of the concrete characterization of the set P of problems is 

difficult. One option would be to consider the set P to include all the problems that a 

conception provides efficient tools to solve . This was the option suggested by 

Vergnaud (1991) for the case of additive structures, but it appears that such an 

exhaustive description is in most cases out of reach. Another option is to consider P to 

be a finite set of problems from which other problems can be derived. This is the 

solution proposed by Brousseau (1997, p. 30). Whereas that would be the most elegant 

way to proceed, we presently don’t know if such a generative set of problems can be 

constructed in order to describe the sphere of practice of any conception. Instead, the 

pragmatic position that we can presently implement consists of deriving the description 

of the set P from a careful task analysis and in an empirical way, by building on a 

continuously developing understanding of the genetic and epistemic complexity of the 

mathematics considered. This approach can be strengthened by the analysis of historical 

and actual uses of mathematics (e.g. D’Ambrosio,, 1993; Lave, 1988; Nuñes et al., 

1983; Sierpinska, 1989; Thurston 1994). This approach also reveals the duality of 

problems and conceptions which Soury-Lavergne (2003) has studied using the 

characterization we present here as a tool. 

The question of the concrete characterization of the set R of operators is more 

classical.  Operators are means to change the relationship between the subject and the 

milieu; they are the tools for action.  Operators could be concrete, allowing the 

performance of actions on a material milieu, or abstract, allowing the transformation of 

linguistic, symbolic, or graphical representations. So, an operator could take the form of 

functionality at the interface of a piece of software, or of a syntactic rule to transform an 

algebraic expression, or it could even take the form of a theorem in an inference. 
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The representation system L consists of a repertory of structured sets of 

signifiers8, which may or may not be of a linguistic nature, used at the interface between 

the subject and the milieu, supporting action and feedback, and operations and 

decisions.  Just to mention a few examples: algebraic language, geometric diagrams, 

natural language, but also interfaces of mathematical software and calculator keys are 

all examples of structured sets of signifiers. For a given conception, one or more of 

them can be assembled into a representation system.  Whatever it is, depending on the 

state of the subject/milieu system, the representation system must be adequate to give 

account of the problems and to allow operators to perform. 

The last dimension of a conception, the control structure ∑, is made up of all the 

means needed to make choices, to take decisions, and to express judgment.  This 

dimension is often left implicit although one may realize that the criteria which allow 

one to decide whether an action is relevant or not, or whether a problem is solved, is a 

crucial element in understanding a mathematical concept. We would suggest that, in 

Vergnaud’s seminal proposition, the control structure is implied by his reference to 

theorems-in-action or to inference (Vergnaud, 1991, pp. 141-142), which are 

meaningful notions only to the extent that they are associated with the recognition that 

the subject has procedures to check whether his or her actions are legitimate and correct. 

After Pölya and a long tradition of research on metacognition, Schoenfeld (1985, pp. 

                                                 

8  We are aware of the difficulty which could be raised by the use of the word “representation,” especially when it is 

read in the light of a psychological problématique.  We do recognize that any “symbol as representation needs a 

living person who constructs the representation, or in comprehending reconstructs it” (Furth, 1969, p. 93). But we are 

here focusing on the system formed by a knowing subject and a milieu, not on any one of them in isolation. Indeed, 

representation in our sense—which is a semiotic sense—is the basic support of the observed behaviors. We neither 

mean to reduce the subject or the knowledge to the signifiers.  Nor do we reduce the representation systems to a set of 

signifiers, which we consider in the context of semiotic registers as conceptualized by Duval. It is on purpose that our 

approach is limited here. For more detailed considerations, the reader can see Balacheff and Margolinas (2005). 
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97-143) has shown the crucial role of control in problem solving. More recently, Robert 

(1993) emphasized the role of meta-knowledge demonstrating the need to treat control 

structures as such. Indeed this is directly related to a problématique of validation, 

which is intrinsically related to understanding (Balacheff, 1987, p. 160). 

It is important to insist that this model of a conception aims at accounting for the 

subject/milieu system, and is not restricted to one of its components, in that the 

representation system allows the formulation and the use of the operators by the active 

sender (the subject) as well as the reactive receiver (the milieu). The control structure 

allows us to express and discuss the means of the subject to decide on the adequacy and 

validity of an action, as well as the criteria of the milieu for “selecting” a feedback. 

 

3. THE CASE OF FUNCTIONS 

3.1  AN EXTENSIVELY STUDIED THEME 

Instead of giving many examples, which we could explore only superficially in 

the limited space of the present article, we have chosen to investigate in a manner as 

precise as possible just one case, namely the case of "functions." The theme of function 

has been extensively studied. Many bibliographical references are available, all very 

different from one another.  The notion of function is also at the intersection of several 

mathematical areas (numbers, limit, algebra, etc.) and requires considering several 

representation systems (graphical representations, symbolic language, etc.). All of that 

makes functions an important candidate to exemplify our approach. 

The following are classical ways to categorize conceptions of function: 

- Function is a correspondence “law” (a function expresses the 

correspondence between two sets, an element of the first set being associated 

with a unique element of the second set) 
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- Function is a symbolic expression (a formula) 

- Function is a graphical object 

The two first formulations come from Vinner and Dreyfus (1989, pp. 359-360). 

As the reader may know, these authors consider other conceptions of “function”, such 

as “relation of dependence”, “rule” and “operation”. Other authors introduce other 

categories like “ratio and proportion” or “functional dependency” (Sierpinska, 1989) or 

function-as-processes (Breidenbach et al., 1992). These categories can be seen as 

refinements of the more general ones mentioned above.  Because of the fragility of the 

means we have to ascribe a conception to a student, we chose here to remain with the 

three main categories mentioned above. 

The methods used to ascribe a conception to a student have usually included 

analyzing interviews or questionnaires. These instruments have often asked students 

whether there exists a function corresponding to a given specification (e.g., Vinner and 

Dreyfus, 1989, p. 359), engaged students in modeling some situations (e.g., 

Breidenbach et al., 1992, p. 279), or even posed students the question “what is a 

function for you?” (Vinner and Dreyfus, 1989, p. 359).  What students produce then is 

rather difficult to analyze. For example, one may wonder how it is possible to 

distinguish precisely between the category “dependency relationship between two 

variables” (“relation of dependence”) and the category “something which relates the 

value of x to that of y” (“rule”).  The issues pointed at here are, on one hand, that of the 

way data are collected and its effect on the diagnostic of conceptions, and on the other 

hand, that of the way in which these conceptions can be described. 

The categories we have selected can be seen as invariant in the mathematics 

education literature, they in fact correspond to the three main representation systems 

associated to “function”—whether one considers research in mathematics education or 

research in history of mathematics. Indeed, it is by the historical analysis, using the 
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classical works of several historians (Edwards, 1979; Kleiner, 1989; Kline, 1972; Smith 

1958), that we will introduce a first proposition for modeling the conceptions of 

“function”. 

3.2  CONCEPTIONS OF FUNCTION FROM A HISTORICAL PERSPECTIVE 

A good starting point to identify the main conceptions of “function” in the 

course of the history of mathematics is to distinguish them by means of the main system 

of representation they implemented. 

One of the most ancient signs of the existence of function is tables and their 

uses.  For example, Ptolemy (in the Almagest) knew that positions of planets change 

with time and compiled astronomical numerical tables (Youschkevitch 1976, p.40-42). 

Arabian astronomers in the 10th and 11th Centuries also used precise tables. Tables go 

with locating an isolated number using another number (or quantities), and so, the idea 

of variable is not yet present.  

The association of curve with table played a critical role in formulating and 

solving the problem of determining the trajectories of the planets.  Kline (1972, p. 336), 

for example, indicates that Kepler improved the computation of the position of planets 

essentially by adjusting geometrical curves and astronomical data, without any 

theoretical reference to explain why he considered the trajectories to be elliptical.  The 

validity of the conjectured trajectories was then essentially related to the precision of the 

measurement of the planet positions and to the choice of a familiar geometric object, the 

ellipse, that permitted the description of the universe with simple mathematical laws.  

Kline (1972, p. 338) notes that most of the functions introduced in the 17th century 

were first studied as curves. In fact, curves, as trajectories of moving points, were the 

main object of study for mathematicians of that time (Kleiner, 1989, p. 283). 
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The creation of the symbolism of algebra (by Viète, and later Descartes, 

Newton, and Leibniz) was decisive for the development of the concept of function.  The 

separation of the study of functions from geometry is credited to Euler. Kleiner (1989, 

p. 284) emphasizes that Euler’s "Introductio in analysin infinitorum" (1748) offers an 

entirely algebraic approach without a single picture or drawing. The function was 

presented as the central object of the Analysis.  The analytic characterization of 

functions received a strong formulation by Euler, who stated that a function is an 

analytical expression formed in any manner from a variable quantity and constants. 

Although considering a function as an analytical expression proved to be a 

powerful tool, it led to contradictions and was inadequate to solve some problems of the 

18th century (e.g. the controversy of the vibrating strings). In 1755, Euler formulated a 

general definition of function expressing the notion of dependence between variable 

quantities and the notion of causality (Dhombres, 1988, p. 45).  The potential of such a 

definition, along with the difficulties it brought along, stimulated many discussions up 

to the 20th century (Monna, 1972).  

Each of these conceptions9 can be represented by a quadruplet in the form we 

advanced above: 

 - Table  conception: CT=(PT, RT, Table, ∑T),  

 - Curve  conception: CC=(PC, RC, Curve, ∑C), 

 - Analytic  conception: CA=(PA, RA, Algebra, ∑A). 

 - Relation  conception: CR=(PR, RR, LR, ∑R) 

The cases of Table, Curve and Algebra conceptions are sufficient to illustrate 

our purpose, and so we will not develop in detail the case of the Relation conception.  

                                                 

9 We do not claim that these four conceptions are sufficient in order to give account of the historical development of 

"function". They are milestones from which the historical analysis may be carried out and organised. 
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The words “Table”, “Curve”, “Algebra” are used to refer to the corresponding 

representation systems (which is not the case for the Relation conception) that are 

characterized by their specific syntactic rules and their own criteria for validity.  The 

question is then to examine for CT, CC and CA whether their defining components—

respectively the sets P of problems, the sets R of operators and the control structures 

∑—show significant differences depending on the conception they aim to describe. We 

consider these differences from the point of view of the control structures.  

The Table conception CT has essentially empirical foundations; the validity of a 

table depends on the precision of measurement and of the related computations against 

the requirements of a given experimental context.  In the case of the Table conception, 

which we ascribe  to Kepler, the validity must be evaluated against the quality of the 

interpolations and predictions that the ellipse allowed.  Therefore the corresponding 

control structure ∑T was fundamentally of an empirical nature, providing the means that 

allowed the precision of tables to be verified with reference to the observations and to 

the measurements that had been carried out.  However, the input/output table is the first 

means of representation used, the means by which quite a number of functions were 

shaped. Kline (1972, p. 338) reminds us that the table of the sine function was known 

with great precision long before the associated curve became a mathematical object.  

Then, the validity of the solution of a problem from the corresponding sphere of 

practice (PT) did depend in an essential manner on the quality of rather concrete 

productions and of actions necessary to collect and treat data. 
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  This also applies to the Curve conception whose corresponding sphere of 

practice (PC) —in the beginning of the 18th century—was constituted by the important 

problem of long distance navigation where coasts were out of sight.10 

Thus the set of problems PT, as well as PC, were dominated by practical 

questions and RT, as well as RC, included—but not exclusively—techniques of 

measurement, computation, and drawing.  We might even suggest that the ellipse of 

Kepler’s first law was a geometrical object, ideally conceived of, but empirically used 

when constructing curves in order to access objects and to make predictions.  A curve 

was not yet the graphical representation that we acknowledge nowadays as being the 

graph of a function considered as a relationship between entities (numbers or even 

quantities). 

The Analytic conception CA is of a different nature; it introduces a rupture in the 

epistemology of functions.  A function defined by an analytical expression does not 

need to refer to an experimental field (either of natural phenomena or of mechanical 

drawings).  It can be studied for itself, as Euler did by presenting functions as the object 

of study—what was called Analysis (Introductio in analysin infinitorum).  That does 

not mean that the problématique of modeling no longer plays any role; rather, it means 

that it is no longer central and does not characterize the conception.  A purpose of the 

Analysis of the 18th Century (and of the 19th and 20th Centuries) was the solution of 

functional equations, which were of great importance in Physics (Dhombres, 1988), and 

the developments into infinite series, which played a central role as operators (RA) in 

those solutions. The corresponding control structure ∑A depends on the specific 

                                                 

10  “In the sixteenth century the methods of [computing longitude] were so inaccurate that navigators were often in 

error as much as 500 miles” (Kline, 1972, p. 336). In 1712, the British government established a commission for the 

discovery of longitude 



23 

 

characteristics of Algebra as a representation system and on the operators it allows to 

implement.  Computation of symbolic expressions and mathematical proof are the key 

tools to decide whether a statement is valid or not.  Indeed, symbolic representations are 

not the only ones to be available and to be used.   Following CA, a function can be 

associated with a graph—that is, a set of pairs (x, y) in the Cartesian plane (where y is 

the value of the function for a given x).  This possibility often suggests close 

relationships between CC and CA that raises the question of the relationship between 

graph and curve.  While the graph is a possible representation of a function, displaying 

phenomena that algebraic expressions do not easily demonstrate (for example, the 

intersection of two lines), a curve is rather an evocation of the trajectory of a mobile 

point or of a geometric object, as Kline expresses it when describing Newton's 

conception (Kline, 1972, p. 339). 

The general solution of partial differential equations expressing the vibrations of 

a finite string, subject to initial conditions, induced Euler to consider arbitrary functions 

that did not necessarily have an analytic representation. The existence of such arbitrary 

functions was controlled by physical arguments and was related to the various possible 

initial forms of the string.  The emergence of a Relation conception, CR, of function 

then required the development of new modes of representation LR and new control 

structures ∑R in order to define what such functions could be and in order to work with 

them without any reference to an analytical representation.  These developments took 

two centuries.   

The conceptions of function we have modeled differ from each other in an 

essential way. The conception of curves as trajectories of a point, ascribed to Newton by 

Kline (1972, p. 339) is fundamentally different from the Dirichlet conception of a subset 

of the Cartesian product of two sets satisfying given constraints (which guarantees a 

unique image for each element of the source set). The crucial point here is that 
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“function” does not refer to the same object in the two cases but to objects that are 

different in essence, despite the fact that in modern terms we could mathematically 

interpret them in the same framework. 

Without going too far in the discussion of these points we must notice that each 

representation system we consider, taken by itself (with its semiotic characteristics), has 

a different displaying power (which can be defined as the capacity to show or to hide 

what should be shown).  These differences can be better understood by considering (a) 

the operators that can be implemented and (b) the corresponding control systems. 

3.3  STUDENTS’ CONCEPTIONS OF FUNCTION 

We focus on students from the secondary and post secondary levels.  These 

students constitute the bulk of the population studied in the literature.  They all have 

some knowledge of Algebra and they all have been exposed to classical elementary 

functions. A classic in this area, Vinner’s (1992) study on students’ concept image of 

function, identified eight components of students’ conceptions of function: 

- “The correspondence which constitutes the function should be systematic, 

should be established by a rule and the rule itself should have its own regularities”; 

- “A function must be an algebraic term”; 

- “A function is identified with one of its graphical or symbolic representations”;  

- “A function should be given by one rule”; 

- “A Function can have different rules of correspondence for disjoint domains 

provided that these domains are regular domains (like half lines or intervals); 

- “A rule of correspondence which is not an algebraic rule is a function only if 

the mathematical community officially announced it as a function”; 

- “The graph of a function should be regular and systematic”; 

- “A function is a one-to-one correspondence”. (Vinner, 1992, p. 200) 
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These components of the concept image of function result from investigations 

carried out by Shlomo Vinner with students in the Jerusalem area at the beginning of the 

eighties.  Since Vinner published this seminal work in 1983, these features have been 

confirmed as being largely common to students all over the world (Tall, 1996, pp. 297-

301). 

As they are presented to the reader, these features are not yet organized into 

conceptions.  In particular one misses indications about their domain of validity as well 

as about the way they could be implemented in a problem-solving situation.  One can 

notice that several of them are tightly related to one system of representation, either 

algebraic or graphical.  Actually, representations are good starting points to shed light 

on the question of the differentiation of conceptions.  

For example, from the students’ point of view, the idea that a graph-curve 

should exist in relation to an algebraic expression is central, both representations having 

to conform to certain constraints11. By the expression ‘graph-curve’ we refer to two 

different entities that must be distinguished. This is well expressed by Sierpinska (1989) 

when she introduced the distinction between synthetic and analytic views of curves12: 

                                                 

11 There is a rich literature on understanding functions and their representations. A common distinction is made 

between the process and object aspects of functions (Dubinsky and Harel, 1992; Sfard, 1991). Those aspects can be 

related to the students' uses of different representations of functions (DeMarois and Tall, 1999; Schwingendorf, 

Hawks, and Beineke, 1992). The distinction between the global approach and the point-wise approach to functions 

(Bell and Janvier, 1981; Even 1998) is critical as well, showing in particular that the capacity to deal with (graphical 

and algebraic) representations of functions or to move from one representation to another is related to the flexibility 

in using different approaches to functions. Because of limitations of space we do not elaborate on all those aspects 

here but we limit ourselves to the specific case of the graph/curve distinction. 

12 Although she keeps using the word “curve” in both cases 
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“Curve analytical view:  a function is an ‘abstract’ curve in a system of 

coordinates; this means that it is conceived of points (x, y), where x and 

y are related to each other somehow.” (Sierpinska, 1989, pp. 18). 

“Curve, a synthetic view: […] function is identified with its 

representation in the plane; it is a curve viewed in a concrete, synthetic 

way.” (Sierpinska, 1989, p. 17). 

This distinction reminds us of the one that is usually made in mathematics 

between curve and graph: curve refers to a geometrical object, and graph to a 

representation of a function in the graphical representation system (one plots a graph).  

However, the distinction made by Sierpinska seems not to be exactly this one, since she 

added that the “relationship (between x and y, the analytical view) can be given by an 

equation.  But the curve does not represent the relation.  Rather, it is represented by the 

equation.” (Sierpinska, 1989, p. 17). This remark draws our attention to the confusion 

likely to be made by students between the geometric setting and the calculus setting (in 

the sense of setting proposed by Douady, 1985), which is facilitated by the identity of 

the diagrams used by both of them.  

Thus, we suggest considering two types of student conceptions: the Curve-

Algebraic and the Algebraic-Graph.  To consider them in a more precise way we 

describe them by two quadruplets: 

Curve-Algebraic conception: CCA=(PCA, RCA, Curve-Algebraic, ∑CA),  

Algebraic-Graph conception: CAG=(PAG, RAG, Algebraic-Graphic, ∑AG) 

These two conceptions apparently share the same representation system, 

algebraic and graphic, but these systems have different degrees of importance in both 

(this is suggested by their different order in their given name).  In the case of the Curve-

Algebraic conception, the criterion is that the curve must be related to an algebraic 

representation (its equation, in Sierpinska’s terms).  In the case of the Algebraic-Graph 
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conception, the criterion is that the algebraic representation must be associated with a 

graph which one must be able to plot.  The distinction between graph and curve is not 

very easy to make because both rely on a graphical representation.  This difficulty is 

very likely to be one of the reasons why some students do not recognize in which 

setting they are working (and consequently they experience difficulty in knowing what 

is legitimate to do).  It is by looking at the rules that both conceptions require one to 

abide by, the tools that they allow one to use, and the control structures they provide 

that we can shape the distinction. 

The exploration and modeling of students’ conceptions is a rather difficult job to 

accomplish when one can only rely on the evidence provided by tasks where students 

are directly asked to answer the question “what is a function?”, or where they are 

invited to decide if graphs or descriptions of correspondences represent functions (e.g., 

“Does there exist a function all of whose values are equal to each other?” Vinner and 

Dreyfus, 1989, figure 1, p. 359).   

One can notice two important points about such experiments: First, they show a 

distance between the answers to the question “what is a function?” and those to the 

tasks requiring a decision on descriptions of correspondences.  This distance confirms 

the relationship between conceptions and problems.  Different tasks (like providing a 

definition or describing a function) may call for different conceptions.  This suggests 

that students’ conceptions are less accessible in statements about a concept than in 

problem solving situations involving this concept.  For this reason, the characterization 

of conceptions requires the provision of evidence for the relations between conceptions 

and problems. The second point concerns the type of tasks proposed to students.  In 

none of these tasks students needed to perform actions in order to produce a solution but 

rather they had to activate control operators in order to produce a decision.Vinner 

himself emphasized the fragility of this type of investigation when he observed a large 
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number of occurrences of what he called “irrelevant reasoning” that he defined as “[…] 

justification given by the student because he or she assumed it was the right thing to say 

(and no meaningful thought was involved)” (Vinner, 1992, p. 206). 

This observation can be analyzed under the light of the very clear description by 

Castela (1995, p. 21) of the situation she used to explore students’ conceptions of 

tangent.  Castela assumed that the drawings she proposed to students were 

“straightforward,” that their approximate character (they are sketches of functions) did 

not hide any surprising feature—the functions represented were what they seemed to 

be.13  One can then legitimately think that the observed situations may depend heavily 

on the quality of the experimental contract.14  The researcher claims that the 

investigation targets the students’ conceptions, but it may be the case that what is 

observed is students’ contingent opinions and not students’ conceptions as expected.  

Students’ answers might be a way to fulfill the teacher/observer expectation—this is 

exactly what Vinner feared.  But indeed, how could it be different?  Especially in the 

graphical representation system the tasks provided to students by Castela, used what we 

suggest be called function icons instead of functions’ graphical representations.  In order 

to understand this point, we invite the reader to consider such tasks from the point of 

view of the nature of the feedback the students can expect from the environment 

provided by the situation in which they are involved.  They cannot perform any relevant 

action on the graphical representation since these representations are just sketches (see 

Castela’s  pictures or the tasks proposed by Vinner and Dreyfus). 

                                                 

13  “Les fonctions représentées sont bien ce qu'elles ont l'air d'être” [The functions represented are exactly those that 

seem represented] ; Castella (1995, p. ). 

14 In particular, this (implicit) contract defines the way the students should understand the experimental situation. 
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Figure 2 (from Castela, 1995, p. 17) 

But, what are the problems for which students’ conceptions provide tools 

allowing them to propose reasonable solutions (at least in the student’s eyes)?  Indeed, 

the characterization of a conception should not be separated from the characterization 

of the problem situation that provides evidence for it. 

To go beyond the definition and investigate more problem-oriented situations is 

indeed what Vinner (1992) intended when he asked students to decide on the continuity 

or on the differentiability of a function.  He concluded from his study that for students 

(i) for a “function to be continuous is the same as being defined and to be discontinuous 

is the same as being undefined at a certain point” (Vinner, 1992, p. 205), or (ii) 

“continuity or discontinuity is related to the graph” [e.g. ‘a function is continuous 

because its graph can be drawn in one stroke’] (p. 206), or (iii) “there is a certain 

reference to the concept of limit” [e.g. ‘The function is continuous because it tends to a 

limit for every x’] (p. 207).  Whereas the direct question “what is a function?” gave 

essentially an indication of possible elements of the control structures, we get here an 

insight about the tools students may have available.  

Some of these tools clearly relate to a Curve-Algebraic conception. For example, 

drawing the graph [y = 1 if x > 0 and y = -1 if x < 0] is a tool which allows us to control 
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the aspect of the graphical object (the graph shows a disruption) and so allows to 

conclude that the function f (x) =
x
x

 is discontinuous (Vinner’s task B1).  Other tools 

relate to an Algebraic-Graph conception (like the ones involving a criterion of limit). 

Vinner did the same with the derivative, identifying (i) correct algebraic 

characterizations, or (ii) descriptions of symbolic manipulations to be performed, or (iii) 

correct definitions within the graphical representation system.  But Vinner did not seem 

to have effective tools for describing the so-called incorrect solutions.  This resulted in 

the use of attributes like “vague”, “fuzzy” or “meaningless”.  Altogether these vague 

and fuzzy answers represent 46% of the sample of 119 students.  We must realize here 

that students were confronted with graphical representations of functions and asked to 

decide and to justify whether they were continuous or not.  In the case of the derivative 

they were directly asked to define it, answering the question “what is a derivative?”  

Again we observe the fragility of the data gathered, insofar as these tasks may well not 

reveal students’ conceptions of derivative but their possible opinion offered in a rather 

embarrassing situation. 

In order to decide or to justify a statement, one has to mobilize one’s conception 

in a different way, more operational, than to define it, say, in abstracto.  The point here 

is that what we learn from students discourse or work must be analyzed against the 

characteristics of the situation in which this discourse or work is produced.  We could 

say that conceptions and problems are dual entities (Balacheff, 1995):  In order to 

characterize students’ conceptions one should provide them with meaningful problem 

situations, with enough complexity so that they can engage their conceptions in a 
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significant way, demonstrating for us the tools they use and the nature of the control 

they involve in the task15. 

Artigue (1992, p.130) gives us an excellent example of the benefit of coming 

back to the students’ context when she analyses, in the case of the qualitative approach 

to differential equations, the false theorem: “if f(x) has a finite limit when x tends 

toward infinity, its derivative f'(x) tends to 0”.  She wrote: 

“In the field of differential equations, monotonicity conceptions may 

especially act as obstacles as on one hand, effective predictions are 

implicitly based on the extra-hypothesis of monotonicity and on the other 

hand, theorems have to get free of these extra-hypothesis.  Let us be 

more explicit: 

When sketching solution curves, we draw the simplest one compatible 

with the identified set of constraints, but in doing this, we add extra 

constraints concerning the convexity that can be expressed roughly in the 

following way: convexity has to be the least changing possible or, in 

algebraic terms, the sign of f", for a solution f, has to be the most 

constant possible.  So, f' is implicitly the most monotonic possible.” 

(ibid. p.130) 

She concludes that the mentioned false theorem “can be seen as an instantiation 

of such an extra-hypothesis: if for x large enough, f' is monotonic, then f' has 

necessarily a limit (finite or not) and the unique limit compatible with an horizontal 

asymptote is 0.  In other words, by adding the condition f' monotonic, this false theorem 

becomes a true one” (ibid.) Such an analysis of a tool (which is the actual status of 

theorems in students’ practice) used by students, is evidence of the interaction between 

                                                 

15 Note that we do not pretend that this is enough to solve our diagnostic problem, but that it is a necessary condition. 
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the graphic and the algebraic representation system, and the role played by the 

characteristics of the sphere of practice (a role which is in fact recognized by Vinner 

when he points to the phenomenon of “compartmentalization”). 

Let us then come back to the Curve-Algebraic conceptions and the Algebraic-

Graph conceptions.  We distinguish these conceptions by the type of tools and controls 

they involve in problem-situations, and their interactions with the representation system 

(either graphic or symbolic) on which they depend and which makes them tangible. 

To state what the set P is in each case remains an open problem for research in 

mathematics education even in this domain, which has been heavily investigated.  One 

may observe, at this point, that history is of no great help.  Actually students’ 

conceptions are very difficult to analyze against what history teaches us about the 

evolution of the concept of function.  And indeed we would be very cautious with the 

idea that the “historical study of the notion of function together with its epistemological 

analysis helped us to analyze the student’s mathematical behavior” (Sierpinska, 1989, p. 

2).  It is clear that the epistemological analysis is an essential tool, but the historical 

analysis may induce a view of the notion of function that hides the role played by the 

modern school context.  The historical analysis will delineate the notion from the 

mathematical point of view, and from the cognitive point of view we must be prepared 

to see things in a rather different way.  Actually Sierpinska (1989, p. 19) acknowledged 

that “the students’ conceptions are not faithful images of the corresponding historical 

conception.” For example, a question one has to consider is that of knowing what could 

be the essential difference between the students’ algebraic conceptions and the 

“corresponding” historical conceptions.  It is also striking that tables play a very limited 

role if at all in situations involving functions: if they are present it is in relation to 

concrete situations in which the aim is less one of analyzing a function than one of 

analyzing the data (the function “disappears” behind its use as a tool for data analysis).  
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Students’ spheres of practice are radically different from the ones of the 

mathematicians that historians consider.  The didactical system has first introduced 

students to “good” functions, mainly playing with two different settings: algebraic and 

graphical.  As Sierpinska (1989) noticed, shapes of graphs of elementary functions can 

become prototypes of conceptions.  Depending on the curriculum they have been 

exposed to, students have available more or less sophisticated tools in order to analyze 

some elementary algebraic formulas, and to describe the behavior of the corresponding 

functions.  These spheres of practice may be described in detail following a close 

analysis of textbooks which are available to students (see Mesa, 2004, for a first 

investigation in this direction). 

3.4 A CASE STUDY: THE CURVE-ALGEBRAIC AND ALGEBRAIC-GRAPH  CONCEPTIONS 

Our intention in this section is to demonstrate how the algebraic and the 

graphical representation system, the rules-tools, and the controls required in the problem 

lead to the differentiation of the Curve-Algebraic and the Algebraic-Graph conceptions 

of function, taking the case of students from the 12th grade in France.  

The experimental context was provided by the dynamic geometry environment 

Cabri-Geometry II16 (hereafter named Cabri). Cabri allows one to construct objects and 

display the dynamic relation between their graphical and algebraic representations 

(Gaudin 2002). 

The diagram of a parabola in a system of coordinates was presented to the 

students. Some limitations on the manipulation of the drawing have been imposed  in 

order to constrain the action of the students and open better opportunity for their 

conceptions to be elicited (see below the specification of the situation 1 and 2).  This 

                                                 

16 Cabri-Geometry II  is a dynamic geometry environment distributed by Texas Instruments. 
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diagram could be turned around its vertex, by dragging the parabola’s axis of symmetry. 

The software would update dynamically the equation associated to the diagram after 

each of these manipulations (see figures 3 to 6).  

 

 

 

Figure 3 

 

 

Figure 4 

 

 

Figure 5 

 

Figure 6 

 

Different positions of the parabola in Cabri 

The French text “Marque la position de la parabole”, means that the marked line was drawn in order to 

keep a record of the initial position of the drawing so that the students could always come back to it if they 
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wanted. The other French texts are: “Coordonnées de Mo” for “Mo coordinates”, and “équation de la 

parabole” for  “equation of the parabola”. 

 

We asked students to give the equation of the line tangent to the parabola17 at 

point M0 and to draw this tangent (using Cabri, the students knew how to draw a 

straight line whose Cartesian equation was given).  

Situation 1: the parabola could be manipulated by moving its axis of 

symmetry (grabbing a point given on this axis, see Figures 3) so that it 

could reach a “vertical” position (Figure 5)—in this position the parabola 

is the graph of a quadratic function. 

Situation 2: the movements were constrained, the parabola could not turn 

completely around the vertex, hence it could not reach the vertical 

position as in situation 1; and so students could not get the familiar 

picture of a quadratic function. 

 

12th grade students were supposed to know:  

  That a parabola whose equation is y = ax2 + bx + c is the graph of 

the function f defined by f(x) = ax2 + bx + c.  

  That an equation of the tangent to the graph of a function f at 

point M0 (x0, y0) is y = f’(x0)(x-x0) + f(x0), f’ being the derivative of  f.  

  Some rules of differentiation.  

 Nothing about conics.  

                                                 

17 It is common in French mathematical classes, as it is in most of the books from different countries we have looked 

at, to use the word “parabola”, either for the geometrical object or for the graph of the quadratic function. Its use 

leaves pragmatically open the choice of either a geometrical perspective or an algebraic perspective. 
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In order to frame the analysis of students’ problem-solving activity we sketch 

hereafter the strategies that could be expected in both situations: 

 

Situation 1:  

 The capacity to control  the position of the parabola allows reaching the 

vertical position to get the graph of a quadratic function f.  Its algebraic representation is 

f (x) = (1/2.36) (3.32x2 – 10x + 1.56) (see Figure 5).  

 The property “An equation of the tangent of a graph of a function f at 

point M0 (x0 , y0) is y = f’(x0)(x-x0) + f (x0),  where f’ is the derivative of f  ” is an 

operator which processes the algebraic expression of f.  

One gets the equation of the tangent of the parabola (y = -1.01x – 1.17) and 

draws the tangent with Cabri.   

Situation 2: 

 The parabola can not reach the vertical position anymore, but in the 

horizontal position it is the graph of a quadratic function in another system of 

coordinates defined by the same origin, the point (0, -1) as the unit on the x axis and the 

point (1, 0) as the unit on the y axis (see Figure 7).  

 The new system is associated to the change of variable X = -y and Y = x.  

This change is a tool to find the equation 3.08X2 - 2.04Y - 9.23X + 10 = 0 of the 

parabola in the new system and to get the algebraic representation f(X) = (1/2.04) 

(3.08X2 – 9.23X + 10) of the function of which the parabola is a graph in the new 

system.  

Like in situation 1, the property “An equation of the tangent of a graph of a 

function f at point M0 (x0 , y0) is y = f’(x0)(x-x0) + f (x0), where f’ is the derivative of f ” 

is an operator which processes the algebraic expression of f.  One gets the equation of 

the tangent of the parabola (Y = -1.20X + 3.06).   The change of variable X = -y and Y 
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= x is a tool to find the equation of the tangent in the initial system of coordinates: 1.20y 

– x + 3.06 = 0.  One draws the tangent with Cabri.  

 

 

 

 

Figure 7 

 

The drawing of a parabola on the screen can be conceptualized as a graph or as 

a curve. Recall from section 4.3, the graph of a function f is the set of points (x, f (x)) in 

a system of coordinates; a curve is a geometrical object, which can be drawn 

independently from the existence of a system of coordinates.  Considering the parabola 

as the graph of a quadratic function, is essential in order to associate controls to the 

tools involved in the above mentioned strategies.  

We will present some aspects of the analysis of the observed behaviors of two 

pairs of students. André and Rémi were one pair, and Loïc and Sylvain were the other 

pair; each pair of students worked together on these problems.  We have chosen these 

two case because they illustrate in a very good way both conceptions: Curve-Algebraic 

in the case of André and Rémi, and Algebraic-Graph18 in the case of Loïc and Sylvain.  

                                                 

18 For more details, see Gaudin (2005). 



38 

 

From these students’ point of view, getting the equation of the tangent of the parabola 

meant “deriving the equation”19 and using the operator “if f is a function of x then the 

equation of the tangent at the point M(x0 , f(x0)) is y = f’(x0)(x-x0) + f(x0)”.  As long as 

the parabola was not the representation of a graph, students could not perform the rules 

of differentiation they knew (and so, use the operator and get the equation of the 

tangent).  Their decisions and actions to make the equation in accordance with these 

rules revealed different controls and tools involved in the problem.  

By identifying the controls used by André and Rémi or by Loïc and Sylvain to 

establish if an equation could be derived or not in situation 1, we can discriminate both 

conceptions.  

For André and Rémi, the equation could be derived if its form was [y = 

<an expression of x>]. Since this was not the case, they tried to change the 

position of the parabola. They moved it to the vertical position. They chose this 

position while controlling the equation which, as a result, became simpler and 

simpler (when y disappeared from the equation the students said “that’s good;” 

when the coefficient of xy decreased, “that’s perfect”). They obtained an 

equation that they called a “neat equation” that could be derived.  

Sylvain and Loïc found the equation on the screen really complicated 

(“monstrous”). They decided that the equation was not the representation of a 

function because the graph did not pass the vertical line test (there were two 

values for one x).  They stated that the equation could not be derived.  The 

control on the derivability was based on the form of the equation which had to 

be [y=(some x, no y)].  Sylvain anticipated that xy and y2 should disappear in the 

                                                 

19 We specify below what is meant to “derive the equation” for each students’ pair.  



39 

 

equation when the parabola would reach the vertical position, so they decided to 

get this position.  

 

The actions of both student pairs in situation 1 are the same: moving the 

parabola to the vertical position and getting the equation of the tangent as described in 

the expected strategy.  But the means of control and the associated representation 

system differ in an important way. André and Rémi’s means of control refer essentially 

to the algebraic representation system: getting an adequate symbolic writing of the 

equation.  In Sylvain’s and  Loïc’s case these refer to the graphic and algebraic 

representation system: satisfying the vertical line test to get an equation of the form: 

[y=(some x, no y)].  

 

These controls play an essential role in students’ decisions in situation 2.  

Noticing that the parabola cannot reach the vertical position any more, both students’ 

pairs had to change their strategies.  

 

André and Rémi decided to move the parabola to the horizontal position 

because the equation appeared then to be the simplest one they could expect.  

The obtained an equation (3.08y2 – 2.04x + 9.23y + 10 = 0) which they 

described as “nice” and  “the best.”  But this equation was not yet in accordance 

with the rule of differentiation and students proposed to change x with y and y 

with x.  Again, their control is essentially algebraic.  They were skeptical of the 

legitimacy of such a change.  They proposed to change the system of coordinates 

into the new one according to the mapping of variables: X = -y and Y = x.  They 

got an expression that they could differentiate (f(x) = (1/2.04) (3.08X2 – 9.23X + 

10)—one should note that they wrote “x” and not “X”, in “f(x)”.   The important 
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point here is the meaning students ascribed to the change of system.  They did 

not relate this change to the other objects of the situation: they used the first 

coordinate of M0 in the operator “if f is a function of x then the equation of the 

tangent at the point M(x0 , f(x0)) is y = f’(x0)(x-x0) + f(x0).” Consequently, the 

equation of the tangent was not rewritten in the initial system prior to drawing 

the tangent (as described by the “expected” strategies), and the equation of the 

tangent line was not correct.  Clearly, the change of system was not associated to 

a control in the graphical representation system.  It was only associated to a 

control on the symbolic writing of the equation conforming to [y = (expression 

of x)].  

 

Loïc moved the parabola to the horizontal because this position appeared 

to him to be “better than any position.”  Sylvain did not consider this position as 

a better one to solve the problem.  This opinion was consistent with the vertical 

line test he used in situation 1 and is confirmed by the presence of y2 in the 

equation (“I don’t see… how will you cope with the y2?”).  He proposed to 

change the system of coordinates: the new proposed system being the one in 

which the parabola satisfied the vertical line test, and so, the one in which the 

parabola was the graph of a function.  Thus, unlike the other student pair, it was 

a control in the graphical representation system which led to choose the new 

system of coordinates.  This control allowed a distinction graph/curve more 

effective than getting a nice equation. More effective means in this context that 

the control was associated to new tools used by the students: reading the 

coordinates of M0 in the new system, getting the equation of the tangent in 

which the parabola is a graph, and then writing this equation in the initial system 

to draw the tangent. 
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The identification of different conceptions in these two cases is possible by 

looking at the controls, the tools, and the associated representation systems the students 

used to solve the problems.  In the present situation, the actions we observed refer to 

rather different controls and do not define the same settings of work.  

In the case of the Curve-Algebraic conception, the control associated to 

the operator “if f is a function of x then the equation of the tangent at the point 

M(x0 , f(x0)) is y = f’(x0)(x-x0) + f(x0)” is an algebraic control.  The parabola is a 

geometric object designated by an equation and some of its positions are more or 

less operational from the point of view of this control. Thus, the algebraic tools 

and transformations (change of variable) do not apply on the objects of the 

geometric setting (the parabola, M0, the tangent straight line). Calculus is 

reduced to symbolic transformations.  

In the case of the Algebraic-Graph conception, graphic controls 

(recognizing the parabola as a graph, reading the situation in a new system) are 

related to algebraic tools (the operator “if f is a function of x then the equation of 

the tangent at the point M(x0 , f(x0)) is y = f’(x0)(x-x0) + f(x0)”, the change of 

variables that works on every object of the system).  Because of this relation, 

Calculus can be based on variables linked by an equation and/or a graph.  

 

Moreover, it should be noted that the drawings and symbolic representations are 

not used in the same way. Eventually, they are not components of the same 

representation systems, despite the similarities of the signs used. In the case of the 

curve-algebraic conception, the diagram is the reification of a geometrical object, in the 

case of the algebraic-graph, the diagram is an object in the graphical system which is 
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considered in close coordination with an object from the algebraic representation 

system.  

 

4. CONCLUSION: CONCEPTION, KNOWING, AND CONCEPT 

Modeling students’ knowing of mathematics is a difficult task, which we need to 

achieve in order to be able to better design teaching situations or learning environments. 

To contribute to the search for a solution we have proposed a definition of the notion of 

“conception” and a modeling framework. This approach is an attempt to capture the 

core of a possible characterization of a conception seen as a situated knowing providing 

the tools and the controls to solve problems from a given sphere of practice. This 

proposition is intended to overcome the epistemological contradiction of an individual 

being a rational person but still likely to demonstrate contradictory behaviors from the 

point of view of an observer. Moreover, it provides an instrument to more precisely 

account for the possible meaning of the students’ behaviors and outcomes by describing 

more precisely how the representations, actions, and controls they use are related and 

contribute to the problem-solving process. 

One may notice that, as a result of our definition of conception, we may now 

have three notions which seem likely to compete in the mathematics education 

discourse, namely: conception, knowing and concept.  Our contribution would not 

improve matters unless we were able to relate these three notions in a clear manner, 

demonstrating their complementarities. This is possible by defining a knowing as a set 

of conceptions. A knowing is a set of conceptions ascribed to a subject, whereas a 

conception represents an “instantiation” of this knowing by a given situation. The 

universe of an individual can be described by means of several different spheres of 

practice each calling for different conceptions—i.e. different instances of his or her 
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knowing. It is only from the point of view of the observer that all these instances relate 

to the same knowing. The individual is not necessarily or always aware of the possible 

relations among his or her own conceptions. In order to stimulate this awareness, a 

special event is necessary, which consists of a situation bringing to the fore a problem 

which forces us to consider two different spheres of practice which are usually mutually 

exclusive.  This is the basis for the design of a learning situation which could stimulate 

the students feeling of the intellectual need20 to express their conceptions and possibly 

to reconsider them. 

In order to be able to establish the links between the conceptions he or she is 

ascribing to the student the observer needs to translate each system of representation 

into a single system of representation—in general, his or her own system of 

representation. All our analyses, as researchers in mathematics education, are based on 

this possibility. This aspect of representations and their use in research is essential, 

although rarely noticed: we can model a conception, relate and compare conceptions, 

only if we can ascribe to them representation systems, and if we can relate these 

systems of representation to ours. This indeed imposes constraints on our analysis 

which could be a kind of anachronism or over interpretation of learners’ behaviors and 

understanding. We claim that the only way to cope with this inherent difficulty to our 

task is to make things as explicit as possible. The modeling framework proposed in this 

paper could contribute to achieving such explicitness. 

Considering now the term “concept”: we suggest to use concept to refer to the 

set of all the knowings sharing the same content of reference.  This answers positively 

                                                 

20 We borrow here the expression proposed by Harel (2006). 
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the question posed by Rolf Biehler at the BACOMET IV last meeting21: “Couldn't we 

say that the meaning of a mathematical concept is the synthesis of all of its uses?”  On 

the other hand, we are at some distance from Sfard’s (1991) proposal that, “the word 

‘concept’ (sometimes replaced by ‘notion’) will be mentioned whenever a mathematical 

idea is concerned in its ‘official’ form—as a theoretical construct within ‘the formal 

universe of ideal knowledge’; the whole cluster of internal representations and 

associations evoked by the concept—the concept's counterpart in the internal, subjective 

‘universe of human knowing’—will be referred to as ‘conception’” (ibid. p.3).  

However, if the view of “concept” could be considered more pragmatic in our 

presentation, the view of “conception” we have developed is not so far away from the 

one Sfard proposed. The fact that the two notions of “concept” and “conception” are 

sufficient for Sfard is coherent with the fact that the level of knowing is necessary only 

when one wants to reconstruct the totality of the epistemic subject, considering the 

variety of the situations in which he or she is engaged. If the situation and what is at 

stake in it are precise enough the notion of conception is sufficient. What explains that, 

well defined or not, considered from the “misconception” perspective or from a more 

general perspective, conception has always played a central role in mathematics 

education. 
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project IV “Meaning in mathematics education” (1996). 
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