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NetVLAD: CNN architecture for weakly
supervised place recognition

Relja Arandjelovi¢, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic

Abstract—We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the
location of a given query photograph. We present the following four principal contributions. First, we develop a convolutional neural
network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition task. The main component of
this architecture, NetVLAD, is a new generalized VLAD layer, inspired by the “Vector of Locally Aggregated Descriptors” image
representation commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable to training via
backpropagation. Second, we create a new weakly supervised ranking loss, which enables end-to-end learning of the architecture’s
parameters from images depicting the same places over time downloaded from Google Street View Time Machine. Third, we develop
an efficient training procedure which can be applied on very large-scale weakly labelled tasks. Finally, we show that the proposed
architecture and training procedure significantly outperform non-learnt image representations and off-the-shelf CNN descriptors on

challenging place recognition and image retrieval benchmarks.

1 INTRODUCTION

ISUAL place recognition has received a significant amount
Vof attention in the past years both in computer vision [1],
[21, [31, [4], [5], [6], [7], [8], [9], [10], [11] and robotics commu-
nities [12], [13], [14], [15], [16] motivated by, e.g., applications in
autonomous driving [14], augmented reality [17] or geo-localizing
archival imagery [18].

The place recognition problem, however, still remains ex-
tremely challenging. How can we recognize the same street-corner
in the entire city or on the scale of the entire country despite
the fact it can be captured in different illuminations or change its
appearance over time? The fundamental scientific question is what
is the appropriate representation of a place that is rich enough to
distinguish similarly looking places yet compact to represent entire
cities or countries.

The place recognition problem has been traditionally cast as an
instance retrieval task, where the query image location is estimated
using the locations of the most visually similar images obtained
by querying a large geotagged database [1], [2], [3], [8], [9],
[10]. Each database image is represented using local invariant
features [19] such as SIFT [20] that are aggregated into a fixed
length vector representation for the entire image such as bag-of-
visual-words [21], [22], VLAD [23], [24] or Fisher vector [25],
[26]. The resulting representation is then usually compressed and
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(a) Mobile phone query

Fig. 1. Our trained NetVLAD descriptor correctly recognizes the location
(b) of the query photograph (a) despite the large amount of clutter
(people, cars), changes in viewpoint and completely different illumina-
tion (night vs daytime). Please see figure 7 and the appendix for more
examples.

efficiently indexed [21], [27]. The image database can be further
augmented by 3D structure that enables recovery of accurate
camera pose [4], [11], [28].

In the last few years, convolutional neural networks
(CNNs) [29], [30] have emerged as powerful image representa-
tions for various category-level recognition tasks such as object
classification [31], [32], [33], [34], scene recognition [35] or
object detection [36]. The basic principles of CNNs are known
from 80’s [29], [30] and the recent successes are a combination
of advances in GPU-based computation power together with
large labelled image datasets [31]. It has been shown that the
trained representations are, to some extent, transferable between
recognition tasks [32], [36], [37], [38], [39], and direct application
of CNN representations trained for object classification [31] as
black-box descriptor extractors has brought some improvements
in performance on instance-level recognition tasks [40], [41], [42],
[43], [44], [45], [46], [47]. In this work we investigate whether
the performance can be further improved by CNN representations
developed and trained directly for place recognition. This requires
addressing the following four main challenges: First, what is a
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good CNN architecture for place recognition? Second, how to
gather sufficient amount of annotated data for the training? Third,
how can we train the developed architecture in an end-to-end
manner tailored for the place recognition task? Fourth, how to
perform computationally efficient training in order to scale up to
very large datasets? To address these challenges, we bring the
following four innovations.

First, building on the lessons learnt from the current well
performing hand-engineered object retrieval and place recognition
pipelines [10], [23], [48], [49], we develop a convolutional neural
network architecture for place recognition that aggregates mid-
level (conv5) convolutional features extracted from the entire
image into a compact fixed length vector representation amenable
to efficient indexing. To achieve this, we design a new trainable
generalized VLAD layer, NetVLAD, inspired by the Vector of
Locally Aggregated Descriptors (VLAD) representation [24] that
has shown excellent performance in image retrieval and place
recognition. The layer is readily pluggable into any CNN archi-
tecture and amenable to training via backpropagation. The result-
ing aggregated representation is then compressed using Principal
Component Analysis (PCA) to obtain the final compact descriptor
of the image.

Second, to train the architecture for place recognition, we
gather a large dataset of multiple panoramic images depicting the
same place from different viewpoints over time from the Google
Street View Time Machine. Such data is available for vast areas of
the world, but provides only weak form of supervision: we know
the two panoramas are captured at approximately similar positions
based on their (noisy) GPS but we don’t know which parts of the
panoramas depict the same parts of the scene.

Third, we create a new loss function, which enables end-to-
end learning of the architecture’s parameters, tailored for the place
recognition task from the weakly labelled Time Machine imagery.
The loss function is also more widely applicable to other ranking
tasks where large amounts of weakly labelled data are available.

Fourth, we develop an efficient learning procedure which can
be applied on very large-scale weakly labelled tasks. It requires
only a fraction of the computational time of a naive implemen-
tation thanks to improved data efficiency through hard negative
mining, combined with an effective use of caching.

The resulting representation is robust to changes in viewpoint
and lighting conditions, while simultaneously learns to focus on
the relevant parts of the image such as the building fagades and
the skyline, while ignoring confusing elements such as cars and
people that may occur at many different places. We show that
the proposed architecture and training procedure significantly out-
perform non-learnt image representations and off-the-shelf CNN
descriptors on challenging place recognition and image retrieval
benchmarks.

1.1 Related work

While there have been many improvements in designing better
image retrieval [22], [23], [24], [25], [48], [49], [50], [51], [52],
[531, [54], [55], [56], [57], [58], [59], [60], [61], [62] and place
recognition [2], [3], [4], [5], [6], [71, 8], [9], [10], [11], [12],
[13], [14], [15], [16] systems, not many works have performed
learning for these tasks. All relevant learning-based approaches
fall into one or both of the following two categories: (i) learning
for an auxiliary task (e.g. some form of distinctiveness of local
features [2], [9], [12], [63], [64], [65], [66]), and (ii) learning on

top of shallow hand-engineered descriptors that cannot be fine-
tuned for the target task [2], [6], [7], [48], [67]. Both of these
are in spirit opposite to the core idea behind deep learning that
has provided a major boost in performance in various recogni-
tion tasks: end-to-end learning. We will indeed show in section
6.2 that training representations directly for the end-task, place
recognition, is crucial for obtaining good performance.

Numerous works concentrate on learning better local descrip-
tors or metrics to compare them [56], [59], [68], [69], [70],
[711, [72], [73], [74], [75], but even though some of them show
results on image retrieval, the descriptors are learnt on the task
of matching local image patches, and not directly with image
retrieval in mind. Some of them also make use of hand-engineered
features to bootstrap the learning, i.e. to provide noisy training
data [56], [59], [69], [70], [74].

Several works have investigated using CNN-based features for
image retrieval. These include treating activations from certain
layers directly as descriptors by concatenating them [43], [76],
or by pooling [40], [41], [42], [45], [46], [47]. However, none
of these works actually train the CNNs for the task at hand, but
use CNNs as black-box descriptor extractors. One exception is
the work of Babenko et al. [76] in which the network is fine-
tuned on an auxiliary task of classifying 700 landmarks. However,
again the network is not trained directly on the target retrieval
task. Very recent works [77], [78], published after the first version
of this paper [79], train CNNs end-to-end for image retrieval by
making use of image correspondences obtained from structure-
from-motion models, i.e. they rely on pre-existing image retrieval
pipelines based on precise matching of RootSIFT descriptors,
spatial verification and bundle adjustment.

Weyand et al. [80] proposed a CNN-based method for geo-
localization by partitioning the Earth into cells and treating place
recognition as a classification task. While providing impressive
rough city/country level estimates of where a photo is taken, their
method is not capable of providing several-meter accuracy place
recognition that we consider here, as their errors are measured in
tens and hundreds of kilometres. Finally, [81] and [82] performed
end-to-end learning for different but related tasks of ground-to-
aerial matching [82] and camera pose estimation [81].

2 METHOD OVERVIEW

Building on the success of current place recognition systems (e.g.
[11, [2], [3], [4], [5], [8], [9], [10], [11]), we cast place recognition
as image retrieval. The query image with unknown location is
used to visually search a large geotagged image database, and
the locations of top ranked images are used as suggestions for
the location of the query. This is generally done by designing
a function f which acts as the “image representation extractor”,
such that given an image I; it produces a fixed size vector f(I;).
The function is used to extract the representations for the entire
database {I i}, which can be done offline, and to extract the query
image representation f(g), done online. The visual search is per-
formed by finding the nearest database image to the query, either
exactly or through fast approximate nearest neighbour search, by
sorting images based on the Euclidean distance d(g, I;) between
f(q) and f(L,).

While previous works have mainly used hand-engineered
image representations (e.g. f(I) corresponds to extracting SIFT
descriptors [20], followed by pooling into a bag-of-words vec-
tor [21] or a VLAD vector [24]), here we propose to learn
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the representation f(I) in an end-to-end manner, directly opti-
mized for the task of place recognition. The representation is
parametrized with a set of parameters 6 and we emphasize this
fact by referring to it as fy([). It follows that the Euclidean
distance dg(I;, I;) = || fo(I;) — fo(;)]| also depends on the same
parameters. An alternative setup would be to learn the distance
function itself, but here we choose to fix the distance function to
be Euclidean distance, and to pose our problem as the search for
the explicit feature map fy which works well under the Euclidean
distance.

In section 3 we describe the proposed representation fy based
on a new deep convolutional neural network architecture inspired
by the compact aggregated image descriptors for instance retrieval.
In section 4 we describe a method to learn the parameters 6 of the
network in an end-to-end manner using weakly supervised training
data from the Google Street View Time Machine.

3 DEEP ARCHITECTURE FOR PLACE RECOGNITION

This section describes the proposed CNN architecture fp, guided
by the best practices from the image retrieval community. Most
image retrieval pipelines are based on (i) extracting local de-
scriptors, which are then (ii) pooled in an orderless manner. The
motivation behind this choice is that the procedure provides sig-
nificant robustness to translation and partial occlusion. Robustness
to lighting and viewpoint changes is provided by the descriptors
themselves.

In order to learn the representation end-to-end, we design a
CNN architecture that mimics this standard retrieval pipeline in
an unified and principled manner with differentiable modules, as
shown in figure 2. For step (i), we crop the CNN at the last
convolutional layer and view it as a dense descriptor extractor. This
has been observed to work well for instance retrieval [40], [41],
[44] and texture recognition [83]. Namely, the output of the last
convolutional layer is a H x W x D map which can be considered
as a set of D-dimensional descriptors extracted at H x W spatial
locations. For step (ii) we design a new pooling layer inspired
by the Vector of Locally Aggregated Descriptors (VLAD) [24]
that pools extracted descriptors into a fixed image representation
and its parameters are learnable via back-propagation. We call this
new pooling layer “NetVLAD” layer and describe it in the next
section.

3.1 NetVLAD: A Generalized VLAD layer (fy 1. 4p)

Vector of Locally Aggregated Descriptors (VLAD) [24] is a popu-
lar descriptor pooling method for both instance level retrieval [24]
and image classification [42]. It captures information about the
statistics of local descriptors aggregated over the image. Whereas
bag-of-visual-words [21], [84] aggregation keeps counts of visual
words, VLAD stores the sum of residuals (difference vector
between the descriptor and its corresponding cluster centre) for
each visual word.

Formally, given N D-dimensional local image descriptors
{x;} as input, and K cluster centres (“visual words”) {c} as
VLAD parameters, the output VLAD image representation V'
is D x K-dimensional. For convenience we will write V' as a
D x K matrix, but this matrix is reshaped into a vector and,
after normalization, used as the image representation. The (7j, k)
element of V' is computed as follows:

V(j k) = Zak(xi) (z:(§) — en(4)) (1)

where x;(j) and c¢i(j) are the j-th dimensions of the i-th
descriptor and k-th cluster centre, respectively. ax(x;) denotes
the membership of the descriptor x; to k-th visual word, i.e. it
is 1 if cluster c; is the closest cluster to descriptor x; and 0
otherwise. Intuitively, each D-dimensional column & of V' records
the sum of residuals (x; — cj) of descriptors which are assigned
to cluster ci. The matrix V' is then L2-normalized column-wise
(intra-normalization [23]), reshaped into a vector, and finally L2-
normalized in its entirety [24].

In order to profit from years of wisdom produced in image
retrieval, we propose to mimic VLAD in a CNN framework and
design a trainable generalized VLAD layer, NetVLAD. The result
is a powerful image representation trainable end-to-end on the
target task (in our case place recognition). To construct a layer
amenable to training via backpropagation, it is required that the
layer’s operation is differentiable with respect to all its parameters
and the input. Hence, the key challenge is to make the VLAD
pooling differentiable, which we describe next.

The source of discontinuities in VLAD is the hard assignment
ak(x;) of descriptors X; to clusters centres c. To make this
operation differentiable, we replace it with soft assignment of
descriptors to multiple clusters

e—allxi—cxll
) = S e @
which assigns the weight of descriptor x; to cluster c;, according
to their proximity, but relative to proximities to other cluster
centres. ay(x;) ranges between 0 and 1, with the highest weight
assigned to the closest cluster centre. « is a parameter (positive
constant) that controls the decay of the response with the magni-
tude of the distance. Note that for &« — +o0 this setup replicates
the original VLAD exactly as Gy (x;) for the closest cluster would
be 1 and 0 otherwise.
By expanding the squares in (2), it is easy to see that the term
e~ %" cancels between the numerator and the denominator
resulting in a soft-assignment of the following form

€W£Xi+bk
ag (X)) = ————+— 3
k( 1) zk/ engxa‘,‘i‘bk/ ’ 3)
2
where vector wj, = 2acy, and scalar by, = —af/ck||”. The final

form of the NetVLAD layer is obtained by plugging the soft-
assignment (3) into the VLAD descriptor (1) resulting in

N eweri +bg

V(k) =Y

T .
i) D

(©:(j) —ex(@), @

where {wy}, {br} and {ci} are sets of trainable parameters for
each cluster k. Similarly to the original VLAD descriptor, the
NetVLAD layer aggregates the first order statistics of residuals
(x; — ci) in different parts of the descriptor space weighted by
the soft-assignment Gy (x;) of descriptor x; to cluster k. Note
however, that the NetVLAD layer has three independent sets of
parameters {wy}, {bx} and {cy}, compared to just {cg} of the
original VLAD. This enables greater flexibility than the original
VLAD, as explained in figure 3. Decoupling {wy, by} from {cy}
has been proposed in [23] as a means to adapt the VLAD to a new
dataset. All parameters of NetVLAD are learnt for the specific
task in an end-to-end manner.

As illustrated in figure 2, the NetVLAD layer can be visualized
as a meta-layer that is further decomposed into basic CNN layers
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Image Convolutional Neural Network

NetVLAD layer

b . '(KxD)x1
' _______soft-assignment_______ | VLAD
1 |
| on ) s sormax | o on Foee
| :: 1x1xDxK I'| normalization ||
e e _—— — ——— 4
o ) a i |
N X X \ intra- !
— VLAD core (c) |- o I
| WxHxD map interpreted as normalization |
|

I NxD local descriptors x

Fig. 2. CNN architecture with the NetVLAD layer. The layer can be implemented using standard CNN layers (convolutions, softmax, L2-
normalization) and one easy-to-implement aggregation layer to perform aggregation in equation (4) (“VLAD core”), joined up in a directed acyclic

graph. Parameters are shown in brackets.

Fig. 3. Benefits of supervised VLAD. Red and green circles are local
descriptors from two different images, assigned to the same cluster
(Voronoi cell). Under the VLAD encoding, their contribution to the simi-
larity score between the two images is the scalar product (as final VLAD
vectors are L2-normalized) between the corresponding residuals, where
a residual vector is computed as the difference between the descriptor
and the cluster’s anchor point. The anchor point c; can be interpreted
as the origin of a new coordinate system local to the the specific cluster
k. In standard VLAD, the anchor is chosen as the cluster centre (x) in
order to evenly distribute the residuals across the database. However, in
a supervised setting where the two descriptors are known to belong to
images which should not match, it is possible to learn a better anchor (%)
which causes the scalar product between the new residuals to be small.

connected up in a directed acyclic graph. First, note that the first
term in equation (4) is a soft-max function oy (z) = %.
Therefore, the soft-assignment of the input array of descriptors x;
into K clusters can be seen as a two step process: (i) a convolution
with a set of K filters {wy,} that have spatial support 1 x 1 and
biases {by }, producing the output sy (x;) = W1 x; + by; (ii) the
convolution output is then passed through the soft-max function
oy, to obtain the final soft-assignment a(x;) that weights the
different terms in the aggregation layer that implements equation
(4). The output after normalization is a (K x D) x 1 descriptor.

Relations to other methods. Other works have proposed to
pool CNN activations using VLAD or Fisher Vectors (FV) [42],
[83], but do not learn the VLAD/FV parameters nor the input
descriptors. The most related method to ours is the one of Sydorov
et al. [85], which proposes to learn FV parameters jointly with an
SVM for the end classification objective. However, in their work
it is not possible to learn the input descriptors as they are hand-
engineered (SIFT), while our VLAD layer is easily pluggable
into any CNN architecture as it is amenable to backpropagation.
“Fisher Networks” [86] stack Fisher Vector layers on top of each
other, but the system is not trained end-to-end, only hand-crafted
features are used, and the layers are trained greedily in a bottom-
up fashion. Finally, our architecture is also related to bilinear

networks [87], recently developed for a different task of fine-
grained category-level recognition.

Max pooling (f,,q.)- We also experiment with Max-pooling of
the D-dimensional features across the H x W spatial locations,
thus producing a D-dimensional output vector, which is then L2-
normalized. Both of these operations can be implemented using
standard layers in public CNN packages. This setup mirrors the
method of [40], [44], but a crucial difference is that we will
learn the representation (section 4) while [40], [43], [44] only use
pretrained networks. Results will show (section 6.2) that simply
using CNNs off-the-shelf [43] results in poor performance, and
that training for the end-task is crucial. Additionally, VLAD will
prove itself to be superior to the Max-pooling baseline.

4 LEARNING FROM TIME MACHINE DATA

In the previous section we have designed a new CNN architecture
as an image representation for place recognition. Here we describe
how to learn its parameters in an end-to-end manner for the place
recognition task. The two main challenges are: (i) how to gather
enough annotated training data and (ii) what is the appropriate
loss for the place recognition task. To address theses issues, we
will first show that it is possible to obtain large amounts of weakly
labelled imagery depicting the same places over time from the
Google Street View Time Machine. Second, we will design a
new weakly supervised triplet ranking loss that can deal with the
incomplete and noisy position annotations of the Street View Time
Machine imagery. The details are below.

Weak supervision from the Time Machine. We propose to
exploit a new source of data — Google Street View Time Machine
— which provides multiple street-level panoramic images taken
at different times at close-by spatial locations on the map. As
will be seen in section 6.2, this novel data source is precious for
learning an image representation for place recognition. As shown
in figure 4, the same locations are depicted at different times and
seasons, providing the learning algorithm with crucial information
it can use to discover which features are useful or distracting, and
what changes should the image representation be invariant to, in
order to achieve good place recognition performance.

The downside of the Time Machine imagery is that it pro-
vides only incomplete and noisy supervision. Each Time Machine
panorama comes with a GPS tag giving only its approximate
location on the map (GPS accuracy of Google Street View has
been estimated to 7-15 meters by [8]), which can be used to
identify close-by panoramas but does not provide correspondences
between parts of the depicted scenes. In detail, as the test queries
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Fig. 4. Google Street View Time Machine examples. Each column shows perspective images generated from panoramas from nearby locations,
taken at different times. The goal of this work is to learn from this imagery an image representation that: has a degree of invariance to changes in
viewpoint and illumination (a-f); has tolerance to partial occlusions (c-f); suppresses confusing visual information such as clouds (a,c), vehicles (c-f)
and people (c-f); and chooses to either ignore vegetation or learn a season-invariant vegetation representation (a-f).

are perspective images from camera phones, each panorama is
represented by a set of perspective images sampled evenly in
different orientations and two elevation angles [2], [3], [6], [8].
Each perspective image is labelled with the GPS position of the
source panorama. As a result, two geographically close perspective
images do not necessarily depict the same objects since they could
be facing different directions or occlusions could take place (e.g.
the two images are around a corner from each other), etc. Thus,
for a given training query g, the GPS information can only be
used as a source of (i) potential positives {p?}, i.e. images that
are geographically close to the query, and (ii) definite negatives
{n‘j}, i.e. images that are geographically far from the query.!

Weakly supervised triplet ranking loss. We wish to learn a rep-
resentation fy that will optimize place recognition performance.
That is, for a given test query image ¢q, the goal is to rank a
database image I;, from a close-by location higher than all other
far away images I; in the database. In other words, we wish the
Euclidean distance dy(q, I) between the query ¢ and a close-by
image I;, to be smaller than the distance to far away images in the
database I;, i.e. dyg(q, I;x) < dg(q,I;), for all images I; further
than a certain distance from the query on the map. Next we show
how this requirement can be translated into a ranking loss between
training triplets {q, I;., I; }.

From the Google Street View Time Machine data, we obtain a
training dataset of tuples (¢, {p{ }, {n}}), where for each training
query image ¢ we have a set of potential positives {p? } and the set
of definite negatives {n?} The set of potential positives contains
at least one positive image that should match the query, but we
do not know which one. To address this ambiguity, we propose to
identify the best matching potential positive image py,

Phy = argmin do(q,py]) 5
p;

1. Note that even faraway images can depict the same object. For example,
the Eiffel Tower can be visible from two faraway locations in Paris. But, for the
purpose of localization we consider in this paper such image pairs as negative
examples because they are not taken from the same place.

for each training tuple (g, {p{},{n]}). The goal then becomes

to learn an image representation fy so that distance dy (q,pg*)

between the training query g and the best matching potential

positive p, is smaller than the distance dp(q,n]) between the
q

query ¢ and all negative images n;:

dg(q,pl.) < do(g,nl), Vj. (6)

Based on this intuition we define a weakly supervised ranking loss
Ly for a training tuple (g, {p{}, {nj}) as

Ly=>_1 <m}n dj(q,p{) +m — dj(q, n?)) .
J

where [ is the hinge loss {(z) = max(z,0), and m is a constant
parameter giving the margin. Note that equation (7) is a sum of
individual losses for negative images n‘;. For each negative, the
loss [ is zero if the distance between the query and the negative
is greater by a margin than the distance between the query and
the best matching positive. Conversely, if the margin between the
distance to the negative image and to the best matching positive
is violated, the loss is proportional to the amount of violation.
Note that the above loss is related to the commonly used triplet
loss [88], [89], [90], [91], but adapted to our weakly supervised
scenario using a formulation (given by equation (5)) similar to
multiple instance learning [92], [93], [94].

5 EFFICIENT LARGE-SCALE TRAINING

In this section we discuss how to practically implement the weakly
supervised learning method outlined in the previous section.
Namely, we show that the naive implementation is prohibitively
slow when training with large amounts of data, and present a
training procedure which uses hard negative mining and caching to
alleviate inefficiencies. We further improve upon this method by
query clustering in order to share computations across training
tuples. While down-scaling images can be used to make the
training faster as the forward and backward passes require fewer
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computations, two points should be noted: (i) our speedups are
complementary to any improvements made to the speed of forward
and backward passes, (ii) down-sampling images is not recom-
mended as it causes a large decrease in recognition performance
[45], [46].

5.1 Efficient hard negative mining with caching

A naive implementation of weakly supervised training from sec-
tion 4 with Stochastic Gradient Descent (SGD) involves construct-
ing training tuples (¢, {p{ }, {n]}) by randomly sampling training
queries and adding their respective potential positives and definite
negatives to the tuple. In order to compute the value of the loss
and the derivative of the loss with respect to network parameters
0, needed to perform learning via back propagation, it is necessary
to first obtain the image representations of all the images in the
tuple, which involves executing the forward pass of the network
for each image.

Inefficiencies of the naive approach. It is clearly intractable to
include all the negatives in the tuple, as then the tuple would
contain all the images in the training set. SGD would require
recomputation of image representations for the entire set, which
would be extremely inefficient. A commonly used straight forward
solution is to simply randomly sample a set of negatives for
the query each epoch?. However, a problem occurs in the case
when there is a very large number of negatives and the image
representation is “relatively good”, but still far from its potential,
so that most of the negatives are “easy”. In this case, most
of the negatives do not violate the margin and yield zero loss
(equation (7)), causing zero gradients of the loss with respect to
the parameters 6, in turn causing no updates to be made to . This
leads to a vast waste of computational resources as most of the
training time is spent on computing the image representations to
evaluate the loss, only to find that the margin has not been violated
and that the tuple does not provide useful information for training.

This is a real problem — for example, a simple baseline image
representation, which performs Max pooling on top of a network
pretrained on ImageNet, when searching in a database of 80k
images, can retrieve a correct positive within the top 25 retrievals
for more than 75% of the queries. While this performance is far
from good (as will be seen in section 6.2), it means that for 75%
of the queries, a randomly sampled negative is extremely unlikely
(less than 25 out of 80k, i.e. 0.03%) to be ranked higher than
the best positive, and therefore at least 75% of the computation is
wasted because it causes no updates to the parameters.

Hard negative mining. We use hard negative mining [95], [96],
[97] to solve this problem, namely, the negative set {n;’} is
compiled out of 10 hardest negatives for the query g, where the
“hardness” of a negative is naturally measured as its contribution
to the loss (7), i.e. how much it violates the margin. A natural
question arises — how to choose these hard negatives? They can
be precomputed once before training begins and the same hard
negatives can be used throughout the training. We found that this
simple strategy does not perform well as the network quickly
learns how to solve the originally hard cases, without departing
much from the initial network. Mixing the hard negatives with
random negatives also falls short as, again, the original hard neg-
atives are quickly solved and the method degenerates to the naive

2. We define one epoch as one pass through the training gqueries, not
necessarily visiting all the training database images.

approach of random negative sampling. Therefore, we propose to
keep track and update the current hardest negatives for each query.
The negative set {n?} is compiled out of the 10 hardest negatives
from a pool of (i) 1000 randomly sampled negatives and (ii) 10
hardest negatives from the previous epoch for query q.

The large number of randomly sampled negatives is required
in order to bring sufficient variability into the negative pool. How-
ever, this yields the second inefficiency — at every step of SGD,
to find the 10 hardest negatives, one still needs to compute 1010
image representations for the negative pool from which the hardest
negatives are selected. Even for efficient GPU implementations,
performing thousands of forward passes on full-resolution images
at each SGD step creates a large computational bottleneck.

Caching. To address this issue, we introduce caching — image
representations are computed for the entire training query and
database sets, and are cached for a certain amount of time. The
hard negative mining then uses these cached but slightly stale
representations to obtain the 10 hardest examples and the forward
and backward passes are only performed on these 10, compared
to the original 1010, thus providing a huge computational saving.
Furthermore, we also use the cached representations to select the
best potential positive (equation (5)) as the number of potential
positives for a query can also be relatively large (e.g. 50).

However, it is important to recompute the cached representa-
tions every once in a while. We have observed slow convergence
if the cache is fixed for too long as the network quickly learns
to be better than the fixed cache and then wastes time overfitting
it. We found that recomputing the cached representations every
500 to 1000 training queries yields a good trade-off between
epoch duration, convergence speed and quality of the solution. As
described in section 6.1, we half the learning rate every 5 epochs
— this causes the cached representations to change less rapidly, so
we half the recomputation frequency every 5 epochs as well.

Computational complexity. Next, we compare the computational
complexity of our methods. Let N, Ny, IV, ., Ny, j, and N, be the
number of training database images, queries, random negatives,
hard negatives, and average number of potential positives per
query, respectively, and N, the number of queries between the
cache recomputation. Typical values of these quantities for our
training datasets (table 1) and parameter choices are: N = 80k,
Ny =8k, Ny = 1000, N, j, = 10, N, = 50 and N, = 500.

The main computational cost for the training is the execution
of the forward and backward passes through the network, the
former computing the image representation and the latter being
used for network parameter updates. The speed of the forward
and the backward pass is fairly comparable so we express the
computational complexity of a learning method in terms of the
combined number of times that the forward and the backward
passes have to be executed in an epoch.

The number of backward passes, Npackward, 1S COnstant across
all methods. For each query, it is necessary to perform a backward
pass on the query, best potential positive, and violating hardest
negatives (the number of which is upper bounded by IV,, 1), i.e. the
backward pass is computed at most Npackward times in an epoch,
where Npackwara €quals:

Nbackward = Nq X (1 +1+ Nn,h) (8)

For typical values, Nyackwara = 96k.
Without caching (hard+nocache), for each query, the forward
pass has to be executed for the query, all its potential positives,
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random negatives and current hard negatives, i.e. a total number
of times is:

Nhard+nocache — Nq % (1 + Np + Nn,r + Nn,h) (9)

forward

With caching (hard+cache), where the image representations
are recomputed every NN, queries, i.e. N, /N, times in an epoch,
the number of times the forward pass needs to be executed is:

(10)

forward

Nhard+cache _ Nq/Nr x N + Nq X (1 +1+ th)

Clearly, the relative speed of hard+cache versus hard+nocache
depends on the characteristics of the training data and the param-
eter settings, but for our typical values listed above, hard+nocache

requires N&ﬁ:j{’c“he 4+ Npackward = 8.6 million computations,
while hard-+cache this number drops to Nfardteache N o =

1.5 million, giving a 5.7x speedup. While hard+cache takes 19
hours of training per epoch on a single GPU? (base network: VGG-
16), hard+nocache is impractical for our purposes as it would
require almost 5 days for a single epoch.

5.2 Scaling up further: query clustering

The techniques presented in the previous section are sufficient for
our purposes when training sets include an order of 100k images;
all the results (section 6.2) are obtained by using efficient hard
negative mining with caching (hard+cache). However, scaling up
to even large datasets is desired, as well as the ability to train
networks faster even for the training set sizes used in this work.

The main bottleneck of hard+cache is the periodic recom-
putation of the cache for all images in the training set. With
growing datasets, the recomputation becomes less feasible, e.g.
revisiting the analysis of the computational complexity in the
previous section, if the database grows 10 times (i.e. N = 800k),
the caching would actually be slower than not caching. In the
following, we present a method, hard+cache+query, which uses
caching but its computational complexity does not depend on
the database size, providing speedups over both hard+cache and
hard+nocache.

First, we investigate what information is required by the
weakly supervised training for a block of N, training queries:
(i) the N, query images, (ii) V), potential positives for each of the
N, queries. (iii) Ny, j, current hardest negatives for each of the
N, queries, and (iv) N, , random negatives for each of the N,
queries. While (i) and (iii) are unavoidable, (ii) and (iv) can be
improved upon by sharing as much information as possible across
the IV, queries.

The random negative pool can be shared across the IN,. queries,
i.e. instead of having a different set of IV, , negatives for each
query, we keep the random pool of size N, , fixed for N,
consecutive queries. This strategy brings down the computational
complexity to Ny /N, X Ny, -+ Ny X (14+Np+ N, 1) + Noackward-
The potential positives term N, X IV, becomes the new bottleneck,
limiting the speedup versus hard+cache to only 2.5x. At first sight,
it does not seem possible to decrease this term as it is essential

3. This is the time for the first epoch — the later epochs tend to be faster as
(i) fewer negatives violate the margin so fewer backward passes and parameter
updates are required (speedup of second versus first epoch is 1.3x), and (ii)
the frequency of cache recomputation decreases, as described in the previous
section.

that each training tuple contains all potential positives, in order to
ensure the validity of weakly supervised training.

The key idea that enables a further speedup is to group
the queries such that their potential positives overlap, therefore
decreasing the forward pass count to:

Nf};arr\;i;rzmhﬁquery = Ng/Ny X Ny + Ng X (L+ Npe + Nup),

(11
where N, . is the effective number of potential positives whose
image representations have to be computed per query, i.e. the total
number of potential positives for all queries in the group divided
by the size of the query group. The grouping is accomplished by
clustering the training queries according to their GPS location, and
processing queries in the order of their cluster membership. Note
that to emulate SGD where queries are traversed in a randomized
order, each epoch the queries are reclustered starting with a
different random seed, and the cluster order as well as within
cluster query order are randomized as well.

Computational complexity. The total number of forward and
backward passes that have to be comEuted in an epoch for our
hard+cache+query method is g‘:ﬂ:ﬁf‘: HAEY L Npackward. In our
running example typical training scenario, N, . is measured to
be 5, and the above quantity amounts to a mere 240k, giving
a theoretical speedup versus hard+cache of 6.2x, and 36x over
hard+nocache. In practice, hard+cache+query only takes 3.5 hours
for an epoch, compared to 19 hours of hard+cache, providing a real
5.4x speedup. Note that the query location-based clustering takes
next to no time as it only requires clustering of a small number of
2-D data points (in our case N, = 8k), but the method would have
no problems scaling to orders of magnitude more queries, and if
needed one could also resort to approximate k-means clustering
[22].

Discussion. The presented hard+cache+query method enables
efficient large-scale training, and is substantially faster than both
hard+cache and hard+nocache, irrespective of the dataset statistics
such as the size of the the training database or the number of
training queries. In terms of end place recognition performance,
we have not observed any statistically significant differences
compared to hard+cache. Hard+cache+query is the only method
capable of scaling up to ever increasing training datasets, and we
believe that training with even more data will produce better mod-
els, as this is a consistently observed trend in deep learning-based
methods. One potential downside of the method, although we
have not observed its effects, is that, unlike hard+cache/nocache,
consecutive training tuples are correlated due to the shared random
negatives and overlapping potential positives, which is known to
be detrimental when training with SGD. It is likely that applying
simple and standard schemes such as experience replay [98],
[99] or parallel training with asynchronous updates [100] would
be beneficial as they are able to effectively counter correlated
sequences of training data.

6 EXPERIMENTS

In this section we describe the used datasets and evaluation
methodology (section 6.1), and give quantitative and qualitative
(section 6.2) results to validate our approach. Finally, we also
test the method on the standard image retrieval benchmarks
(section 6.3).
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TABLE 1
Datasets. Sizes of datasets used in experiments. All
train/val(idation)/test datasets are mutually disjoint geographically.

Dataset [ Database  Query set
Pitts250k-train 91,464 7,824
Pitts250k-val 78,648 7,608
Pitts250k-test 83,952 8,280
Pitts30k-train 10,000 7,416
Pitts30k-val 10,000 7,608
Pitts30k-test 10,000 6,816
Tokyo Time Machine-train 49,104 7,277
Tokyo Time Machine-val 49,056 7,186
Tokyo 24/7 (=test) 75,984 315

6.1 Datasets and evaluation methodology

We report results on two publicly available place recognition
datasets.

Pittsburgh (Pitts250k) [8] contains 250k database images down-
loaded from Google Street View and 24k test queries generated
from Street View but taken at different times, years apart. We di-
vide this dataset into three roughly equal parts for training, valida-
tion and testing, each containing around 83k database images and
8k queries, where the division was done geographically to ensure
the sets contain independent images. To facilitate faster training,
for some experiments, a smaller subset (Pitts30k) is used, contain-
ing 10k database images in each of the train/val(idation)/test sets,
which are also geographically disjoint.

Tokyo 24/7 [10] contains 76k database images and 315 query
images taken using mobile phone cameras. This is an extremely
challenging dataset where the queries were taken at daytime,
sunset and night, while the database images were only taken at
daytime as they originate from Google Street View as described
above. To form the train/val sets we collected additional Google
Street View panoramas of Tokyo using the Time Machine feature,
and name this set TokyoTM; Tokyo 24/7 (=test) and TokyoTM
train/val are all geographically disjoint. The newly collected
TokyoTM database (provided on request) was generated from
Time Machine panoramas, downloaded using [101], such that each
panorama is represented by a set of 12 perspective images sampled
evenly in different orientations [2], [3], [6], [8], [10]. Figure 4
shows samples from the dataset. The query set is formed as a
random subsample of the database, and for each query, the positive
and negative sets are sampled from the database so that they have
a time stamp at least one month away from the time stamp of the
query. This is done for both training and validation sets.

Table 1 shows the sizes of the datasets. All images are 640 X
480 apart from the queries of Tokyo 24/7, which are, following
[10], resized such that their largest dimension is 640.

Evaluation metric. We follow the standard place recognition
evaluation procedure [5], [6], [8], [9], [10]. The query image is
deemed correctly localized if at least one of the top N retrieved
database images is within d = 25 meters from the ground truth
position of the query. The percentage of correctly recognized
queries (Recall) is then plotted for different values of IN. For
Tokyo 24/7 we follow [10] and perform spatial non-maximal
suppression on ranked database images before evaluation.

Implementation details. We use two base architectures which are
extended with Max pooling (fy,q2) and our NetVLAD (fyrap)
layers: AlexNet [31] and VGG-16 [33]; both are cropped at the

last convolutional layer (convS), before ReLU. For Max pooling
we use raw convS descriptors (with no normalization) while for
VLAD and NetVLAD we add an additional descriptor-wise L2-
normalization layer after conv5. We found that not normalizing for
Max pooling and normalizing for VLAD/NetVLAD generalizes
across architectures, i.e. these are the best configurations for both
AlexNet and VGG-16; more details are given in the appendix.

The number of clusters used in all VLAD / NetVLAD exper-
iments is K = 64, resulting in 16k and 32k dimensional image
representations for the two base architectures, AlexNet and VGG-
16, respectively. The NetVLAD layer parameters are initialized
to reproduce the conventional VLAD vectors by clustering conv5
descriptors extracted from a subsample of the train set for each
dataset. The av parameter used for initialization is chosen to be
large, such that the soft assignment weights a (x;) are very sparse
in order to mimic the conventional VLAD well. Specifically, « is
computed so that the the ratio of the largest and the second largest
soft assignment weight @, (x;) is on average equal to 100.

We use the margin m = 0.1, learning rate 0.001 or 0.0001
depending on the experiment, which is halved every 5 epochs,
momentum 0.9, weight decay 0.001, batch size of 4 tuples (a tuple
contains many images, c.f. equation (7)), and train for at most 30
epochs but convergence usually occurs much faster. The network
which yields the best recall@5 on the validation set is used for
testing.

All networks were trained using hard negative mining and
caching (hard+cache), with the same parameter settings as in
section 5. Query clustering (hard+cache+query) was not used in
these experiments as we did not observe significant differences
in the end performance of hard+cache+query versus hard+cache,
and in order not to waste resources since we already performed
the full set of experiments with hard+cache before establishing
hard+cache+query.

As the VGG-16 network is much deeper and more GPU-
memory hungry than AlexNet, it was not possible to train it in
its entirety. Instead, in the light of experiments in table 2, the
VGG-16 network is only trained down to conv5 layer.

All training and evaluation code, as well as our trained
networks, are online [102], implemented in the MatConvNet
framework [103]. Additional tuning of parameters and jittering
could further improve performance as we have still observed some
amount of overfitting.

6.2 Results and discussion

Baselines and state-of-the-art. To assess benefits of our ap-
proach we compare our representations trained for place recog-
nition against “off-the-shelf”” networks pretrained on other tasks.
Namely, given a base network cropped at conv5, the baselines
either use Max pooling (fqz), Or aggregate the descriptors into
VLAD (fyrap), but perform no further task-specific training.
The three base networks are: AlexNet [31], VGG-16 [33], both are
pretrained for ImageNet classification [104], and Places205 [35],
reusing the same architecture as AlexNet but pretrained for scene
classification [35]. Pretrained networks have been recently used as
off-the-shelf dense descriptor extractors for instance retrieval [40],
[41], [42], [43], [44] and the untrained f,, 4. network corresponds
to the method of [40], [44].

Furthermore we compare our CNN representations trained for
place recognition against the state-of-the-art local feature based
compact descriptor, which consists of VLAD pooling [24] with
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Fig. 5. Comparison of our methods versus off-the-shelf networks and state-of-the-art. The base CNN architecture is denoted in brackets: (A)lexNet and
(V)GG-16. Trained representations (red and magenta for AlexNet and VGG-16) outperform by a large margin off-the-shelf ones (blue, cyan,

for AlexNet, Places205,

), fvap (-0-) works better than fr.qz (-x-), and our fy 1 4 p+whitening (-x-) representation based on VGG-16

sets the state-of-the-art on all datasets. [10] only evaluated on Tokyo 24/7 as the method relies on depth data not available in other datasets.

intra-normalization [23] on top of densely extracted RootSIFTs
[20], [48]. The descriptor is optionally reduced to 4096 dimensions
using PCA (learnt on the training set) combined with whitening
and L2-normalization [49]; this setup together with view synthesis
yields the state-of-the-art results on the challenging Tokyo 24/7
dataset (c.f. [10]).

In the following we discuss figure 5, which compares place
recognition performance of our method to the baselines outlined
above on the Pittsburgh and Tokyo 24/7 benchmarks.

Benefits of end-to-end training for place recognition. Repre-
sentations trained on the end-task of place recognition consistently
outperform by a large margin off-the-shelf CNNs on both bench-
marks. For example, on the Pitts250k-test our trained AlexNet
with (trained) NetVLAD aggregation layer achieves recall@1 of
81.0% compared to only 55.0% obtained by off-the-shelf AlexNet
with standard VLAD aggregation, i.e. a relative improvement in
recall of 47%. Similar improvements can be observed on all three
datasets. This confirms two important premises of this work: (i)
our approach can learn rich yet compact image representations
for place recognition, and (ii) the popular idea of using pretrained
networks “off-the-shelf” [40], [41], [42], [43], [44] is sub-optimal
as the networks trained for object or scene classification are not
necessary suitable for the end-task of place recognition. The fail-
ure of the “off-the-shelf networks” is not surprising — apart from
the obvious benefits of training, it is not clear why it should be
meaningful to directly compare conv5 activations using Euclidean
distance as they are trained to be part of the network architecture.
For example, one can insert an arbitrary affine transformation of
the features that can be countered by the following fully connected
layer (fc6). This is not a problem when transferring the pre-trained
representation for object classification [32], [39] or detection [36]
tasks, as such transformation can be countered by the follow-up
adaptation [32] or classification [36], [39] layers that are trained
for the target task. However, this is not the case for retrieval [40],
[41], [42], [43], [44] when Euclidean distance is applied directly
on the output “off-the-shelf” descriptors.

Dimensionality reduction. We follow the standard state-of-the-
art procedure to perform dimensionality reduction of VLAD, as
described earlier, i.e. the reduction into 4096-D is performed using
PCA with whitening followed by L2-normalization [10], [49].

Figure 5 shows that the lower dimensional fi 1 op (-*-) performs
similarly to the full size vector (-o-).

Another option is to add a fully connected (FC) layer on top
of the network, followed by L2-normalization, and train the entire
network end-to-end along with dimensionality reduction. We have
found this approach to work as well as whitening, but to be
sensitive to initialization (random orthogonal projection worked
best) due to a large overfitting potential as the FC contains a huge
number of parameters.

Comparison with state-of-the-art. Figure 5 also shows
that our trained fypap representation with whitening based
on VGG-16 (magenta -#-) convincingly outperforms Root-
SIFT+VLAD+whitening, as well as the method of Torii et al. [10],
and therefore sets the state-of-the-art for compact descriptors on
all benchmarks. Note that these are strong baselines that outper-
form most off-the-shelf CNN descriptors on the place recognition
task.

NetVLAD versus Max pooling. By comparing fypap (-0-)
methods with their corresponding fy,q. (-X-) counterparts it is
clear that NetVLAD pooling is much better than Max pooling for
both off-the-shelf and trained representations. Figure 6 shows that
NetVLAD performance decreases gracefully with dimensionality:
On Tokyo 24/7, 128-D NetVLAD performs similarly to 512-D
Max pooling, resulting in four times more compact representation
for the same performance. Similarly, on Pitts250k-test NetVLAD
achieves a two-fold memory saving compared to Max pool-
ing. Furthermore, NetVLAD+whitening outperforms Max pooling
convincingly when reduced to the same dimensionality.

Max versus Sum. Recent work [41] suggests that Sum pooling
performs better than Max pooling. Indeed, in our experiments
Sum outperforms Max in the off-the-shelf set-up (recall@5 on
Pitts250k-test — Sum: 67.9%, Max: 59.3%), but only for VGG-16,
not AlexNet. Our training also works for Sum getting a significant
improvement over the off-the-shelf set-up (+21% relative), but
after training Max still performs better than Sum (Max: 88.7%,
Sum: 82.3%). We also experimented with adding whitening to
the Max-pooling baseline, but observed a drop in performance;
detailed discussion is available in the appendix.

Is pooling needed? Another alternative image representation is
to use the raw conv activations without any pooling, potentially

25



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XXXX 10

X fmax ours (V)
+ivLAD ours (V)+white

X lmax ours (V)
—o—fy pp OUS (V)+white

95 90

D
80
X
K
6f
X
75

40
64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096
Number of dimensions Number of dimensions

(a) Pitts250k-test (b) Tokyo 24/7

©
S

IS}

Recall@5
&
3

Recall@5

@
S

o

S

Fig. 6. Place recognition accuracy versus dimensionality. Note the log
scale of the x-axis. 128-D NetVLAD performs comparably to the 4x
larger 512-D fmaz On Tokyo 24/7. For the same dimension (512-D)
NetVLAD convincingly outperforms fiqq-

TABLE 2
Partial training. Effects of performing backpropagation only down to a
certain layer of AlexNet, e.g. ‘conv4’ means that weights of layers from
conv4 and above are learnt, while weights of layers below conv4 are
fixed to their pretrained state; r@N signifies recall@N. Results are
shown on the Pitts30k-val dataset.

Lowest trained fmax fvrap

layer r@l r@5 r@10 | r@1 r@5 r@10
none (off-the-shelf) || 33.5 573 684 | 545 69.8 76.1

NetVLAD — — — 80.5 91.8 95.2

conv5 63.8 83.8 89.0 | 84.1 94.6 95.5

conv4 62.1 83.6 89.2 | 85.1 944 96.1

conv3 69.8 86.7 90.3 | 855 94.6 96.5

conv2 69.1 87.6 91.5 | 845 94.6 96.6

convl (full) 68.5 86.2 90.8 | 84.2 94.7 96.1

followed with a fully connected (FC) layer. There are multiple
issues with this approach: (i) it cannot handle variable image sizes,
(ii) it would be infeasibly large, and, most importantly, (iii) it is not
invariant to translation, scale or partial occlusions as it enforces a
fixed spatial layout. Our experiments on Tokyo 24/7 confirm that
pooling is indeed required, as the best trained “no-pool” baseline
achieves a recall@5 of 63.5%, compared to 82.5% of NetVLAD.
Further details are given in the appendix.

Which layers should be trained? In Table 2 we study the benefits
of training different layers for the end-task of place recognition.
The largest improvements are thanks to training the NetVLAD
layer, but training other layers results in further improvements,
with some overfitting occurring below conv2.

Pretraining. We investigated whether pretraining the convolu-
tional layers with Max-pooling can be beneficial for the subse-
quent NetVLAD training. While the pretraining helped NetVLAD
to train faster, the final performance was unaffected; details of the
experiment are available in the appendix.

Importance of Time Machine training. Here we examine
whether the network can be trained without the Time Machine
(TM) data. In detail, we have modified the training query set for
Pitts30k-train to be sampled from the same set as the training
database images, i.e. the tuples of query and database images
used in training were captured at the same time. As shown in
table 3, Recall@1 with f,,,, on Pitts30k-val for the off-the-
shelf AlexNet is 33.5%, and training without TM improves this
to 38.7%. However, training with TM obtains 68.5% showing that

TABLE 3
Time Machine importance. Recall of f,,,4, on Pitts30k-val (AlexNet)
with vs without using Time Machine data for training. Training using
Time Machine is essential for generalization.

Training data ‘ recall@1  recall@10
Pretrained on ImageNet [31] 33.5 68.5
Pretrained on Places205 [35] 24.8 54.4
Trained without Time Machine 38.7 68.1
Trained with Time Machine 68.5 90.8

Time Machine data is crucial for good place recognition accuracy
as without it the network does not generalize well. The network
learns, for example, that recognizing cars is important for place
recognition, as the same parked cars appear in all images of a
place.

Qualitative evaluation. Figure 7 compares the top ranked
images of our method versus the best baseline (Root-
SIFT+VLAD+whitening); additional examples are shown in the
appendix. The performance of our descriptor is impressive — it
can recognize the same place despite large changes in appearance
due to illumination (day/night), viewpoint and partial occlusion by
cars, trees and people. The main failure cases are queries taken at
night which are very dark and featureless, causing problems even
for humans. Top ranked images for all queries in the Tokyo 24/7
dataset are available on our project page [102].

6.3

We use our best performing network (VGG-16, fyrap with
whitening and dimensionality reduction down to 256-D) trained
completely on Pittsburgh, to extract image representations for
standard object and image retrieval benchmarks (Oxford 5k &
105k [22], Paris 6k [58], Holidays [53]). Table 4 compares
NetVLAD to the state-of-the-art compact image representations
(256-D). Our representation achieves the best mAP on Oxford
and Paris by a large margin, e.g. +20% relative improvement on
Oxford 5k (crop). It also sets the state-of-the-art on Holidays, but
here training is detrimental as the dataset is less building-oriented
(e.g. it also contains paysages, underwater photos, boats, cars,
bears, etc), while our training only sees images from urban areas.
We believe training on data more diverse than Pittsburgh streets
can further improve performance. The complete set of NetVLAD
results for different output dimensions is shown in the appendix.

Image retrieval

Discussion of latest work. Recently, after publication of the first
version of this work [79], [77] and [78] achieved even better results
on the image retrieval tasks by using stronger supervision in the
form of automatically cleaned-up image correspondences obtained
with structure-from-motion, i.e. precise matching of RootSIFT
descriptors and spatial verification. Note that the representation
used in [78] is identical to our Max pooling baseline, which
we show is inferior to NetVLAD in our setting. It would be
interesting to see what performance would NetVLAD reach with
strong supervision, but this comparison is beyond the scope of this
paper.

Competitive performance has been also obtained by recent
off-the-shelf methods: Tolias et al. [45] pool at different scales,
while Kalantidis et al. [46] find that picking pool5 features
compared to conv5 brings a boost, and perform image-adaptive
descriptor weighting. These improvements are complementary to
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Query

Ours

Best baseline

Ours Query

Best baseline

Fig. 7. Examples of retrieval results for challenging queries on Tokyo 24/7. Each column corresponds to one test case: the query is shown in the first
row, the top retrieved image using our best method (trained VGG-16 NetVLAD + whitening) in the second, and the top retrieved image using the
best baseline (RootSIFT + VLAD + whitening) in the last row. The green and red borders correspond to correct and incorrect retrievals, respectively.
Note that our learnt descriptor can recognize the same place despite large changes in appearance due to illumination (day/night), viewpoint and
partial occlusion by cars, trees and people.
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our NetVLAD architecture and can be incorporated in our end-
to-end learning framework. Additional performance boosts can be
achieved by incorporating a centrality prior [41], [47]. Mohedano
et al. [47] pool descriptors using bag-of-words and thus their
results are not directly comparable to our compact 256-D image
representation, but it would be interesting to investigate if it is
possible to train bag-of-words pooling in an end-to-end manner
similarly to how we adapted VLAD to NetVLAD. Finally, Kim et
al. [105] add another component to NetVLAD, which produces
per-spatial location weights and performs weighted NetVLAD
aggregation to achieve superior results.

7 CONCLUSIONS

We have designed a new convolutional neural network architecture
that is trained for place recognition in an end-to-end manner
from weakly supervised Street View Time Machine data. Our
trained representation significantly outperforms non-learnt image
representations and off-the-shelf CNN descriptors on challenging
place recognition and image retrieval benchmarks. The two main
components of our architecture — (i) the NetVLAD pooling layer
and (ii) weakly supervised ranking loss — are generic CNN
building blocks applicable beyond the place recognition task.
The NetVLAD layer offers a powerful pooling mechanism with
learnable parameters that can be easily plugged into any other
CNN architecture. The weakly supervised ranking loss opens up
the possibility of end-to-end learning for other ranking tasks where
large amounts of weakly labelled data are available, for example,
images described with natural language [107].
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Supplementary material for:
NetVLAD: CNN architecture for weakly
supervised place recognition

IN this supplementary material, we provide additional discus-
sions and results to complement the main paper.

Which layer to use for base descriptors? Our CNN architecture
is based on aggregating activations produced by a particular CNN
layer using NetVLAD. There are several choices regarding where
exactly to perform the crop — which layer, before or after the
ReLU, and whether to do some descriptor postprocessing, such as
L2-normalization. Several works have already investigated these
questions, including [1], [2], [3], [4], [5], [6], [7]. We have
followed commonly used practice of cropping the networks at the
last convolutional layer, and conducted preliminary experiments
for the decision of using before- or after-ReLU activations, and
whether to L2-normalize them or not. Our initial experiments
with the off-the-shelf Max-pooling network showed that before-
ReLU worked slightly better than after-ReLU, so we kept this
setting throughout all experiments. We also done preliminary
experiments with L2-normalization of the input descriptors, and
observed that L2-normalization helped off-the-shelf NetVLAD
slightly (4+2%), while substantially hurting off-the-shelf Max-
pooling (—7%), so we kept the best setting for each of the
methods, i.e. L2-normalization is done for NetVLAD inputs but
not for Max-pooling.

Max and Sum with whitening. [2] suggest using whitening
with Sum pooling, but this only makes sense for off-the-shelf
networks — the whitening transformation can be incorporated
inside the last conv layer due to the linearity of the transformation,
so training a Sum pooling network is capable of learning the
whitening implicitly. We therefore only test trained Max-pooling
with whitening and observe a significant drop in performance on
the Tokyo 24/7 benchmark (recall@5: from 52.7% to 42.2%).

Is pooling needed? Here we provide additional details to comple-
ment the discussion in the “is pooling needed” paragraph of the
main paper. There are multiple issues with “no-pool” approaches.
First, if no pooling is performed, then the image representation
is not invariant to translation, scale or partial occlusions as it
enforces a fixed spatial layout, and the visual search is akin to
near-duplicate detection. An analogy with the pre-CNN image
retrieval would be to use GIST [8] instead of bag-of-words or
VLAD, which has been shown to be clearly inappropriate due to
the aforementioned reasons [9].

Second, no-pool cannot handle variable image sizes, as, with-
out pooling, the convolutional map varies in size depending on
the input. This is a real problem as Tokyo 24/7 queries, and
all image retrieval benchmarks (Oxford, Paris, Holidays) have

variable image sizes. The problem can be handled by padding to
a predefined fixed size (introducing boundary artifacts), resizing
and sacrificing the original aspect ratio (can be very detrimental),
or resizing isotropically and taking the central crop (loss of
information outside of the crop).

Third, passing a 640 x 480 image through the VGG-16
network and extracting the activations at the last convolutional
layer results in a 40 x 30 x 512 feature map, i.e. the image
representation would be 600k-D. Note that it is not simple to
perform dimensionality reduction of such a large representation,
e.g. to reduce the dimensionality to 512 using PCA one would
need to estimate 315 million parameters, which is hard to do
reliably. Therefore, it is necessary to down-sample images which
results in reduced performance [6], [7].

To test no-pooling, 640 x 480 images are used as input since all
database images have this resolution. Images that do not conform
to this aspect ratio (Tokyo 24/7 queries) are resized isotropically
to the smallest resolution that can accommodate a 640 x 480
rectangular region, and a central crop of this size is taken. The
image is passed through a VGG-16 network cropped at conv5_3,
but since this results in a huge 40 x 30 x 512 feature map, local
Max-pooling is applied to reduce it to a manageable size, com-
parable to NetVLAD. In more detail, Max-pooling is performed
with kernel size and stride 5, resulting in a 8 X 6 x 512 feature
map. The feature map is vectorized followed by L2-normalization,
and used as a 25k-D image representation. A fully connected layer
(FC) is optionally appended to perform dimensionality reduction
into 4096-D, followed by another L2-normalization. The no-pool
and no-pool+FC representations are trained on TokyoTM using
exactly the same procedure and loss as NetVLAD, and evaluated
on Tokyo 24/7, making results directly comparable to Figure 5(c)
of the main paper.

The no-pool+FC method overfits badly because the FC is very
large (25k x 4096 = 100M parameters), achieving recall@5 of
only 34.6%, while no-pool gets 63.5%, compared to 82.5% of
NetVLAD%. No-pool does beat Max-pooling which gets 52.7%,
but it does so with a 48 times much larger image representation
(25k-D versus 512-D). Reducing no-pool down to 4096-D with
whitening gives only 50.8%, i.e. a 8 times larger representation
achieves a lower performance than Max-pooling.

Pretraining. A natural question is whether pretraining the convo-
lutional layers by first training with Max-pooling can be beneficial
for the subsequent NetVLAD training. To investigate this, an
AlexNet based NetVLAD network was trained on Pitts30k-train
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TABLE 1
Image and object retrieval for varying dimensionality of NetVLAD. We
compare our best trained network (VGG-16, fy 1, ap), and the
corresponding off-the-shelf network (whitening learnt on Pittsburgh), on
standard image and object retrieval benchmarks, while varying the
dimensionality (Dim.) of the image representation.

Method Dim. | Oxford 5k Paris 6k Holidays
full crop | full crop | orig rot
NetVLAD off-shelf 16 | 28.7 28.1 | 36.8 382 | 56.6 60.3
32 | 36,5 36.0 | 489 519 | 68.0 71.7
64 | 40.1 389 | 55.7 58.1 | 76.5 804
128 | 49.0 49.8 | 60.1 63.2 | 79.1 833
256 | 53.4 555 | 643 67.7 | 82.1 86.0
512 | 56.7 59.0 | 67.5 70.2 | 829 86.7
1024 | 60.2 62.6 | 709 733 | 839 873
2048 | 62.8 654 | 7377 75.6 | 849 88.2
4096 | 644 66.6 | 75.1 774 | 849 883
NetVLAD trained 16 | 325 299 | 45.1 449 | 54.8 58.6
32 | 434 426 | 53,5 544 | 675 712
64 | 53.6 51.1 | 61.8 63.0 | 754 793
128 | 60.4 61.4 | 68.7 69.5 | 78.8 82.6
256 | 62.5 63.5 | 72.0 735 | 799 843
512 | 656 67.6 | 73.4 749 | 81.7 86.1
1024 | 669 69.2 | 7577 76.5 | 82.4 86.5
2048 | 67.7 70.8 | 77.0 78.3 | 82.8 86.9
4096 | 69.1 71.6 | 785 79.7 | 83.1 87.5

and tested on Pitts30k-val. We used the best Max-pooling network
from Table 2 of the main paper (i.e. trained down to conv2), as
the starting point for NetVLAD, and fine-tuned the NetVLAD
network (also down to conv2). As expected, the Max-pooling
pretraining learns better features, and therefore the initial per-
formance of the NetVLAD representation, before any NetVLAD
training, is much higher than for off-the-shelf NetVLAD: recall @5
on Pitts30k-val is 83.7% compared to 69.8%. However, the final
performance after training is similar to that of the NetVLAD
initialized with an off-the-shelf network, achieving recalls@1, 5
and 10 of 84.3%, 94.1% and 96.1%, respectively.

Qualitative evaluation. Figure 1 shows additional compar-
isons between our method and the best baseline (Root-
SIFT+VLAD+whitening).

Image retrieval. The complete set of NetVLAD results for
different output dimensions is shown in table 1.
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Ours

Best baseline

Fig. 1. Examples of retrieval results for challenging queries on Tokyo 24/7. Each column corresponds to one test case: the query is shown in the first
row, the top retrieved image using our best method (trained VGG-16 NetVLAD + whitening) in the second, and the top retrieved image using the
best baseline (RootSIFT + VLAD + whitening) in the last row. The green and red borders correspond to correct and incorrect retrievals, respectively.
Note that our learnt descriptor can recognize the same place despite large changes in appearance due to illumination (day/night), viewpoint and
partial occlusion by cars, trees and people. The last column corresponds to a difficult query, which is hard for our method because of its overall very

dark appearance.



