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. Drawing inspiration from dimension jump methods for model selection, we also provide an algorithm to select the best constant in the penalty.

Introduction

First introduced by [START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF] [START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF], Bifurcating Markov chains models (BMCM for short) has recently received particular attention for its application to cell lineage study. [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF], have proposed such a model to detect cellular aging in Escherichia Coli and proved laws of large numbers and central limit theorem for this class of stochastic process. Bitseki-Penda et al. (2014) [START_REF] Bitseki Penda | Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application[END_REF] have then completed these asymptotic results and proved concentration inequalities.

To the best of our knowledge, kernel density estimation for the BMCM were considered first by Doumic & al. [17], where they estimate the division rate of population of cells reproducing by symmetric division, i.e. cell reproduction where each fission produces two equal daughter cells. After this work, Bitseki & al. [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF], have used the wavelets methodology to study the nonparametric estimation of the density of BMCM. They propose an adaptive estimator in dimension 1. Recently, Bitseki and Olivier [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF] have studied the Nadaraya-Watson type estimators of a BMCM that they called nonlinear bifurcating autoregressive process. The latter model can be seen as an adaptation of nonlinear autoregressive process on binary regular tree. We mention that, except in [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF], all the estimations done in the previous works are non adaptive. In particular, the question of data-driven bandwidth selection was not addressed in [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF] and [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF]. The main objective of this work is then to propose a data-driven method for choosing the bandwidth for the kernel estimator of the invariant measure in the multi-dimensional BMCM, following ideas from the works of [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF].

The idea of the method is to select the bandwidth minimizing an empirical criterion imitating the bias-variance decomposition of the risk of the kernel estimator. More precisely, let H be a collection of bandwidths and let ( ν h ) h∈H be a family of kernel estimators of an unknown density ν. Then, we select the bandwidth h as h = arg min h∈H { A(h) + bV (h)} 1 with A(h) an empirical version of the bias of the estimator ν h and V (h) a penalty term with the same order than the variance. The now so-called Goldenshuger-Lepski methodology ( [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF], but also [START_REF] Goldenshluger | On adaptive minimax density estimation on R d[END_REF][START_REF] Rebelles | Lp adaptive estimation of an anisotropic density under independence hypothesis[END_REF][START_REF]Rebelles Pointwise adaptive estimation of a multivariate density under independence hypothesis[END_REF][START_REF] Patschkowski | Adaptation to lowest density regions with application to support recovery[END_REF][START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF]), initially developed for density estimation, has been applied in many contexts such as deconvolution problems [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF], conditional cumulative distribution function estimation [START_REF] Chagny | Adaptive and minimax estimation of the cumulative distribution function given a functional covariate[END_REF][START_REF] Chagny | Adaptive warped kernel estimators[END_REF], regression problems [START_REF] Chagny | Adaptive warped kernel estimators[END_REF][START_REF] Chagny | Adaptive estimation in the functional nonparametric regression model[END_REF], conditional density estimation [START_REF] Chagny | Adaptive warped kernel estimators[END_REF][START_REF] Bertin | Adaptive pointwise estimation of conditional density function[END_REF], hazard rate estimation [START_REF] Chagny | Adaptive warped kernel estimators[END_REF], white noise model [START_REF] Lepski | Adaptive estimation over anisotropic functional classes via oracle approach[END_REF], kernel empirical risk minimization (including robust regression) [START_REF] Chichignoud | Bandwidth selection in kernel empirical risk minimization via the gradient[END_REF], Lévy processes [START_REF] Bec | Adaptive pointwise estimation for pure jump Lévy processes[END_REF], Cox model [START_REF] Guilloux | Adaptive kernel estimation of the baseline function in the Cox model with high-dimensional covariates[END_REF], stochastic differential model [START_REF] Dion | Bidimensional random effect estimation in mixed stochastic differential model[END_REF]. Under suitable assumptions on the kernel, it is shown in [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] that this selection rule leads to a minimax adaptive estimator on a general class of regular functions, for a general class of L s -risks. Pointwise versions of the Goldenshluger-Lepski selection rule have been less considered [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF], [START_REF] Rebelles | Lp adaptive estimation of an anisotropic density under independence hypothesis[END_REF] [START_REF]Rebelles Pointwise adaptive estimation of a multivariate density under independence hypothesis[END_REF] and Chagny and Roche (2016) [START_REF] Chagny | Adaptive estimation in the functional nonparametric regression model[END_REF]). The interest of such an approach is that the bandwidth is selected with a local criterion which realizes the best bias-variance compromise at the point where the estimator is calculated. On the contrary, integrated versions of the Goldenshluger-Lepski selection rule select the same bandwidth at all points. Let us mention that, in all the articles cited above, the theoretical results rely on concentration inequalities for sums of i.i.d. random variables such as Bernstein Inequality or Talagrand Inequality. In our context, such results are not applicable. Hence, we prove a Bernstein-type Inequality for functionals of BMC, where the functions are kernels and convolution of kernels. Compare to those obtained in [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF], our inequalities are more complete in the sense that the deviation parameter can take all the positive values. More precisely, its values do not depend on the size of the samples, with is essential for our theoretical results.

Ideally, the penalty term V , called "the majorant" by Goldenshluger and Lepski, depends entirely on the kernel and the observations (it does not depend on the density ν). The selected estimator is then ν h . However, for the BMCM, the variance term V in the previous selection rule contains a term which may depend on the unknown density ν. Moreover, this term is generally not estimable from observations. To resolve this problem, we propose a modification of Goldenshluger-Lepski rule's selection, inspired by the works of [START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF] [START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF]. As suggested in [START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF], the constant term in bV (x, h) is then selected automatically from the data with an algorithm inspired by the works of [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF] [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF].

The paper is organized as follows. The model is defined in Section 2. Section 3 is devoted to the definition of the estimator. In Section 4, we provide a numerical study of our estimator. The proofs are given in Section 5.

Definitions

We are now going to give a precise definition of a BMC. First we note that this class of stochastic processes has been introduced by Guyon [21] in order to understand the mechanisms of cell division. Indeed, these stochastic processes are well adapted to study a population (or more generally, any dynamic system) where each individual (or more generally, each particle) in one generation gives birth to two individuals in the next one. In the sequel, we will then use the language of the population dynamic to define the sets of interest.

Let (Ω, F, (F m , m ∈ N), P) be a filtered probability space. Let (X u , u ∈ T) be a sequence of random variables defined on (Ω, P), taking values in R d , where d ≥ 1, and indexed by the infinite binary tree T = ∞ m=0 {0, 1} m , with the convention that {0, 1} 0 = ∅. We equip R d with its usual Borel σ-field. Now, we will see T as a given population. Then each individual u of this population is represented by a sequence of 0's and 1's, and has two descendants, u0 and u1. The initial individual of the population is ∅. For all m ∈ N, let G m be the set of individuals belonging to the m-th generation, and T m the set of individuals belonging to the m first generations. We have:

G m = {0, 1} m , T m = m q=0 G q and T = m≥0 G m .
For an individual u ∈ G m , we set |u| := m its length (i.e. the generation to which it belongs).

2.1. Bifurcating Markov chain [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF].

Definition 1 (T-transition probability). Let

P : R d × B((R d ) 2 ) → [0, 1] (with B(R d ) 2 = B(R d ) ⊗ B(R d ) the usual product σ-field on (R d ) 2 ). Then P is a T-transition probability if • x → P(x, A) is measurable for all A ∈ B(R d ) 2 . • A → P(x, A) is a probability measure on ((R d ) 2 , B(R d ) 2 ) for all x ∈ R d . For a B(R d ) 3 -measurable function f : (R d ) 3 → R, we denote (when it is defined) by Pf the B(R d )-measurable function x ∈ R d → (R d ) 2
f (x, y, z)P(x, dy, dz).

Definition 2 (Bifurcating Markov chain). Let µ be a probability measure on (R d , B(R d )) and P a T-transition probability. We say that (X u , u ∈ T) is a (F m )-bifurcating Markov chain with initial distribution µ and T-transition probability P (denoted T-BMC in the sequel) if

• X u is F m measurable for all u ∈ G m . • X ∅ has distribution µ.
• For all m ∈ N, and for all family

(f u , u ∈ G m ) of B(R d )-measurable functions from (R d ) 3 to R, E u∈Gm f u (X u , X u0 , X u1 )|F m = u∈Gm Pf u (X u ),
where u0 := (u, 0) ∈ G m+1 and u1 := (u, 1) ∈ G m+1 .

2.2. Tagged-branched chain [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF][START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF]. Let (X u , u ∈ T) be a T-BMC with initial distribution µ and T-transition probability P. We denote by P 0 and P 1 respectively the first and second marginals of P. More precisely

P 0 (x, B) = P(x, B × R d ) and P 1 (x, B) = P(x, R d × B), for all x ∈ R d and all B ∈ B(R d ).
Let Q be the mixture of P 0 and P 1 with equal weights

Q = 1 2 P 0 + 1 2 P 1 .
The Markov chain Y := (Y m ) m∈N on R d with initial value Y 0 := X ∅ and transition probability Q is called the tagged-branch chain.

In all the paper, we will denote by Q m the mth iterated of Q recursively defined by the formulas

Q 0 (x, •) = δ x and Q m+1 (x, B) = S Q(x, dy)Q m (y, B) ∀B ∈ B(R d ).
It is well known that Q m is a transition probability in (R d , B(R d )). In particular, we have

E[f (Y m )] = µQ m f for all measurable function f : R d → R.
In the sequel, we will assume that the Markov chain Y is ergodic-that is say, that there exists a unique distribution ν on (R d , B(R d ) such that, for all measurable function f : R d → R,

lim m→∞ E[f (Y m )] = R d f dν.
We will also assume that the distribution ν has a density, that we also denote by ν, with respect to the Lebesgue measure.

As previous works have shown (see for example [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF][START_REF] Bitseki Penda | Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application[END_REF]), the analysis of a BMC (X u , u ∈ T) is strongly related to the asymptotic behavior of the tagged-branched chain (Y m , m ∈ N), and therefore to the knowledge of the invariant distribution ν. We stress that this distribution is unknown and it is not directly observable, in such a way that its estimation from the data is of great interest. The aim is to estimate ν from the observation of a subpopulation (X u , u ∈ T n ).

3. Estimation of the stationary distribution ν 3.1. Definition of the estimator. We suppose that we observe the process (X u , u ∈ T) up to the n-th generation. We denote by |T n | = 2 n+1 -1 the cardinality of T n . Based on the observation of (X u , u ∈ T n ), we propose the following estimator of ν

(1) ν h (x) = 1 |T n | u∈Tn K h (x -X u ) ∀x ∈ R d , where for all x = (x 1 , ..., x d ) t ∈ R d and for all h = (h 1 , ..., h d ) t ∈]0, +∞[ d K h (x) = K(x 1 /h 1 , ..., x d /h d )/ d j=1 h j
and K is a kernel, that is to say a function K : R d → R which verifies R d K(u)du = 1. The vector h is usually called a bandwidth. In the sequel, |h| will denote the product

h 1 ו • •×h d .
It is well known in the kernel estimation theory that the choice of h is of great interest. Indeed the amount of smoothing is controlled by a judicious choice of the bandwidth. Now, in order to tackle the issue of the choice of this bandwidth, we will need the following assumptions.

Assumption 3 (Assumptions on the kernel).

K 1 = R d |K(t)|dt < +∞, K 2 2 = R d |K(t)| 2 dt < +∞ and K ∞ = sup t∈R d |K(t)| < +∞.

Assumption 4 (Uniform geometric ergodicity condition).

There exists two constants ρ ∈ (0, 1/2) and M > 0 such that for all bounded ν-integrable function g, for all x ∈ R d and m ≥ 0

|Q m g(x) - R d gdν| ≤ M g ∞ ρ m .
This assumption is verified for severals models of BMC. We refer for example to [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF] where Bitseki and Olivier have shown it for NBAR processes (see [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF] Lemma 20). For a precise definition of NBAR processes, we refer to section 4.

Assumption 5 (Assumption on P, P 0 , P 1 , Q and ν). We assume that the transitions P, P 0 , P 1 and Q admit densities with respect to the Lebesgue measure that we denote with the same notations. Moreover, we assume that

P ∞ < +∞, P 0 ∞ < +∞, P 1 ∞ < +∞, ν ∞ < +∞, and Q ∞ < +∞.
3.2. Bias-variance decomposition. We consider a pointwise quadratic risk

E[( ν h (x) -ν(x)) 2 ],
where x ∈ R d is a given point.

The results of [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF] (see the proof of Proposition 21) allows to obtain the following upper-bound on the risk, where we have make explicit the constants that appear. Proposition 6. Under Assumption 3 to Assumption 5, we have

(2) E[( ν h (x) -ν(x)) 2 ] ≤ 2(K h * ν(x) -ν(x)) 2 + 2 C(P, ν) |T n ||h| , where * denotes the convolution product f * g(x) = R d f (x-t)g(t)
dt for all functions f, g integrable over R d and

C(P, ν) = C I ( √ 2 -1) 2
with

C I = (1 + 1 1 -2ρ 2 )( Q ∞ + ν ∞ ) 2 + M 2 + C P and C P = 2 K 2 2 ( Q ∞ + ν ∞ ) + P ∞ + ν ∞ ( K 2 2 + P 0 ∞ + P 1 ∞ )
Inequality ( 2) can be seen as a bias-variance decomposition in the sense that

E ν [ ν h (x)] = 1 |T n | u∈Tn E ν [K h (x -X u )] = R d K h (x -t)dν(t) = K h * ν(x),
where E ν is the expectation with respect to the measure ν and C(P, µ)/|T n ||h| is an upper-bound on the variance term E ( ν h (x) -K h * ν(x)) 2 .

Selection rule. Given a family of bandwidths

H n ⊂ [0, +∞[ d ,
we have a family of estimators ( ν h ) h∈Hn and the aim is to select an estimator in this family with risk close to the unknown oracle risk

E ( ν h * (x) -ν(x)) 2 with h * = arg min h∈Hn E ( ν h (x) -ν(x)) 2 .
Imitating the decomposition given in Equation (2) we could consider the following selection rule inspired by the work of [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] (3)

h = arg min h∈Hn {A(x, h) + bV (x, h)}
where

• H n ⊂ [0, +∞[ d is a finite collection of bandwidths; • A(x, h) = max h ∈Hn ( ν h (x) -K h * ν h (x)) 2 -aV (x, h ) + with b ≥ a ≥ 1; • V (x, h) = C(P, µ) log(|T n |)/|T n ||h|.
The constants a and b can be different, as suggested in Section 5 of [START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF]. In Section 3.4, we provide a method to choose both a and b, as well as the quantity C(P, µ) appearing in the variance term V (x, h). The lower bound a = 1 is a critical minimal value, in the sense that the procedure fails for lower values of a (see [START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF]).

We prove the following oracle-inequality on the selected estimator ν h . 

E ( ν h (x) -ν(x)) 2 ≤ C 1 min h∈Hn B h (x) + log(|T n |) |T n ||h| + C 2 |T n | , (4) 
where C 1 , C 2 > 0 do not depend on n nor x and 

B h (x) = max h ∈Hn (K h * ν(x) -K h * K h * ν(x))
= (x 1 , ..., x d ) ∈ D, x j ∈ R such that (x 1 , ..., x j-1 , x j , x j+1 , ..., x d ) ∈ D, ∂ βj f ∂x βj j (x 1 , , ..., x j-1 , x j , x j+1 , ..., x d ) - ∂ βj f ∂x βj j (x) ≤ L|x j -x j | βj -βj .
Moreover, suppose that K is a kernel of order ∈ N (with ≥ max j=1,...,d {β j }) that is to say, R K(t)dt = 1, R x j K(x) = 0 for all j = 1, ..., and that

R |x| |K(u)| < +∞.
Suppose also that, for all n, there exists h * = (h where β = d/(1/β 1 + ... + 1/β d ) is the harmonic mean of β. Then, there exists a constant C > 0 such that

sup x∈D E ( ν h (x) -ν(x)) 2 ≤ C |T n | log(|T n |) -2 β/(2 β+1) .
This corollary is a direct consequence of Theorem 7 and [28] Proposition 2.1. Remark that the assumption on the bandwidth collection is verified e.g. by

H n = h max k -α , k = 1, ...., (|T n |h max / log(|T n |)) 1/α d
for all constant h max > 0 and all α > 1.

3.4. Estimation of the constant appearing in the variance. Due to the term C(P, µ) which is hardly estimable, the variance term V (x, h) is not calculable in practice. We propose an algorithm to estimate it, based on slope estimation, as developed in [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF][START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF].

As suggested in [START_REF] Lacour | Minimal penalty for the Goldenshluger-Lepski method[END_REF], we take b = 2a, hence in order to calculate the estimator, it is sufficient to have a good value of κ = aC(P, µ). The following algorithm is inspired by the procedure described in [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF], for model selection purposes. However, note that, in our case, both terms A(x, h) and V (x, h) depends on the constant κ, which is not the case in model selection contexts where only the penalty term depends on the constant. The selection of the grid of κ is then different here. 2 and κ 1 = 0.

κ m = |T n | log(|T n |) max h,h ∈Hn |h |( ν h (x) -K h * ν h (x))
2. While s ≤ s max (i) Generate a sequence (κ j ) 1≤j≤m such that and

κ j = κ 1 + j-1 m-1 (κ m -κ 1 )
, for all j = 1, ..., m. (ii) Calculate h j := h(κ j ) as the minimizer of the criterion (3) with a = κ/C(P, µ) and b = 2a. (iii) Set

j jump = arg max j=1,...,m-1 1 | h j | - 1 | h j+1 | , κ 1 = κ jjump , κ 1 = κ jjump+1 and s = s + 1. 3. Return h jjump+1 .
The algorithm search the value of κ for which the variance of the estimator increases significantly and select a slightly larger value. This allows to select an estimator with a reasonable variance. The same reasoning has given rise to the so-called dimension jump method for model selection purposes (see [START_REF] Arlot | Data-driven calibration of penalties for least-squares regression[END_REF]). The chosen value for the initialization of κ m comes from the following reasoning. Setting κ ≥ κ m as suggested: by definition, for all h, h ∈ H n ,

|T n |h log(|T n |) ( ν h (x) -K h * ν h (x)) 2 ≤ κ
which implies that A(x, h) = 0 for all h ∈ H n and that the criterion (3) will select the smaller bandwidth in H n . On the contrary, if κ > κ m , let h, h ∈ H n for which the minimum is attained in (5), we have

|T n | log(|T n |h ) ( ν h (x) -K h * ν h (x)) 2 > κ
which implies that A(x, h) > 0 and the criterion may select a bandwidth which is not the smaller one. Hence, the values of κ for which the criterion (3) may select suitable values of the bandwidth can not be greater than κ m . That is the reason why we consider an initial grid in the interval [0, κ m ]. However, the initial value κ m may be very large compared to the optimal value of κ. The loop 2. allows to search among small values of κ while avoiding the choice of a too large m which could be very expensive in terms of computation time. In practice s max = 2 and m = 20 seems to be a reasonable choice. 

Simulations

We shall now illustrate the previous results on simulated data coming from various models of bifurcating Markov chains.

Bifurcating autoregressive processes.

Bifurcating autoregressive processes (BAR, for short) were first introduced by Cowan and Staudte [START_REF] Cowan | The bifurcating autoregressive model in cell lineage studies[END_REF] in order to study the data from cell division, where each individual in one generation gives birth to two children in the next generation. This model has been widely studied over the last thirty years (see for e.g. [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF] and references therein). Recently, Bitseki and Olivier in [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF] have proposed an extension of BAR process initially introduced by Cowan and Staudte. Their model is defined as follows.

Let X u ∈ R be a quantitative data associated to the cell u ∈ T, for example the growth rate of E. Coli. Then the quantities X u0 and X u1 associated to u0 and u1 the two children of u are linked to X u through the following autoregressive equations ( 6)

L(X ∅ ) = µ, and for u ∈ T,

   X u0 = f 0 (X u ) + ε u0 , X u1 = f 1 (X u ) + ε u1 ,
where µ is a distribution probability on R and f 0 , f 1 : R ; R. The noise (ε u0 , ε u1 ), u ∈ T forms a sequence of independent and identically distributed bivariate centered random variables with common density g ε on R × R. The process (X u , u ∈ T) defined by ( 6) is a bifurcating Markov chain with T-transition probability

P(x, dy, dz) = g ε (y -f 0 (x), z -f 1 (x))dydz.
Under some assumptions on µ, f 0 , f 1 and g ε , it has been shown in [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF] that the process X satisfies all the good properties needed for our theoretical results (we refer to [START_REF] Bitseki Penda | Autoregressive Functions Estimation in Nonlinear Bifurcating Autoregressive Models[END_REF] for more details). We note that the previous model can be seen as an adaptation of nonlinear autoregressive model when the data have a binary tree structure. Furthermore, the original BAR process in [START_REF] Cowan | The bifurcating autoregressive model in cell lineage studies[END_REF] is defined for linear link functions f 0 and f 1 with f 0 = f 1 . Now, for our numerical illustrations, we build a BAR process living in S := [0, 1] as follows. First, we choose X ∅ such that L(X ∅ ) = Beta(2, 2), where Beta(2, 2) is the standard Beta distribution with shape parameters [START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF][START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF]. Then for u ∈ T and conditionally on X u = x, we construct X u0 and X u1 independently in such a way that P(X u0 ∈ dy, X u1 ∈ dz) = P(x, y, z)dydz, where P(x, •, •) := P(x, •) ⊗ P(x, •) and

P(x, y) := (1 -x) y(1 -y) 2 B(2, 3) + x y 2 (1 -y) B(3, 2) , x, y ∈ [0, 1]
with B(α, β) the normalizing constant of a standard Beta distribution with shape parameters α and β. Now, one can prove that this process is stationary, it has an explicit invariant density, which is crucial to evaluate the quality of estimation of our method: this is a standard Beta distribution with shape parameters [START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF][START_REF] Basawa | Non-Gaussian bifurcating models and quasi-likelihood estimation[END_REF]. One can also prove that

E [X u0 |X u ] = E [X u1 |X u ] = 1/5X u + 2/5,
in such a way that the equations ( 6) are satisfied with f 0 (x) = f 1 (x) = 1/5x + 2/5 (for more details, we refer for e.g. to [START_REF] Pitt | Constructing First Order Stationary Autoregressive Models via Latent Processes[END_REF]). Now, it is no hard to verify that this process satisfies our required assumptions.

We simulate the n first generations of the process X, with n = 10 (hence the size of T n is |T n | = 2 10 = 1024). We consider the Gaussian kernel K(t) = 1 √ 2π e -t 2 /2 . The results are given in Figure 1. We are now interested in growth-fragmentation models. Theses models describes (for e.g.) the evolution of cells which grow and divide randomly over time (see for e.g. [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF] and references therein). The model we are going to study is a simplification of the one studied in [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF]; it is defined as follows. Let S be a subset of [0, ∞) and let B : S → [0, ∞) be a continuous function (the splitting rate). Each cell u ∈ T grows exponentially with a common rate τ > 0 and when it reaches a certain size x, it splits at rate B(x), and gives birth to two offspring (u0 and u1) of size x/2. Next, this two offspring, u0 and u1, start a new life independently of each other. Clearly, the process (X u , u ∈ T), where X u is the size of the cell u at birth, is a BMC. It is proved in [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF] that the T-transition probability of this BMC is P(x, •, •) := P(x, •) ⊗ P(x, •), where the density of P(x, •) is given by

P(x, y) := B(2y) τ y exp - y x/2 B(2z) τ z dz 1 {y≥x/2} ,
for x ∈ S and y ∈ S/2. It can also be seen that the probability transition of the tagged-branch chain is Q = P. Doumic et al. [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF] have proved that P admits an invariant probability measure ν having a density, that we still denote by ν(•), with respect to the Lebesgue measure. It is also known from [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF] that the rate function B(•) and the invariant density ν(•) verify

B(x) = τ x 2 ν B (x/2)
x x/2 ν B (z)dz in such a way that a natural estimator for B(x), based on the observation of (X u , u ∈ T n ) is

B n (x) = τ x 2 ν h (x/2) 1 |Tn| u∈Tn 1 {x/2≤Xu<x} ∨ n
, where ν h is the kernel estimator defined in (1) and n is a threshold which ideally go to 0. Moreover, Bitseki et al. [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF] have proved that under suitable assumptions on the splitting rate B(•), the process X satisfies all the good properties needed for our theoretical results. For all the previous assertions, we refer to [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF][START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF] for more details. The strategy is then to use our results for the estimation of ν B (x/2) for all x ∈ S. Now, for our numerical illustrations, we will work with the splitting rate using in [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF]. We choose τ = 2, S = (0, 5) and for all x ∈ S, B has the form

B(x) = x x -5 + 3T 2(x - 7 2 ) 
where

T (x) = (1 + x)1 {-1≤x<0} + (1 -x)1 {0≤x≤1} is a tent shaped function.
With this choice of B, the required assumptions for our theoretical results are satisfied (see [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF]). We simulate the n first generations of the process X, with n = 15. The results are given in Figure 2.

Proofs

The proof rely on the lemma below, which is a Bernstein-type inequality.

Lemma 12. Let (X u , u ∈ T n ) be a bifurcating Markov chain on R d with initial distribution µ and T-transition probability P . Under the assumption of uniform geometric ergodicity, we have for all δ > 0

(7) P 1 |T n | u∈Tn (K h * K h (x -X u ) -E ν [K h * K h (x -X u )]) > δ ≤ 2 exp δc K,Q,ν,M c ρ 4c ρ,M K 1 K ∞ δ 3 + c K,Q,ν,M c ρ exp   - δ 2 |T n ||h | 2 c K,Q,ν,M c ρ + 4c ρ,M K 1 K ∞δ 3   ,
where

c ρ,M = M (1 + ρ) 1 -2ρ , c ρ = 3 + 2 1 -2ρ , c K,Q,ν,M = 8 max{2 K 2 1 K 2 2 ( Q ∞,∞ + ν ∞ ); max{ Q ∞,∞ + ν ∞ ; M K 1 K ∞ } 2 } We also have for all δ > 0, (8) P 1 |T n | u∈Tn (K h (x -X u ) -E ν [K h (x -X u )]) > δ ≤ 2 exp δc K,Q,ν,M c ρ 4c ρ,M K ∞δ 3 + c K,Q,ν,M c ρ exp   - δ 2 |T n ||h| 2 c K,Q,ν,M c ρ + 4c ρ,M K ∞δ 3   where c K,Q,ν,M = 8 max{M K ∞ ; ( Q ∞,∞ + ν ∞ ) K 1 ; ( Q ∞,∞ + ν ∞ ) K 2 2 }.
Remark 13. As mentioned above, these inequalities are more complete than those obtained in [START_REF] Bitseki Penda | Adaptive estimation for bifurcating Markov chains[END_REF], since the deviation parameter δ does not depend on the size of the data. We stress that this fact is essential for our theoretical results.

Proof. We will do the proof of [START_REF] Bitseki Penda | Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application[END_REF]. The proof of (8) follows the same lines. Let λ > 0 and δ > 0. By Chernoff inequality, we have

P 1 |T n | u∈Tn (K h * K h (x -X u ) -E ν [K h * K h (x -X u )]) > δ ≤ exp (-δλ|T n |) E exp λ u∈Tn g(X u ) ,
where the function g is defined by

g(y) = K h * K h (x -y) -E ν [K h * K h (x -X ∅ )] .
For all u ∈ G n-1 , we have, on the one hand

|g(X u0 ) + g(X u1 ) -2Qg(X u )| ≤ 2M (1 + ρ) K h * K h ∞ .
Using the Young's inequality, we have

K h * K h ∞ ≤ K 1 K ∞ /|h | and therefore |g(X u0 ) + g(X u1 ) -2Qg(X u ))| ≤ 2c ρ,M K 1 K ∞ /|h |.
On the other hand, we have

E (g(X u0 ) + g(X u1 ) -2Qg(X u )) 2 |F n-1 ≤ 4 Q ∞,∞ K h * K h 2 2 ≤ c K,Q,ν,M /|h |). Now for all λ ∈ (0, 3/(2c ρ,M K 1 K ∞ (|h |) -1
)), we have from Bennett inequality

E [exp (λ (g (X u0 ) + g (X u1 ) -2Qg (X u ))) |F n-1 ] ≤ exp   c K,Q,ν,M (|h |) -1 λ 2 2 1 - 2c ρ,M K 1 K ∞(|h |) -1 λ 3  
and using the Markov property, this leads us to

E exp λ u∈Tn g(X u ) ≤ exp   c K,Q,ν,M (|h |) -1 λ 2 |G n-1 | 2 1 - 2c ρ,M K 1 K ∞(|h |) -1 λ 3   × E   exp   λ u∈Tn-3 g(X u )   × exp   λ u∈Gn-2 I (2) (X u )   × u∈Gn-2 E exp J (2) (X u , X u0 , X u1 ) F n-2  
where

I (2) (X u ) = (g + 2Qg + 2 2 Q 2 g)(X u ) J (2) (X u , X u0 , X u1 ) = (g + 2Qg)(X u0 ) + (g + 2Qg)(X u1 ) -2(Qg + 2 2 Q 2 g)(X u ).
Now for the second step, we will do the same thing with J (2) (X u , X u0 , X u1 ) instead of g(X u0 ) + g(X u1 ) -2Qg(X u ). For all u ∈ G n-2 we have

|J (2) (X u , X u0 , X u1 )| ≤ 2c ρ,M K 1 K ∞ (|h |) -1 .
We also have E[(J (2) (X u , X u0 , X u1 )) 2 |F n-2 ] ≤ 4Q((g + 2Qg) 2 )(X u ). Now we will control the right hand side of the previous inequality. On the one hand, we have for all y ∈ R d ,

Qg(y) = K h (t) K h (x -z -t) Q(y, z)dtdz -E ν [K h * K h (x -X ∅ ].
Using the change of variables t = hu and z = x -hu -h v, where for x = (x 1 , ..., x d ) t , y = (y 1 , ..., y d ) t ∈ R d , xy denotes the vector (x 1 y 1 , ..., x d y d ) t , we obtain

K h (t) K h (x -z -t) Q(y, z)dtdz| ≤ Q ∞,∞ .
In the same way we prove that

|E ν [K h * K h (x -X ∅ ]| ≤ ν ∞ . This leads us to |Qg(y)| ≤ Q ∞,∞ + ν ∞ and therefore, for all m ≥ 1 |Q m g(y)| ≤ Q ∞,∞ + ν ∞ .
On the other hand, uniform geometric ergodicity assumption implies that for all m ≥ 1 and for all y ∈ R d ,

Q m g(y) ≤ M ρ m K h * K h ≤ M K 1 K ∞ ρ m (|h |) -1 ,
and therefore, for all m ≥ 1 and for all y ∈ R d , we have

Q m g(y) ≤ max{ Q ∞,∞ + ν ∞ , M K 1 K ∞ } × inf{1, ρ m (|h |) -1 }.
For all y ∈ R d , we also have

Qg 2 (y) ≤ 2Q(K h * K h ) + 2(E[K h * K h (x -X ∅ )]) 2 ≤ 2 K 2 1 K 2 2 ( Q ∞,∞ + ν ∞ ), in such a way that for all u ∈ G n-2 , 4Q((g + 2Qg) 2 )(X u ) ≤ 8Qg 2 (X u ) + 8Q((2Qg) 2 )(X u ) ≤ c K,Q,ν,M ((|h |) -1 + 2 inf{1, ρ(|h |) -1 } 2 )
and thus, we obtain

E[J (2) (X u , X u0 , X u1 )|F n-2 ] ≤ c K,Q,ν,M ((|h |) -1 + 2 inf{1, ρ(|h |) -1 } 2 ). Once again, for all λ ∈ (0, 3/(2c ρ,M K 1 K ∞ (|h |) -1
)) and for all u ∈ G n-2 , we have from Bennett's inequality

E[J (2) (X u , X u0 , X u1 )|F n-2 ] ≤ exp   c K,Q,ν,M ((|h |) -1 + 2 inf{1, ρ(|h |) -1 } 2 )λ 2 2 1 - 2c ρ,M K 1 K ∞(|h |) -1 λ 3   .
It then follows that

E exp λ u∈Tn g(X u ) ≤ exp   c K,Q,ν,M (|h |) -1 λ 2 |G n-1 | 2 1 - 2c ρ,M K 1 K ∞(|h |) -1 λ 3   × exp   c K,Q,ν,M ((|h |) -1 + 2 inf{1, ρ(|h |) -1 } 2 )λ 2 |G n-2 | 2 1 - 2c ρ,M K 1 K ∞ (|h |) -1 λ 3   × E   exp   λ u∈Tn-4 g(X u )   × exp   λ u∈Gn-3 I (3) (X u )   × u∈Gn-3 E exp J (3) (X u , X u0 , X u1 ) F n-2   where 
I (3) (X u ) = (g + 2Qg + 2 2 Q 2 g + 2 3 Q 3 g)(X u ); J (3) (X u , X u0 , X u1 ) = (g + 2Qg + 2 2 Q 2 g)(X u0 ) + (g + 2Qg + 2 2 Q 2 g)(X u1 ) -2(Qg + 2Q 2 g + 2 2 Q 3 g)(X u ).
Now, iterating this method, we are led to

E exp λ u∈Tn g(X u ) ≤ exp       n m=1 c K,Q,ν,M (|h |) -1 + m-1 l=1 2 l ((|h |) -1 ρ l ∧ 1) 2 |G n-m| λ 2 2 1 - 2c ρ,M K 1 K ∞(|h |) -1 λ 3       × exp c K,Q,ν,M (|h |) -1 + n m=1 2 m 1 ∧ ρ m (|h |) -1 . Set m * = log |h |/ log ρ . Then we have n m=1   (|h |) -1 + m-1 l=1 2 l ((|h |) -1 ρ l ∧ 1) 2   |G n-m| = n m=m * +1   (|h |) -1 + m * l=1 2 l + m-1 l=m * 2 l h -1 ρ l 2   |G n-m| + m * m=1   (|h |) -1 + m-1 l=1 2 l 2   |G n-m| ≤ 6 + (1 + 1 1 -2ρ ) 2 (|h |) -1 |T n |.
We also have

(|h |) -1 + n m=1 2 m 1 ∧ ρ m (|h |) -1 ≤ c ρ (|h |) -1 .
In view of the above, for all λ ∈ (0, 3/(2c ρ,M K 1 K ∞ (|h |) -1 )) we have

P 1 |T n | u∈Tn (K h * K h (x -X u ) -E ν [K h * K h (x -X u )]) > δ ≤ exp   -λδ|T n | + c K,Q,ν,M c ρ (|h |) -1 |T n |λ 2 2 1 - 2c ρ,M K 1 K ∞(|h |) -1 λ 3   × exp λc K,Q,ν,M c ρ (|h |) -1 . Taking λ = (δ(|h |))/(c K,Q,ν,M c ρ + (4c ρ,M K 1 K ∞ δ)/3), we obtain P 1 |T n | u∈Tn (K h * K h (x -X u ) -E ν [K h * K h (x -X u )]) > δ ≤ exp δc K,Q,ν,M c ρ 4c ρ,M K 1 K ∞δ 3 + c K,Q,ν,M c ρ exp   - δ 2 |T n |(|h |) 2 c K,Q,ν,M c ρ + 4c ρ,M K 1 K ∞δ 3   .
The result follows since we can do the same thing for -g instead of g. Now, the proof of (8) follows the same lines and this ends the proof.

Proof of Theorem 7. We start from the following decomposition, true for all h ∈ H n

( ν h (x) -ν(x)) 2 ≤ 3( ν h (x) -K h * ν h (x)) 2 + 3(K h * ν h (x) -ν h (x)) 2 + 3( ν h (x) -ν(x)) 2 . Hence, since K h * ν h (x) = K h * ν h (x)
, by definition of A(x, h) and then by definition of h and the fact that a ≤ b

( ν h (x) -ν(x)) 2 ≤ 3(( ν h (x) -K h * ν h (x)) 2 -aV (x, h) + aV (x, h)) h * ν h (x) -ν h (x)) 2 -aV (x, h) + aV (x, h)) + 3( ν h (x) -ν(x)) 2 ≤ 3(A(x, h) + bV (x, h)) +3(A(x, h) + bV (x, h)) + 3( ν h (x) -ν(x)) 2 ≤ 6(A(x, h) + bV (x, h)) + 3( ν h (x) -ν(x)) 2 . (9) Now it remains to upper-bound E[A(x, h)]. We have ( ν h (x) -K h * ν h (x)) 2 ≤ 3( ν h (x) -K h * ν(x)) 2 + 3(K h * ν h (x) -K h * K h * ν(x)) 2 +3(K h * ν(x) -K h * K h * ν(x)) 2 .
With a rough upper-bound of the max h∈Hn by the h∈Hn we get

E[A(x, h)] ≤ 3 E max h ∈Hn ( ν h (x) -K h * ν(x)) 2 -a V (x, h ) 6 + + 3 E max h ∈Hn K h * ν h (x) -K h * K h * ν(x)) 2 -a V (x, h ) 6 + + 3 max h ∈Hn (K h * ν(x) -K h * K h * ν(x)) 2 ≤ 3 h ∈Hn E     1 |T n | u∈Tn K h (x -X u ) -E ν [K h (x -X u )] 2 -a V (x, h ) 6   +   +3 h ∈Hn E     1 |T n | u∈Tn K h * K h (x -X u ) -E ν [K h * K h (x -X u )] 2 -a V (x, h ) 6   +   +3 max h ∈Hn (K h * ν(x) -K h * K h * ν(x)) 2 ≤ T 1 + T 2 + B h (x).
We first give an upper-bound for T 1 . Let h ∈ H n fixed, now remark that, by Lemma 12,

T 1 = +∞ 0 P     1 |T n | u∈Tn K h (x -X u ) -E ν [K h (x -X u )] 2 -a V (x, h ) 6   + ≥ t   dt ≤ +∞ 0 P 1 |T n | u∈Tn K h (x -X u ) -E ν [K h (x -X u )] ≥ t + a V (x, h ) 6 dt ≤ +∞ aV (x,h )/6 P 1 |T n | u∈Tn K h (x -X u ) -E ν [K h (x -X u )] ≥ √ u du ≤ +∞ aV (x,h )/6 exp √ uc K c ρ 4cρ K ∞ √ u 3 + c K c ρ exp - u|T n ||h| 2(c K c ρ + (4/3)c ρ K ∞ √ u) du ≤ I 1 + I 2 ,
where Hence, gathering [START_REF] Chagny | Adaptive warped kernel estimators[END_REF] and [START_REF] Chagny | Adaptive and minimax estimation of the cumulative distribution function given a functional covariate[END_REF], there exists C > 0 depending only on C(P, µ), K, c K and ρ, such that

I
T 1 ≤ C card(H n ) log 2 (|T n |)|T n | - √ ac * ≤ C |T n | -1
with C = 3 max{C 1 , C 2 , C 2 }, c * = min{c * 1 , c * 2 } as soon as a > 4/(c * ) 2 .
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Remark 11 .

 11 The choice b = 2a is arbitrary since, in theory, any value b such that b ≥ a might work as soon as a sufficiently large. Other choices may be made such as b = a which is the usual choice of Lepski's method, b = a + ε, with ε > 0 or b = (1 + ε)a.

Figure 1 .

 1 Figure 1. Plot of 10 estimators (red dashed lines) obtained from independent copies of X. The black solid line represents the function ν to estimate.

Figure 2 .

 2 Figure 2. Plot of 1 estimator (red solid line) obtained from a copy of X. The yellow solid line represents the function B to estimate.

3 + 3 +I 1 ≤ C 1 aC 2 √ 2 / 3 √ 3 ) 3 +c 2 (√ 6 C 6 √

 331122333266 c K c ρ exp -u|T n ||h| 2(c K c ρ + (4/3)c ρ K ∞ c K c ρ exp -u|T n ||h| 2(c K c ρ + (4/3)c ρ K ∞ √ u) du,where we recall that, since for all h ∈ H n , |h | ≥ log(|Tn| |Tn| , we have V (x, h ) ≤ C(P, µ). We first upper-bound I 1 , ρ K ∞ aC(P, µ)) du≤ C 1 |T n ||h | exp -√ ac * 1 |T n ||h | ≤ C 1 log(|T n |) exp -√ ac * 1 log(|T n |) = C 1 |T n | - √ ac * 1 ,(10)withC 1 = exp( aC(P, µ)/6), C 1 = C 1 2(c K c ρ +(2 √ 2/3 √ 3)c ρ K ∞ aC(P, µ)), c * 1 = C(P, µ)/(12(c K c ρ + (c ρ K ∞ C(P, µ))), using the fact that a ≥ 1 (remark that c * 1 does not depend on a). We turn now to I 2 , remark that the function u→ √ uc K c ρ /( 4cρ K ∞ √ u K c ρ ) is non decreasing and converges to 3c K c ρ /(4c ρ K ∞ ) when u → ∞,hence it is bounded by this quantity. We have then, using again a ≥ 1, |T n ||h |) 2 exp(-√ ac * 2 |T n ||h |) ≤ C 2 log(|T n |)|T n | - √ ac * C 2 = exp(3c K c ρ /(4c ρ K ∞ ), C 2 = C 2 √ a(4c K c ρ +163 (P, µ)c ρ K ∞ ), C 2 = 8C 2 √ 6c K c ρ / C(P, µ) 6c K c ρ / C(P, µ) + 4 3 c ρ K ∞ .

  Theorem 7. Under Assumption 4, if min h∈Hn |h| ≥ log(|T n |)/|T n |, then there exists a minimal value a min > 0 independent of n, such that, for all a > a min ,

  Remark 8. The form of the bias term B h (x) in Inequality (4) is very similar to the one obtained for pointwise adaptive kernel density estimation in [27,Theorem 1]. It can be replaced by an upper-bound, e.g. K 1 ν -K h * ν ∞ , coming from the Young's inequality, as in [14,Theorem 2].

2 

.

Once the previous theorem is proved, an immediate corollary follows Corollary 9. Suppose that the assumptions of Theorem 7 are verified and that ν ∈ Σ(β, L, D) where β = (β 1 , ..., β d ) ∈]0, +∞[ d and Σ(β, L, D) is the set of all β-Hölder densities on the open set D ⊆ R d i.e. the set of all functions f : D → R which admits, for all j = 1, ..., d, partial derivatives with respect to x j up to the order β j and verifies, for all x

+ C 2 log 2 (|T n |)|T n | - √ ac * 2 ,(11) with
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