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Zero-Contours in Low-Energy K-7t Scattering. 

A. ARNEODO 

Physique Th!Jorique, Universite, de Nice · Nice (0
) ("*) 

Summary. - The paths oi' zeros of the low-energy K·7t seattering ampli­
tudes AI,~i and AI,-1 are examined in a simple K* and p dominanee 
model, where it is found that the roles of PCAC zero, K* and p Legendre 
zero. and double-pole-killing zero are played by the same zero-eontour 
in the (s, t, u)-plane, an ellipse for the first amplitude, an ellipse plus 
the line s = u for the seeond one. The behaviour of these zero-eontours 
in the u-ehannel physieal region is studied in eomparison with th6 experi­
mental zeros determined from the K+7t--+ K+7t- and K+1t0 -+ K 01t+ seat­
tering resultR, and it is found that up to the K* mass region the elliptic. 
contour of AI,~i is essentially unaffected by unitarity. whilst the elliptic 
contour of A1,~1 is slightly more sensitive to sueh constraints. A com­
parison with the behaviour of the zeros of the corresponding 7t-7t ampli­
tudes A~;2 and A:t;l is also performed. 

1. - Introduction. 

A few years ago ODORICO has provided a possible explanation of meson­
meson scattering data in termt~ of a hypothesis of a global structure for the 
straight-line propagation of nearby zeros of the scattering amplitude, whereby 
lineR passing through the inter~;ectionH of resonances in different channels also 

pass through the Legendre zeros of resonances in the physical regions of the 

(s, t, u)-plane (1-3 ). 

(*) Equipe de Reeherche Associce au C.N.R.S. 
(**) Postal address: Physique Tlu3oriquc, I.M.S.P. Pare Valrose, 06034 Nice Cedex. 
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Since then numerous studies of zero-contours of the 7t-7t scattering amplitude 
have been performed using the experimental phase shifts {4- 7). Several of them 
disagree with certain predictions made by ODORICO, such as for example the 
analyses of PENNINGTON and PROTOPOPESCU {4 ) and of EGUCHI et al. (5 ) which 
contest the suggestion that the anomalous behaviour of the experimental 
moment (Y~) at 0.98 GeV may be seen as a consequence of the entry in the 
physical region of a zero at fixed s = 4f12

- 2m~. Nevertheless on the whole 
these studies find this straight-line zero hypothesis as a reasonable approxi­
mation to reality when viewing the Mandelstam plane from afar. However in 
any local region zero-contours are far from straight, and this is especially evident 
in the low-energy region as is discussed by PENNINGTON and SCHMID in ref. (8 ). 

The theoretical analysis of ARNEODO, GUERIN and DoNOHUE (9 ) is also very 
significant of this feature since it emphasizes that, in a simple nonunitary p 

dominance model, the nearby zero-contours of low-energy 7t-7t scattering am­
plitudes A= (s, t, u) and A~;;2 (s, t, u) form a closed curve: a circle in the (s, t, u)­

plane. This circle plays the respective roles of POAO zero, p Legendre zero 
and double-pole-killing zero, and is in large part rather stable when unitarity 
is enforced. 

Such experimental and theoretical studies have not been performed in 
K-7t scattering. Thus we propose in this article to examine the behaviour of 

the zero-contours of the low-energy K-7t amplitudes; first in a pure K* and p 
dominance model, which is a model for the whole amplitude and consequently 
permits us to define the zero-contours in the unphysical as well as the physical 
regions; then as determined from the experimental phase shift analyses of the 
reactions K+n-~ K+7t- and K+1t0 ~ K 01t+ (10-13), i.e. only in particular physical 

( 4 ) M. R. PENNINGTON and S. D. PROTOPOPESCU: Phys. Lett., 40 B, 105 (1972). 
( 5 ) T. EGUCHI, M. FUKUGITA and T. SHIMADA: Phys. Lett., 48 B, 56 (1973). 
( 6 ) P. EASTABROOKS, A. D. MARTIN, G. GRAYER, B. HYAMS, c. JONES, P. WEILHAM­

MER, W. BLUM, H. DIETL, W. KocR, E. LORENZ, G. LtiTJENS, W. MANNER, J. Mmss­
BURGER and U. STIERLIN: Conference on 7t-7t Scattering, 1973, Tallahassee Conference 
(A.I.P. Conference Proceedings, No. 13). 
n B. HYAMS, c. JONES, P. WEILHAMMER, w. BLUM, H. DIETL, G. GRAYER, w. KocH, 

E. LORENZ, G. LtiTJENS, W. MANNER, J. MEISSBURGER, W. Ocns, U. STIERLIN and 
F. WAGNER: Nucl. Phys., 64 B, 134 (1973). 
( 8 ) M. R. PENNINGTON and C. ScHMID: Phys. Rev. D, 7, 2213 (1973). 
( 9 ) A. ARNEODO, F. GuERIN and J. T. DoNOHUE: Nuovo Cimento, 17 A, 329 (1973). 
(1°) R. MERCER, P. ANTICH, A. CALLAHAN, C. Y. CHIEN, B. Cox, R. CARSON, D. DE­

NEGRI, L. ETTLINGER, D. FEIOCK, G. GOODMANN, J. HAYNES, A. PEVSNER, R. SEKULIN, 

V. SREEDHAR and R. ZDANIS: Nucl. Phys., 32 B, 381 (1971). 
(11) H. H. BINGHAM, w. M. DUNWOODIE, D. DRIJARD, D. LINGLIN, Y. GOLDSCHMIDT­

CLERMONT, F. MuLLER, T. TRIPPE, F. GRARD, P. HERQUET, J. NAISSE, R. WINDMOLDERS, 

E. CoLTON, P. E. ScHLEIN and W. E. SLATER: Nucl. Phys., 41 B, 1 (1972). 
( 12 ) A. FIRESTONE, G. GOLDRABER, D. LrssAUER and G. H. TRILLING: Phys. Rev. D, 
5, 2188 (1972). 
(13) s. L. BAKER, s. BANERJEE, J. R. CAMPBELL, G. HALL, A. K. M. A. ISLAM, G. MAY, 
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region:-;. For our technical way of dc~eribing zero-contour~ we explieitly refer 
to the theoretical analyRif; of ref. (9

). 

The main re~ult of our investigation i:-; that, in the narrow-wiclth K* and p 
dominance approximaJ.ion, t.he zero-eontours of the K-rr amplitude:-; AI,~! an<l 
AI,~t are re,;peetively an ellip1-1e and an ellipse plm the line s = u in the (s, 
t, u)-plane. Tlwse contour;; are related to the different zero:-; arising at low 
energy: the Adler-Weinberg zero, the Legendre zero of K* and p mesons and 
the double-pole-killing zeros. Moreover the behaviour of the experimental 
complex zeros imggeHts that in the low-energy u-ehannel physieal region (u ~ 

~ mi:.) the elliptic zero-contour of the amplitu<Le AI,~! i:-; e;;sentially unmodified 
by the unitarity com;traintK, while the elliptic zero-contour of the amplitude 
A I,~t iH more sensitive to unitarization and is drawn into a somewhat straight 
shape lying at t ,__,- 0.:! (GeV)2. This ,;imple K* and p dominance model is 
found to be unreliable for energies above 0.95 GeV, since it predicts nearby 
zero-contours for the both K-rr seattering amplitudes while experimentally 
the zeros appear to be far away in the complex (s, u)-space, and consequently 
the term zero-contour is ambiguom; at wch energies. 

We organize the paper as follow~>. In Sect. 2 we examine the zero-contours 
of the simple K* and p dominance model. In Sect. 3 we discuss how they are 
influenced in the K* mass region by the unitarity comtraint~. In Seet. 4 we 
compare them with the zero-contours ealculated from the experimental phase 
shifts. In Seet. 5 we perform a compariRon of zero-contours in rr-rr and K-rr 
scattering. Kinematie~ and amplitudes in K-rr scattering are defined in the 
Appendix. 

2. - Zero-contours in the simple Breit· Wigner model. 

The contribution of both p and K* resonances to the K-rr scattering am­
plitudes A(s, t, u) and B(s, t, u), which respeetively represent in the s-channel 
physical region the reactions K+rr+--+ K+n+ and K+rr---+ K"n", may be written 
in the Breit-Wigner approximation ail 

(~.1) 

D. B. MILLEH. J. E. ALLEl\, P. \'. MARCII, S. H. MORRIS, K. 0 BRIEN and C. E. PEACH: 

A stufly of K +7t- elastic scattering in the reaction K +n-+ K +7t-p bet'Ween 2.0 and 3.0 Ge V /c. 
submitted to tlll' II Aix en Provence International Oonferenf'e on Elementary Particles 
(S<·ptember 1973). 
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and 

(2.2) 

with 

(2.3) 

1 
= -(m~-4ti)l; 

2 

1 
= 2 (4,u2 -t)l' 

and where it is explicitly assumed that the p couples in the same way to the 
1t1t and KK channels. The respective kaon and pion mass are m and ,u, and 
the details of the K-7t kinematics are defined in the Appendix. 

This simple model for the low-energy region has the analytic structure 
needed to incorporate the cuts due to elastic unitarity, but it has no cuts cor­
responding to inelastic unitarity. One can justify this absence of double-spectral 
function in so far as the inelastic effects are unimportant, i.e. up to 1 GeV ("). 
Moreover this model gives the correct threshold behaviour for the real parts 
of all K-7t partial-wave amplitudes, and whilst one cannot determine the scat­
tering amplitudes everywhere, this nonunitary approximation may be considered 
as reasonable in the low-energy region. (Some problems arising from the in­
correct behaviour of the imaginary part of the K-7t partial-wave amplitudes 
will be discussed later.) 

In the limit of narrow-width resonances: rK. and rp small, both amplitudes 
A(s, t, u) and B(s, t, u) are real except at t =m~, u = mi• and s = mi• (only 
for B(s, t, u)), and the respective zero-surfaces intersect the real (s, t, u)-plane 
along the curves defined by 

(2.4) 

(") Specifically, this model does not contain the singularity at t= 4m2 • 
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for A(s, t, u) and 

(2.5) (s- tt) · 

for B(s, t, u). For phy~ieal ma~s and width of the meson resonances (mp = 
= 0.765 GeV, 1~ = 0.135 GeV and mK. = 0.890 GeV, FK. = 0.050 GeV) the re-

Fig. 1. - Morlulus contours of the K-rr amplitude A(s. t. u) in the (s + iO, t- iO, u + iO) 
limit (see the Appendix for the definition of the limit). The continuous line is \A I =1, the 
dashed line \A 1 = 0.5. The ellipse e is the zero-contour of the narrow-width approxi­
mation of the K* and p dominance modPI. 

lation (2.4) is the equation of an ellipse passing through the p Legendre zero 
in the t-channel, the K* Legendre zero in the u-channel physical region and 
through the K*-p intersection (Fig. 1). From (2.5) the zero-contour of B(s, t, u) 
consists of the line s = u (which attests to the antisymmetry of this amplitude 
under the exchange s~ u), plus an ellipse passing through the Legendre zero 
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of the K* in the s- and u-channel physical regions and through the K*-p inter­
sections (Fig. 2) ("). 

When rx• and FP are not very small, one expect these curves of nearest 
zeros to have moved to complex values of sand u, except in the region {t.;:;:4,u\ 

s.;;;; (m+ ,u) 2
, u.;;;; (m+ ,u) 2

} where the amplitudes A(s, t, u) and B(s, t, u) are real. 

Fig. 2. -Modulus contours of the K-1t amplitude B(s, t, u) in the (s+ iO, t+ iO, u+iO) 
limit. The continuous line is JB\ = l, the dashed line JB\ = 0.2. The zero-contour 
predictions of the narrow-width K* and p dominance model consist of the lines= u, 
plus the ellipse e'. 

Before developing this study of complex zeros we must resolve a problem 

inherent in this simple Breit-Wigner model which consists in an incorrect be­

haviour of the imaginary part of the I=! K-n S-wave amplitude. If, on the 

one hand, the expressions (2.1) and (2.2) do not give a correct threshold behaviour 

for the imaginary parts of the partial-wave amplitudes, on the other hand they 

(") In the model based on Lagrangian theory of D. IAGOLNITZER et al. (14), where 
SU3 symmetry is broken by mass terms, the values of mass and width of the resonances p 

and K* obey the relation gp= 2gx•· In this case the zero-contours of .A(s, t, u) and 
B(s, t, u) defined by (2.4) and (2.5) are circles passing through the same points previously 
defined for the ellipses. 
(14) D. IAGOLNITZER, J. ZINN-JUSTIN and J. B. ZuBER: Nucl. Phys., 60 B, 233 (1973). 
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imply more dramatieally that the imaginary part of the I=·~ 8-wave is ne­
gative, though quite small (< ().06), up to the K* mass. In order to eliminate 
this difficulty we added linear terms in q" q1 and q,. to the simple Breit-\Vigner 
approximation to the K-7t amplitudes 

(2.6) A(g, t, u) = ABw(8, t, u) +(ex- (J) q,+ (ex+ (J) qu + yq1 

and 

(2.7) B(8, t, u) = BBW(8, t, u) + v2 {3(qu- q,) 

where ABw(s, t, u) and BBw(8, t, u) are given by the expressiom (2.1) and (2.2), 
and ex, (J, y are parameters. vVe fixed these parameters by imposing the un­
itarity contraints at threshold in the 8- and t-channels. In the 8-channel we have 

(2.8) lim [Imf~(8)] =(m+ p)(a~)2' 
s-+(m+p)1 Q ( 8} 

where g(s) are the 8-wave amplitudes (I=·~ or il defined from (2.6) and (2.7) 
(see the Appendix), and a~ the corresponding seattering lengths. In the t-channel 
we have 

(2.9) l . [Im T~(t)] o o • Im -·Q--- = Il0 Re T0(4w), 
1-+4p2 (t) 

where ~(t) is defined in the Appendix and IIg is the I= 0 8-wave scattering 
length of the 7t-7t amplitude. In the following we Hhall consider IIg to be equal 
to 0.17p- 1 , and we shall diHcuss the importance of thiH choice at the eml 
of this Section. We then find that ex=- 0.575 (GeV}-1 , (J = 0.078 (GeV)-', 
y = 0.875 (GeV)-1, wherea:-; the K11: S-wave ~>cattering lengths turn out to be 
a!= O.llp-1 and a~=- O.l5v-'· These values are close to those predicted by 
current algebra and lie within the band found by ADER et al. using crossing, 
unitarity and the existenee of the K* (' 5•16 ). Moreover the I= t S-wave has 
a positive imaginary part but iH not unitary, except at the threshold from (2.8). 
Similarly eq. (2.8) makes the I= l S-wave unitary only at threshold. The 
other partial waves are not unitary even at threshold. 

Now, having resolved the important problem of the positivity of the im­
aginary part of the I= t S-wave (but not the general problem of unitarity), 
we are allowed to define the complex zeroR of the K-11: scattering amplitudes. 

(1 5 ) J. P. ADER, C. MEYERS awl B. BONNIER: Nucl. Phys., 45 B. 554 (1972). 
(1 6 ) J. P. ADER, C. MEYERS and B. BON~IER: Phys. Lett., 46 B, 403 (1973). 
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2'1. Complex zeros of A(s, t, u). - From (2.6) the zeros of the amplitude 
A(s, t, u) are given by 

(2.10) l (m2-p2)2] g 
YK* (t-s)+ --2-- Dp(t)-.,f(s-u)DK.(u)+ 

mK... ..... 

+ [(oc- p)q, + (oc + Plqu + yqt]Dp(t)DK•(U) = 0, 

which defines a two-dimensional surface in the complex (s, u)-space. The fol­
lowing points lie on this surface: 

i) 8= u' 
_ 2 P . mP P . 

( 
r 2) [ ( r )2]' t - mp 1 - 8q~ - ~mp rp 1 - 8q~ ' 

ii) 

These points may be associated, in this order, with the zero of the Legendre 
polynomial at the p mass in the t-channel and at the K* mass in the u-channel 
physical region, and the double-pole-killing zero at the intersection of the 
p and the K*. The projections of these points on the real (s, t, u)-plane are 
eSSentially independent Of rp and FKo l provided that rp « mp and FKo « mKo, 

Their respective distances from this plane are characterized by Im t of order 
mPFP and Im u of order mK.rK., hence one expects the zeros of A(s, t, u) to be 
nearby zeros. But this generalization is not evident in view of the presence 
of linear terms in q,, qt and qu in the expression of A(s, t, u). So we traced in 
Fig. 1 the modulus contours of this amplitude in the real (s, t, u)-plane. It is 
clear from this Figure that there exists a curve along which A(s, t, u) shows 
a pronounced sharp minimum, and it is reasonable to associate this with a 
nearby zero-contour as is discussed in ref. (9 ). Moreover this curve of minimal 
JA J is not very different from the elliptic zero-contour of the narrow-width 
meson resonance approximation. The unitarization procedure at the threshold, 
defined by (2.8) and (2.9), tends somewhat to draw the original ellipse of zeros 
into a triangular shape with the horizontal base passing through the K*-p 

intersection, but this effect is indeed not very pronounced. As we have pre­
viously remarked, this quasi-elliptic contour of nearby zeros plays the roles 
of the p Legendre zero, the K* Legendre zero and the K*-p crossing zero. In 
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addition it also playR the roh~ of the Adler-Weinberg zero, since it passes 
through the real (s, t, u)-plane region: {t.;;;4,u2

, s and u,;;; (m+ ,u) 2
} not very 

far from the line s = m 2 + ,u 2
, which correspondH to a smooth extrapolation 

of the <·.urrent. algebra z1;ro to the on-maHH-Hhell amplitude. 

2·2. Complex zeros of R(s, t, u). - From (:J.7) the zeroH of the amplitude 
B(s, t, u) are given by 

(2.11) YK*Dp(t) · 

[( 
(m2 _ .U2)2) ( (m2 _ ,uz)z) ] 

. (t-s) +--m;;;.-- DK•(S)- (t-u)+ mi• DK.(u) -

-lgp(s-u) + 2p(q.-qu)Dp(t)]DK.(s)DK•(U) = 0, 

which defineH a t.wo-climensional wrface in the eomplex (s, u)-spaee. The fol­
lowing points lie on thiH ~mrfaee: 

i) 
(m2 _ .U")2 

U=t+ --
mi• ' 

ii) 

iii) 8 ~ u ' 

iv) 

v) 

These pointH emTeHpond respeetively to the K* Legendre zero in the s- and 
u-channel physical regimu;, the p J,egendre zero in the t-ehannel and to the 
double-pole-killing zero at the K*-p and K*-K* interHectiom. They exhibit 
the ~mme features as tlw previously des<•ribed points of the zero-surfaee of am. 
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plitude A(s, t, u). In the same way the modulus contours of the amplitude 
B(s, t, u) attest to the existence of a nearby zero-contour, which is characterized 
by a curve (plus a line) of minimal \B\lying very close to the ellipse (the line 
s = u) of the original narrow-width meson resonance model (Fig. 2). Conse­
quently the unitarization procedure at the threshold defined by (2.8) and (2.9) 
does not greatly disturb the behaviour of the zero-contour of B(s, t, u). This 
result is easily explained by the small value taken by the {J-parameter 
{ = 0.078 (GeV)-1 ). 

To conclude this description we want to discuss the sensitivity of the paths 
of zeros of the amplitudes A(s, t, u) and B(s, t, u) to the value of the I= 0 
1t1t S-wave scattering length IIg injected in the unitarity constraint at the 
threshold in the t-channel (2.9). Previously this scattering length took the 
value given by the current algebra theory and the zero-contours lay very close 
to the elliptic forms given by the narrow-width resonance approximation. 
Now if IIg takes values in a domain which is compatible with the current al­
gebra predictions (for example 0.07 p-1 < ng < 0.27 p-1 )' the behaviour of the 
zero-contours is essentially independent of the value chosen. In particular the 
paths of zeros associated with the value of II~ found in the model of ref. (1 7•18 ) 

(IIg c:::: 0.095W1 ) are in perfect agreement with the ellipses of zeros defined by 
eqs. (2.4) and (2.5). Now if IIg takes values which are significantly different 
from the current algebra value, e.g. the value IIg= 0.6p-1 predicted by the 
experimental results on the low-energy n°-7t0 ( 19.2°) and K.4 (

21
•22 ), the zero­

contours are strongly affected by such a choice (the lX, fJ and y parameters be­
come important). Thus the original elliptic shape of the zero-contours is dis­
torted, in particular for the amplitude A(s, t, u). Moreover the zero-surfaces go 
away from the real (s, t, u)-plane in certain regions such as the u-channel physical 
region of the two amplitudes A(s, t, u) and B(s, t, u), where they respectively 
represent the experimentally well-known reactions K +7t----* K +7t- and K +no---* 

---* K07t+, and the definition of the zero-contours becomes ambiguous. Therefore 
it appears clear that in a low-energy Breit-Wigner picture of the K-7t am-

(17 ) F. ARBAB and J. T. DoNOHUE: Phys. Rev. D, 1, 217 (1970). 
(18) A. ARNEODO and J. T. DONOHUE: Nuovo Cimento, 15 A, 107 (1973). 
(19) J. R. BENSINGER, A. R. ERWIN, M. A. THOMPSON and W. D. WALKER: Phys. Lett. 
36 B, 134 (1971). 
( 20) P. SONDEREGGER and P. BoNAMY: Proceedings of the Fifth International Conference 
on Elementary Particles, Lund, 1969 (Paper No. 732, unpublished). 
(21) A. ZYLBERSZTEJN, P. BASILE, M. BouRQUIN, J. P. BoYMOND, A. DIAMANT·BERGER, 

P. ExTERMANN, P. KuNZ, R. MERMOD, H. SuTER and R. TuRLAY: Phys. Lett., 38 B, 

457 (1972). 
(22) G. VILLET, M. DAvm, R. AYED, P. BAREYRE, P. BoRGEAUD, J. ERNWEIN, J. FEL­

TESSE, Y. LEMOIGNE, P. MARTY and A. V. STIRLING: Conference on THt Scattering, 1973, 
Tallahassee Conference (A.I.P. Conference Proceedings, No. 13). 
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plitudes the zero-contours are stable features against the unitarization procedure 
at the threshold (in the three channels) only so long the I= 0 'TC-'TC S-wave scat­
tering length is compatible with the current algebra predictions. 

3. - Zero-contours in the K * region and unitarity constraints. 

In order to investigate the consequences of unitarity for the nearby zero­
contours, we transpose the analysis which PENNINGTON and ScHMID have 
performed for 'TC-'TC scattering (8 ) to the case of K-'TC scattering. 

In the u-ehannel physical region of the K-'TC amplitude A(s, t, u), only the 
S and P waves are important near the K* resonance. Hence the equation of 
zeros 

may be written as 

(3.1) (f!(u) + 2ft(u)) cos O*(u) +-! (f!(u) + 2ft(u)) = 0. 

Moreover in the K* region we can reasonably neglect the I= ! P-wave and 
represent the I=-! P-wave by a unitary Breit-Wigner form. Using a phase 
shift representation for the S-waves, we obtain for the projection of the nearby 
complex zeros onto the real (s, t, u)-plane 

(3.2) Re (cosO*(u)) = 

On the line u = mi:. the zero occurs for 

which is proportional to the value taken at the K* mass by the imaginary part 
of t,he S-wave amplitude in the u-channel physical region. This expression 
implies that the unitarity constraints cannot shift the intercept beyond the 
following limits: 

(3.4) -!<Re (cos O*(u = mi:.)) <0. 

Furthermore, if the exotic I= ~· S-wave is small, the effective lower limit 
for the intercept iH ,...., - -~. If one believes in the current algebra zero-contour 
in the region below threshold in all channels, then the true nearby zero-contour 
cannot deviate much from that given by the Breit-Wigner model, since it must 

34 - 1l Nuovo Cimcnto A. 
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intersect the line u = m~. between - i and zero. (The Breit-Wigner model 
predicts an intercept at cos O(u) = 0.) 

If we repeat this analysis for the K-7t amplitude B(s, t, u), we obtain for the 

projection of the nearby complex zeros onto the real plane in the u-channel 
physical region 

(3.5) Re (cos O*(u)) = 

A.t u = m~. the zero occurs at 

This expression implies that the intercept remains within the unitarity 
limits 

(3.7) -!<Re (cos O*(u =m~.)}<!. 

4. - Zero-contours and low-energy K-7t scattering data. 

There exist two different methods of describing zero-contours of an am­
plitude A(s, t, u): the contours of minimal modulus and the intersection of the 

hyperplane Im u = 0 with the surface A(s, t, u) = 0. One method, which we 
employed in our definition of the theoretical paths of zeros of the K-7t am­
plitudes in Sect. 2, corresponds experimentally to finding the minimum of the 

differential cross-sections. The other consists in determining the zero-contours 
for A(s, t, u) in the u-channel using the phase shifts of the dominant waves, 
which are experimentally accessible; one solves for the complex values of 

cos O*(u) such that A(u, cos O*(u)) = 0, and then projects onto the real (s, t, u)­

plane. The respective properties of these two methods are discussed in detail 

in ref. (9
• 23 ). The main result of these analyses is that both methods lead to the 

same definition of zero-contours if the amplitude possesses nearby zeros, which 

are illustrated by the existence of a curve (or curves) along which the am­

plitude shows a pronounced sharp minimum. On the other hand, if the zeros 

acquire a nonnegligible imaginary part, the modulus contours no longer pre­
sent such strongly marked features and the definition of zero-contours be­

comes so ambiguous that the two methods lead to different conclusions. Con­

sequently if one uses the second method of describing the experimental paths 

( 23 ) M. R. PENNINGTON: Conference on 7t-7t Scattering, 1973, Tallahassee Conference 
(A.l.P. Conference Proceedings, No. 13). 
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of zeros, as we propose to do in this Section, we must take into account not 
only the projection of the complex zeros onto the real (s, t, u)-plane but also 
their distance from this plane, i.e. the imaginary part of these zeros. Moreover, 
as it is always interesting to look at what happens in the differential cross­
section, we shall do so and compare the eventual minima with the real parts 
of the complex zeros. 

We determine the experimental zeros by using the three following phase ~>hift 
analyses: 

i) The analysis of the S and P K-n scattering wave phase shifts from 
threshold to mKrc = 1.2 Ge V made by MERCER et al. (1°). 

ii) The same analysis made by BrNGHAM et al. with a different method 
and better statistics (11). 

Fig. 3. - The real part of the complex zeros of the K-1t amplitude A(s, t, u) in the 
u-channel physical region, where it represents the K +7t- elastic scattering, as deter­
mined from the data of ref. (1°·11). The black points are obtained by comidering the 
exact values (with independent errors) of the experimental wave phase shifts of 
MERCER; the continuous line by considering fits of the wave phase shifts of 
BINGHAM. The ellipse e is the zero-contour of the narrow-width approximation of 
the K* and p dominance motlel. The bounds B at u= mi• are the unitarity bounds 
- t< Re (cos IJ*(u)) <:;0. 
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iii) The analysis of S-, P- and D-wave phase shifts in K+7t- elastic scat­
tering has been performed by FIRESTONE et al. (12 ) up to mJVI: = 1. 7 Ge V, and 
by BAKER et al. (13) up to 1.3 GeV. Since the latter find results not very differ­
ent to those of the former, we shall employ only the FIRESTONE et al. results in 
our search for nearby zeros. 

At this point let us remark that the analyses ii) and iii) yield two solutions 
for the I= i S-wave phase shift. In what follows we use only the <<down)) 
solution. The <<up )) solution resembles the << down )) solution except that it 

\ 
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Q (l q, q_ 

Q 
q_ 

q, 
(l 

q 

\ 
Fig. 4. - The real part of the complex zeros of the K-1t amplitude .A(s, t, u) in the 
u-channel physical region as determined from the data of FIRESTONE (ref. (12) ). The 
error bars are deduced from experimental errors in the determination of the I= ! 
S-wave phase shift. 

has a narrow ( .;;;; 30 Me V) resonance near mK. . The zero-contour structures 
are quite similar for the two solutions except in a very narrow interval near 

u=mi-. 
We show in Fig. 3 and 4 the real part of the complex zeros of the K-7t scat-

tering amplitude .A(s, t, u) in the u-channel (where it represents in the physical 
region the reaction K+7t- _,... K+7t-), obtained from the previously quoted ex­
periments. In Fig. 5 is shown the imaginary part of cos O*(u). From these 
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Figures it is clear that the zero-contour suggested by the Breit-Wigner model 
is in reasonable agreement with the experimental results for u ;;;;; mi•. The 
<< first >> zero which enters the physical region does this through the backward 
direction with an imaginary part of cos O*(u) ~ (- 0.3, - 0.4), and moves 

2.0~--------------------------------------------------, 
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Fig. 5. - The imaginary part of the complex zeros of the K-7t amplitude .A(s, t, u) 
in the u-channel physical region as defined by Im cos O*(u) using the data of MERCER 
(black points), BINGHAM (continuous line) and FIRESTONE (circles). 

smoothly towards the centre of the physical region, lying very close to the el­
lipse defined by the eq. (2.4). This zero, which is a nearby zero having 
[Im cos O*(u)[;;;;; 0.3 for u;;;;; 0.85 (GeV)2, passes in the vicinity of the K* Le­
gendre zero and is associated with a pronounced dip in the differential cross­
section. Beyond the K* region the imaginary part of cos O*(u) increases rapidly 
and the projection of this complex zero onto the real (s, t, u)-plane no longer 
corresponds to a minimum in the differential cross-section which, indeed, pre­
sents a very flat, featureless behaviour at such energies. Near u,...., 1 (GeV) 2 

the D-wave starts to contribute and a <<second>> zero begins to approach the 
physical region. Thus, in this region of higher energies we have to refer to the 
only D-wave phase shift analysis, i.e. to the Firestone et al. experiment (Fig. 4 
and 5). As is well known, we cannot determine the zero-contours far outside 
the physical region since a finite number of partial waves provides a poor rep-
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resentation of the amplitude there. Nevertheless we see that this <{second)} 
zero enters the physical region through the forward direction at approximately 
the place predicted by the simple Breit-Wigner model of Sect. 2, and with 
Jlm cos O*(u)J ~ 0.9. It is not a nearby zero and its entrance in the u-channel 
physical region causes the real part of the <{first )} zero to recoil somewhat towards 
the backward direction. Then the real part of the <{first )} zero lines up, ready 
to become one of the Legendre zeros of the K**(1420)-resonance, while the real 
part of the <{ second )} zero moves, ready to become the other K** Legendre 
zero. .At the same time that they approach the K** region, these complex 
zeros approach the real (s, t, u)-plane and they produce a more and more marked 
double-dip structure in the differential cross-section. Hence at u ~ mi-• both 
zeros are respectively characterized by 

* n* Re cos ()1 (u) ~-Re cos u
2 

(u) ~- 0.5 

Fig. 6. - The real part of the complex zeros of the K-rc amplitude B(s, t, u) in the 
u-channel physical region, where it represents the reaction K+rc0 -+ K0rc+, as determined 
from the data of MERCER (black points) and BINGHAM (continuous line). The ellipse e' 
(plus the line s= u) is the zero-contour given by the narrow-width approximation 
of the K*- and p-dominance model. The bounds B' at u = mi:• are the unitarity 
bounds: - i <Re cos O*(u) < +!. 
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and 

Jrm cos e~(u) 1 ,..._, Jim cos e:(u)J "(; 0.1. 

We show in Fig. 6 and 7 the respective real and imaginary parts of the 
complex zeros of the K-1t scattering amplitude B(s, t, u) in the u-channel (where 

2.0.------------------------"l 

1.0 

* en 
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0 

~ 

.s 
0 

Vu (GeV) 

Fig. 7. - The imaginary part of the complex zeros of the K-n- amplitude B(s, t, u) 
in the u-channel physical region as defined by Im cos O*(u) using the data of MERCER 

(black points) and BlNGHAM (circles). 

it represents in the physical region the reaction K+7t0 ~ K07t+) obtained from 
the analyses i) and ii) (*). One can see from these Figures that the deviation 
from the elliptic contour of the narrow-width K* and p dominance model seems 
to be more important for this amplitude than for the amplitude A(s, t, u). 
Indeed the zero enters the physical region through the backward direction 
before the elliptic contour and with a small imaginary part, e.g. Jim cos{}*( u) I "' 
c:::: 0.1. It moves smoothly towards the centre of the physical region where it 
crosses the line u = mi• very close to cos O(u) = 0. This zero is a nearby zero 
having Jim cos O*(u)J "(; 0.3 for u "(; 0.85 (GeV) 2, and it produces a marked dip 
in the differential cross-section. As for the amplitude A(s, t, u), the zero rapidly 
goes away in the complex (s, u)-space beyond this energy and is no longer as­
sociated with such a dip structure in the differential cross-section. For u ~ 
~ 1 (GeV) 2 the zero described in both Fig. 6 and 7 becomes meaningless since 

(*) FIRESTONE et al. have analysed only K +n-- elastic scattering. 
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the B-and P-waves do not yield a good approximation to the amplitude B(s,t,u) 

at such energies. Moreover this lack of D-wave analysis does not allow us to 
study the entrance and the behaviour of the double-pole-killing zero in the 
u-channel physical region. We remark in addition that the experimental re­
sults suggest a possible contour of nearby zeros at t ~- 0.2 (GeV) 2 for 
.Az•=1(s, t, u). 

Finally for completeness we have tried to define the paths of zeros of the 
K-7t scattering amplitude .A(s, t, u) in the t-channel from the experimental 
7t-7t scattering results. This hope was illusory for the following reasons: 

Above the 1t1t __,.. KK threshold unitarity quite fixes the both modulus 
and phase of the 1t1t __,.. KK B-wave provided that the KK __,.. KK B-wave phase 
shift is available, which is not the case. 

Below the 1t1t __,.. KK threshold unitarity fixes the phase of the 1t1t __,.. KK 
B-wave but does not yield any information about its modulus. Thus the exact 
determination of the 7t-7t amplitude does not constrain in any way the modulus 
of the 1t1t __,.. KK B-wave. Consequently in the region defined by !cos O*(t) I< 1, 
where a finite number of partial waves provides a good representation of the 
amplitude, only the phase of the complex zeros is determined, i.e. 
Im cos O*(t)jRe cos O*(t) and not the separate real and imaginary parts of 
cos O*(t). For example, considering that this phase is nothing but the difference 
of the phases of I= 0 B-wave and P-wave of the 7t-7t scattering amplitude, 
we know that the complex zero of .A(s, t, u) passes through the real (s, t, u)­
plane for t ~ 0.5 (GeV) 2 , but we are unable to say where it does this on the 
straight line t = 0.5 (GeV) 2 • 

5. - Comparison of zero-contours in 7t-7t and K-7t scattering. 

It is interesting to compare the zero-contours predicted by the simple Breit­
Wigner model for 7t-7t and K-7t scattering. In both cases the nearby zero­
contours are found to be simple closed curves which act as Adler-Weinberg 
zeros, zeros of P-wave resonance Legendre polynomials and double-pole-killing 
zeros. For the 7t-7t amplitudes .A:t;2 and .A~;;1 the curves are circles (9

), whereas 
for the corresponding K-7t amplitudes .A(s, t, u) and B(s, t, u) the curves are 
ellipses n. 

These zero-contour predictions, in spite of the very simple model from which 
they are drawn, appear to be in good agreement with the experimentally ob­
tained contours of nearby zeros, at least for energies up to ~ 0.95 GeV. How­
ever, the prediction that the double-pole-killing zero and the upper branch 

(*) The l't"-l't" amplitude Af[;;1 and the K-1t amplitude B(s, t, u) are antisymmetric under 
the exchange 8~ u, and they also possess a zero line for 8 = u. 
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of the contours form a single smooth curve fails for both n-n and K-n scattering, 
but for different reasons. In n-n scattering, due in part to the presence of the 
S*-resonance situated between the p and f, the experimental contours of zeros 
remain well defined, with Jim cos O*(u) J ~ 0.2, and it is clear that the <<first >~ 

0.4,------------, 

a) 

Fig. 8 - The differential cross-section (normalized to 1 for cos 0= -I) vs. cos 0 for 
a) rr+rr-- rr+rr- at I GeV from the data of ref. (24 ), b) K+rr--c>- K+rr- at 1.15 GeV 
from the data of ref. (12). 

and << second >> zero branches do not form a simple closed curve. On the other 
hand, in K-n scattering there are experimentally no nearby zeros in the energy 
range (0.95--;-1.30) GeV, hence the concept of zero-contour is not well defined. 
However it is again clear that the model prediction of a closed curve of nearby 
zeros is not verified. In order to illustrate this difference we show in Fig. 8 
the experimental differential cross-sections for n+n- (a)) and K+n- (b)) elastic 
scattering for energies approximately half-way between the p and f(a)), and 
between the K*(890) and K**(1420). In case a) a pronounced minimum is 
visible, whereas the K-n cross-section has only a broad relatively poorly de­
fined minimum. 

6. - Summary. 

We have shown that in the narrow-width K* and p dominance model the 
zero-contour of the K-n amplitude .A(s, t, u) = .A1.-i(s, t, u) is a closed curve, 
an ellipse in the real (s, t, u)-plane. This curve fills three distinct roles: Adler-

(24 ) s. D. PROTOPOPESCU, M. ALSTON-GARNJOST, A. BARBARO-GALTIERI, s. M. FLATTE, 

J. H. FRIEDMAN, T. A. LASINSKI, G. R. LYNCH, M_ S. RABIN and F_ T. SoLMITz: 

Conference on Meson Spectroscopy, Philadelphia, April 1972 (A.I.P. Conference 
Proceedings). 
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Weinberg zero inside the region below threshold in all channels, p and K* Le­

gendre zeros respectively in the t-channel near the p mass and in the u-channel 

physical region near the K* mass, and double-pole-killing zero at the inter­

section of the lines t = m~ and u = m~.. The experimental zeros determined 

from the data of ref. (10
"
13

) show clearly that the zero-contour is essentially that 

predicted by this simple model in the low-energy u-channel physical region 

(u >(m~.). This result lends support to the analysis of .ARNEODO, GUERIN 

.and DoNOHUE {9
), which emphasizes how, in the low-energy region (u ~m~), 

unitarization gives rise to a very small distortion of the circular zero-contour 

given by the narrow-width p dominance approximation of the corresponding 

n-n scattering amplitude A:t;2(8, t, u). 

For the antisymmetric (under the exchange 8~u) K-n amplitude B(8, 

.t, u) =- Az'""1(8, t, u)jv'2 the narrow-width K* and p dominance model pre­

dicts the zero-contour to consist of the line 8 = u, plus an ellipse passing through 

the Legendre zero of the K* in the 8- and u-channel physical regions and through 

both K*-p double poles. But this elliptic zero-contour is slightly more sensitive 

to unitarization at low energy (u ~m~.) than the elliptic zero-contour of the 

previous K-n amplitude A(8, t, u), and the experimental results show evidence 

for a possible contour of nearby zeros at t c::::- 0.2 (GeV)2 • 

This model fails for u > m~., since it predicts a closed contour of nearby 

zeros for the two K-n amplitudes A(8, t, u) and B(8, t, u), while experimentally 

the zeros have a nonnegligible imaginary part and that consequently the notion 

·of zero-contour is not well defined at such energies. We must remark that the 
€xperimental zeros of the corresponding n-n amplitudes (respectively A~2 

and - A;o;;1/v2) also disagree with the predictions of the narrow-width p 

1iominance model, but not for the same reason, since they are well defined 

nearby zeros up to the f mass which do not propagate along the predicted cir­

·cular curves for u > m!. 
It remains a puzzle why the simple Breit-Wigner model, which strongly 

violates unitarity, still predicts zero-contours in good agreement with ex­

Jleriment at low energy. The success of the analysis for n-n scattering of PEN­

NINGTON and ScHMm (8 ), which is based on the idea of zero-contours being 

relatively stable against unitarization, suggests that this idea may be of some 

phenomenological importance. 
Finally we discussed how it was illusory to hope for the experimental de­

finition of the paths of zeros of the K-n scattering amplitude A(8, t, u) in the 

inelastic nn _,.. KK channel, from the knowledge only of the exact features of 

the n-n scattering amplitude. 

*** 
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APPENDIX 

Kinematics and amplitudes in K -TC scattering. 

The conventional invariant variables of the elastic K-1t scattering 

are defined by 

where P1 (p2 } and p~ (p;) are the respective momenta of the incident (outgoing) 
pion and kaon. These variables obey the on-mass-shell relation 

(A.2) 

with Pi=p:=tl and p~2 =p~2 =m2 • 
In the 8-channel c. m. system the outgoing momentum Q(8) and the scattering 

angle 6(8) are given by 

Q(8) 

(A.3) 

In the u-channel c.m. system the outgoing momentum Q(u) and the 
scattering angle O(u) are deduced from (A.3) by the exchange of the varia­
bles u and 8. 

In the t-channel the incoming momentum Q(t) and the scattering angle 6(t) 
are given by 

Q(t) = !v't-4f-t2, 

(A.4) 8-U 
cos6(t) = -- - . 

v't-4f-t2Vt-4m2 

We use explicitly in this paper the convenient variables 

In our definition of zero-contours in Sect. 2, the limit one takes to approach 
the real (8, t, u)-plane corresponds to a particular prescription for these va­
riables. For example, the (8 + iO) limit corresponds to the prescription 
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q,= -ilq.l for 8 real >(m+ ft) 2 , the (8-iO) limit to q,= ilq.l. In the same 
way the (t + iO) limit corresponds to qt= -ilqtl for t real > 4ft2 , the (t-iO) 
limit to qt= ilqtl· 

The K-1t isospin amplitudes (I,= l and j) can be expressed in terms of 
two invariant amplitudes A ±(8, t, u) which exhibit definite crossing properties 
under 8 ~ u exchange 

(A.6) 

_A±(8, t, u) = ± _A:I:(u, t, 8), 

_Az.-!(8, t, u) = A.+(8, t, u) + 2A.-(8, t, u), 

A.1.=!(8, t, u) = A.+(8, t, u)-A.-(8, t, u). 

The physical partial waves /:(8) in the 8-channel are defined by 

+1 

(A.7) ft(8) = !JA1(8, t, u)P1(cos0(8)) d(cos0(8)) 
-1 

with I= I,. They are related to the elastic phase shifts (){(8) through 

(A.8) 1{(8) = ~ exp [i/){(8)] sin/){(8). 

The scattering lengths are defined by 

(A.9) a- rm 1 1. ( (}{(8) ] 
' - •-+<m+p>' Q(8)21+l ' 

which leads to the following S-wave scattering lengths 

(A.lO) 

In the t-channel the inelastic process 7t7t_,..Ki{ is described by the amplitudes 

(A.ll) { 

_AI,-o(t, 8, u) = -yi6A.+(8, t, u), 

A.Io-1(t, 8, u) = 2A.-(8, t, u). 

The physical partial waves Tf(t) are defined by 

+1 

T{(t) = l J A 1(t, 8, u)P,( cosO(t)) d( cosO(t)) 
-1 
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