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Several attempts have been made recently to generalize the multifractal formalism, originally intro­
duced for singular measures, to fractal signals. We report on a systematic comparison between the 
structure-function approach, pioneered by Parisi and Frisch [in Proceedings of the International School 
on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. 
Ghil, R. Benzi, and G. Parisi (North-Holland, Amsterdam, 1985), p. 84] to account for the multifractal 
nature of fully developed turbulent signals, and an alternative method we have developed within the 
framework of the wavelet-transform analysis. We comment on the intrinsic limitations of the structure­
function approach; this technique has fundamental drawbacks and does not provide a full characteriza­
tion of the singularities of a signal in many cases. We demonstrate that our method, based on the 
wavelet-transform modulus-maxima representation, works in most situations and is likely to be the 
ground of a unified multifractal description of self-affine distributions. Our theoretical considerations 
are both illustrated on pedagogical examples and supported by numerical simulations. 

I. INTRODUCTION 

The multifractal formalism [1-9] has been established 
to account for the statistical scaling properties of singular 
measures arising in various physical situations [10-18]. 
Notable examples include the invariant probability distri­
bution on a strange attractor, the distribution of voltage 
drop across a random resistor network, the distribution 
of growth probabilities on the interface of a diffusion­
limited aggregate, and the dissipation field in fully 
developed turbulent flows. This formalism lies upon the 
determination of the f (a) singularity spectrum [1] which 
associates the Hausdorff dimension f (a) to the subset of 
the support of the measure JL where the singularity 
strength is a: 

j(a)=dimH{xiJL<Bx(E))-Ea, for E~OJ , (1) 

where dimH denotes the Hausdorff dimension and Bx(E) 

is an E-box centered at x. The so-called thermodynamical 
analogy provides a natural connection between the j(a) 
spectrum and an observable spectrum T(q) defined from 
the power-law behavior of a partition function [1-9] (in 
the limit E~O): 

Zq(E)= ~JL(B;(E))9-ET(q)' 
i 

(2) 

where the sum is taken over a partition of the support of 
the singular measure JL into boxes of size E. This T(q) 

spectrum is directly related to the so-called "generalized" 
fractal dimensions [19-22] Dq =r(q)/(q -1). Using a 
standard steepest-descent argument to estimate the sum 
in Eq. (2), in the limit E~O, one gets 

r(q)=mina[qa- /(a)] . (3) 

r(q) and j(a) are thus related by a Legendre transform. 
Actually, the variables q and r(q) play the same role as 
the inverse of temperature and the free energy in the 
thermodynamics [1-9] while the (inverse) Legendre 
transform 

j(a) =minq [qa -r(q)] (4) 

indicates that instead of the energy and the entropy, we 
have a and f (a) as the thermodynamical variables conju­
gate to q and r(q). 

In the context of the study of fully developed tur­
bulence [2,10,23-25], Parisi and Frisch [26] (PF) have 
proposed a similar description of the singular aspect of 
the longitudinal velocity signal v (x). They have called 
local singularity h (x 0 ) the exponent which characterizes 
the local scaling behavior of the velocity increment 
Bv (x 0 , /) around x 0 , in the limit of inertial separation 
I~o: 

(5) 

The singularity spectrum D (h) of the signal is then 
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defined as the function that gives, for a fixed h, the Haus­
dorff dimension of the set of points x where the exponent 
h (x) is equal to h. In their original work, PP have actu­
ally pioneered the multifractal approach which consists 
in estimating the D(h) spectrum from the scaling ex­
ponents Sp of the p-order structure function [23,24,26], in 
the limit 1----+0: 

(6) 

Thus, by suitably inserting Eq. (5) into the above 
definition, one can bridge D (h) and Sp by a Legendre 
transform: 

(7) 

which is, a priori, the counterpart of the relationship (4) 
between the f(a) and r(q) spectra of singular measures. 
Hereafter, we will refer to this method, which consists in 
computing the D (h) singularity spectrum of a fractal sig­
nal by first estimating the exponents Sp [Eq. (6)] and then 
by Legendre transforming [Eq. (7)], as the structure­
function (SF) method. 

The SF approach has raised a rebirth of experimental 
interest in the study of turbulent flows [27-31]. The 
main feature of the data gathered in the last decade is 
that they all exhibit a nonlinear dependence of the ex­
ponents Sp versus p, the hall mark of multifractality, cor­
roborating the results of earlier experimental investiga­
tions [32,33] of turbulent signals. But the elaboration of a 
multifractal formalism to characterize the singular nature 
of fractal signals is an important goal that is not restrict­
ed, in any case, to the context of fully developed tur­
bulence. Fractal signals are commonly encountered in 
physics or other applied sciences. Well-known examples 
include all kinds of random walks (e.g., Brownian signals) 
used to mimic the noisy dynamical behavior observed in 
various experimental situations [10,34-42], financial time 
series [36-38], geologic shapes [10,39], interfaces devel­
oping in far from equilibrium growth processes 
[16-18,40], turbulent signals recorded in fractal growth 
phenomena (41], and DNA "walk" coding of nucleotide 
sequences [42]. There have been some attempts [40,43] to 
extend the SF method to other fields than fully developed 
turbulence. But, as we will demonstrate in the following, 
even though the SF method can give some conspicuous 
information on the multifractality of self-affine signals, 
generally it does not allow a complete characterization of 
the distribution of singularities; moreover it has funda­
mental drawbacks which may introduce drastic bias in 
the estimate of the D (h) singularity spectrum. 

In a previous work, we have elaborated on a method 
which turns out to be a very efficient tool to analyze frac­
tal signals [44-46]. This method, based on the wavelet­
transform modulus-maxima representation of the signal, 
provides a practical way to determine the entire D (h) 
spectrum directly from any experimental signal. More­
over, it is likely to be a good candidate to achieve a 
unified statistical thermodynamic description of singular 
distributions (including measures and signals). Beyond 
the academic examples and the applications of our 
wavelet-based method given in our original work in Refs. 

[44,45], there was a need to compare its performance 
with that of the SF method. The aim of this paper is to 
point out using concrete examples the failures of the SF 
approach and to demonstrate that the wavelet-transform 
modulus-maxima (WTMM) method supplies to these 
drawbacks. 

The paper is organized as follows. In Sec. 11 we intro­
duce the WTMM method within the mathematical 
framework of the wavelet transform and its modulus­
maxima representation. In Sec. Ill we address the 
difficult issue of the estimate of the scaling exponents 
which are related to negative order moments in both the 
SF and the WTMM methods. In Sec. IV we show to 
what extent and we explain why the accessible range of 
singularities is intrinsically restricted when one uses the 
SF method. We argue theoretically and we demonstrate 
on specific examples that the WTMM method does not 
suffer from such limitations. In Sec. V we discuss the 
effects of the presence of highly regular parts in the signal 
on the estimate of the D (h) singularity spectrum. We 
conclude in Sec. VI with some perspectives for future 
research. 

11. THE WAVELET-TRANSFORM 
MODULUS-MAXIMA METHOD 

In this section, we briefly describe the WTMM 
method. This method has been introduced and tested nu­
merically in Refs. (44,45]. We refer the reader to Ref. 
[46] for a more rigorous and complete description. The 
wavelet transform (WT) of a function f consists in 
decomposing it into elementary space-scale contributions, 
associated to the so-called wavelets which are constructed 
from one single function, the analyzing wavelet 1/J, by 
means of translations and dilations [47-51]. The WT of 
the function f is defined as 

T.p[J](b,a)=.!. J +oo if [ x -b ]f(x)dx , (8) 
a -oo a 

where a ER+" is a scale parameter and b ER is a space 
parameter. The analyzing wavelet 1/J is generally chosen 
to be well localized in both space and frequency. Usually, 
1/J is only required to be of zero mean but, for the particu­
lar purpose of singularity tracking that is of interest here, 
we will further require 1/J to be orthogonal to some low­
order polynomials [52-54]: 

J+oo m - < X 1/J(x)dx-0, Vm, o_m <N. 
-00 

(9) 

A class of commonly used real-valued analyzing wavelets 
[55-58] which satisfies the above condition is given by 
the successive derivatives of the Gaussian function: 

(10) 

Let us recall the notion of local Holder exponent 
[52,54,59] which is more general than the one defined by 
Eq. (5). The Holder exponent h (x 0 ) of a function fat x 0 

is defined as the largest exponent such that there exists a 
polynomial P n ( x) of order n that satisfies 

(11) 
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for x in a neighborhood of x 0 • This definition provides a 
generalization of Eq. (5) to any exponent h characterizing 
a singularity in a higher derivative of f. For example, 
h (x 0 ) = 1. 5 implies that the function f is differentiable at 
x 0 , but its derivative is not: the singularity actually lies in 
the second derivative of f. This extension leads naturally 
to a generalization of the D (h) spectrum [Eq. (7)] intro­
duced by PF. Henceforth we will denote D(h) the Haus­
dorff dimension of the set where the Holder exponent is 
equal to h: 

D (h)=dimH[xlh (x)=h l , (12) 

where h is no longer restricted to [0, 1) but a priori can 
take on positive as well as negative real values [46]. 

If one uses an analyzing wavelet 1/J that satisfies the 
condition (9), the local behavior of f in Eq. (11) is mir­
rored by the wavelet transform which locally behaves like 
[52-60) 

(13) 

in the limit a --+0, provided N satisfies N > h (x 0 ) in Eq. 
(9). The above equation mainly says that, when investi­
gating the local scaling behavior of the wavelet 
coefficients computed with an analyzing wavelet whose N 
first moments vanish, one can generally detect (and esti­
mate) all the Holder exponents off that are smaller than 
N. 

The originality of the WTMM method consists in 
building a partition function from the modulus maxima 
of the wavelet transform. These maxima are defined 
[59,61), at each scale a, as the local maxima of 
IT,1;[f)(x,a)l considered as a function of x. In Fig. l(b), 
we show the space-scale arrangement, in the (x,a) plane, 
of the modulus maxima of the wavelet transform of the 
fractional Brownian signal illustrated in Fig. l(a). The 
analyzing wavelet is the second derivative of the Gauss­
ian function [Eq. (10)]. These wavelet-transform 
modulus maxima are disposed on connected curves called 
maxima lines. Let us define [46) L(a 0 ) the set of all the 
maxima lines I that satisfy 

(x,a)El=a :Sa 0 , 

(14) 
\;fa :Sa 0 , 3(x,a)E/ 

An important feature of these maxima lines is that, each 
time the analyzed signal has a local Holder exponent 
h (x 0 ) < N at the point x 0 , there is at least one maxima 
line pointing towards x 0 , along which Eq. (13) holds 
[46,59). In the case of fractal signals, which are typically 
characterized by a hierarchical distribution of singulari­
ties [52-59], we expect that the number of maxima lines 
will diverge in the limit a --+0. In fact, as emphasized in 
Refs. [44,45] the branching structure of the WT skeleton 
defined by the maxima line arrangement in the (x,a) half 
plane enlightens the hierarchical organization of the 
singularities. The WTMM method consists in taking ad­
vantage of the space-scale partitioning given by this 
skeleton to define the following partition function 
[44-46): 
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FIG. l. WTMM and SF analysis of fractional Brownian 
motion. (a) Graph B 113 ( x) of a realization of a fractional 
Brownian process indexed by H = {. (b) Wavelet-transform 
maxima lines of B 113 (x). (c) r(q) vs q as computed with the 
WTMM method (e) and the SF method (6 ). (d) D(h) vs h 
from the Legend re transform [Eq. (17)] of the r( q) spectrum 
computed with the WTMM method. The analyzing wavelet is 
the second derivative 1(!< 2 l of the Gaussian function. 

Z(a,q)= ~ 
/E.L(a) 

[ sup IT.p(f](x,a')ljq, 
(x,a')El 

(15) 

where q EIR. Z(a,q) plays a role similar to the partition 
function defined in Eq. (2) for singular measures. Indeed, 
a deep analogy [44-46,62] does exist between the classi­
cal partitions defined for measures and the ones provided 
by the wavelet-transform modulus-maxima representa­
tion. The analyzing wavelet 1/J can be seen as a box of a 
particular shape, the scale a being its size [ E in Eq. (2)], 
while the modulus maxima indicate how to position our 
special "boxes" to obtain a partition at the considered 
scale. [Let us note that the sup in Eq. (15) can be seen as 
a way to define a scale-adaptive partition which will 
prevent divergencies from showing up in the calculation 
of Z(a,q) for negative q values.] In the limit a--+0, one 
can again define the exponent r( q) from the power-law 
behavior of the partition function: 

Z(a,q)-anq) . (16) 

Then, by using both the behavior of the wavelet 
coefficients along the maxima lines [Eq. (13)] and the ex­
tended definition of D (h) in Eq. (12), one can compute 
the D (h) singularity spectrum from the Legendre trans­
form of r(q): 
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D(h)=minq[qh --r(q)]. (17) 

Let us point out that Eqs. (16) and (17) were rigorously 
derived in Ref. [46] for a class of signals whose singular 
part is related to the invariant measure of some affine 
dynamical systems (expanding Markov maps of the inter­
val). 

It is tempting to relate the exponents -r(q), defined from 
the wavelet-based partition function, to the exponents ~P 
of the structure functions [Eq. (6)]. A simple comparison 
of Eqs. (7) and ( 17) gives immediately 

(18) 

As we will discuss in Secs. Ill and IV, this relationship 
does not hold for every value of q. In fact, -r(q) turns out 
to be a more general spectrum than the ~q's, in the sense 
that .,-( q) is the exact Legendre transform of the D (h) 
singularity spectrum in most situations. 

Ill. THE PROBLEM OF DIVERGENCIES 
IN THE COMPUTATION 

OF NEGATIVE q-ORDER MOMENTS 

Let us first remark that in the original PF definition 
[Eq. (6)], the structure functions are only defined for posi­
tive integer values of p. Even though one can extend this 
definition to real positive p values by replacing Bv (x, I) by 
I Bv (x, I) I in Eq. (6), the structure functions do not exist 
for negative p values. Indeed, there is no reason, a priori, 
that the probability density of Bv vanishes around Bv =0. 
Consequently, the Legendre transform (7) is not valid for 
p < 0 and only the part of the D (h) spectrum correspond­
ing to the strongest singularities is amenable to the SF 
approach. 

Recently, in the context of the study of growth pro­
cesses resulting in self-affine interfaces, a slightly different 
"structure-function" method has been introduced in or­
der to get rid of the divergencies problem encountered in 
the computation of negative-order moments [43]. Ac­
cording to Barabasi and Vicsek, the multifractal proper­
ties of a self-affine signal f (x) can be investigated by cal­
culating the q-order "height-height correlation function" 
defined as 

@q(l)= ( 1/(x)-f(x +[)lq) -lq , (19) 

where the spatial average is performed by considering 
only the terms such that f(x)- f(x +l):¥=0. This re­
striction artificially cures the divergencies problems for 
q < 0 and the exponents ~q can be computed for any q. 
Practically, this method consists in removing all the local 
increments that are below a fixed threshold (which could 
actually correspond to the numerical accuracy). The in­
crement probability density functions are thus modified 
and set to zero over an interval whose length corresponds 
to the introduced threshold. However, if one chooses, as 
in Ref. [43], this artificial cutoff to be scale independent, 
one can expect to observe some self-similarity breaking 
when considering small increments [which are the ones 
that are dominating in Eq. (19) for negative values of q ]. 
This phenomenon is likely to develop into a misleading 
phase transition [7,22,63-65] in the ~q spectrum for some 
critical negative q value. This is the explanation of the 

very puzzling results obtained by Barabasi and Vicsek 
[43] when using their method to study fractional Browni­
an processes. These processes [34,66,67], generally in­
dexed by a parameter H, are characterized by an incre­
ment probability density which is a Gaussian function 
whose variance behaves like z2H when considering incre­
ments over a distance l. If B H is a fractional Brownian 
process corresponding to the parameter H, since its incre­
ments BB H are Gaussian and stationary, one can compute 
spatial averages from ergodic formulas [68]. In particu­
lar, the scaling behavior of the average in Eq. (19) can be 
derived analytically in the limit z_.. + oo (This limit is ac­
tually the one taken in Ref. [43]; it corresponds to the 
limit of infinite range of scales when a lower cutoff is im­
posed. Similar results can be derived in the limit l-+0): 

@ ([)= z-H I +oo e -b2/4t2Hbqdb ' 
q 2v'21r c 

where the constant c is the cutoff introduced above. 
Then, using a straightforward change of variables, one 
gets 

@ (l)-[qHJ +oo e -x\qdx 
q cl-H 

-zqH(Cte+ z-(q +l)H) 

-FH+z-H. 

One thus obtains the following exact formula for ~q: 

{
qH for q > -1 

~q = - H for q < - 1 . (20) 

There is, thus, a singularity in the derivative of ~q for 
q = -1 which can be understood as a phase transition in 
the scaling properties of the signal. But one must em­
phasize again that this feature is only an artifact of the 
method. Even though one could try to extract from 
equations like Eq. (20) some relevant information about 
the singularity spectrum of the studied signals, this could 
be achieved only for particularly simple cases but not in 
more general (multifractal) situations [69]. 

This example clearly illustrates some intrinsic limita­
tions in the SF method; this method cannot deal with the 
divergencies problems inherent to the computation of 
negative-order exponents without losing the natural 
Legendre transform bridge with the D (h) spectrum. The 
situation is much more transparent when one uses the 
WTMM method. According to the definition (15), the 
self-similarity properties of the signal are directly incor­
porated into the calculation of the partition function 
which never diverges whatever the value of q is. In Fig. 1 
are reported the results of a statistical analysis of a frac­
tional Brownian process ( H = +) using the WTMM 
method. The numerical signal was generated by filtering 
uniformly distributed pseudorandom noise in Fourier 
space in order to have the required k - 513 spectral density 
[34]. A BH=t/3 fractional Brownian signal is shown in 
Fig. l(a). The corresponding wavelet-transform mod­
ulus-maxima skeleton computed with the "Mexican hat" 
t/J< 2l(x) [Eq. (10)] is illustrated in Fig. l(b). When plotted 
versus q, the exponent -r(q) extracted from the power-law 
behavior of Z(a,q) consistently fall on a line of slope 
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h =0.33±0.01. Moreover, Fig. l(c) shows that the 
theoretical prediction 

7(q) =q /3-1 (21) 

provides a remarkable fit of the data. No spurious phase 
transition is observed. By Legendre transforming 7(q) 
[Eq. (17)], we obtain 

h =H=f, D(h =t)=1. (22) 

As expected theoretically, we find that the Brownian sig­
nal B 113 (x) is almost everywhere singular with a unique 
Holder exponent h =f. Throughout this simple exam­
ple, we have illustrated the first crucial advantage of the 
WTMM method: this method is based on a discrete sum­
mation over well chosen points (scale-adaptive partition) 
rather than making a blind average over the whole sam­
pling interval. Therefore divergencies are naturally re­
moved without introducing any arbitrary artifice which 
might induce some meaningless phase transition phenom­
ena in the observed spectra. 

IV. LIMITATIONS IN THE RANGE 
OF ACCESSIBLE HOLDER EXPONENTS 

In this section, we will focus our comparative analysis 
between the SF and the WTMM methods on the compu­
tation of both the partition and the structure functions 
for positive q values exclusively. Moreover, we will as­
sume that the function f(x) under study is almost every­
where singular; this implies that the maximum value of 
the D (h) spectrum (which is the Hausdorff dimension of 
the support of the singularities) is 1. The case of signals 
which may be nonsingular on some set of finite Lebesgue 
measure will be discussed in Sec. V. 

Singularities of Holder exponents h > 1. If one com­
pares Eqs. (5) and (11), one can easily check that the ex­
ponent defined by the local behavior of the increments is 
equal to the Holder exponent if and only if the singularity 
lies in the first derivative of the function f. Indeed, in the 
definition (11), Pn(x0 ) can be seen as the first n + 1 terms 
of the Taylor series off at x 0 ; it coincides with the con­
stant term f (x 0 ) solely when f (x) is not differentiable in 
x 0 • When the function f is differentiable at least once, 
the behavior of the increment 8f(x0 ,l) is generically 
dominated by the linear term j'(x0 )/. Thus, whenever 
the function f has a local Holder exponent greater than 
l, the exponent identified by the increments will be h = 1. 
This is the demonstration that the SF method fails to 
detect the part of the D (h) spectrum [Eq. (12)] which lies 
beyond the value h 2:: l [even if this part corresponds to 
positive q values in Eq. (19)] and which corresponds to 
the weakest singularities. Furthermore, if the maximum 
value of D (h) is reached for some h 2:: l, the accessible 
range of singularities is truncated; the Legendre trans­
form (7) becomes 

(23) 

Therefore only the Holder exponents in the range [O,h * ], 
where h* satisfies h*=l-[1-D(h*)]/D'(h*)<l, can 
be captured by the SF method. This limitation is also 
seen on the {;q spectrum which exhibits an unexpected 

abrupt change- of behavior for q smaller than some q *. 
From Eq. (23), one can easily check that for q >q*, one 
recovers the true "singular" spectrum (i.e., 
{;q=l+minh[qh -D(h)]). But for q<q*, one observes 
the trivial behavior {;q =q, which actually corresponds to 
a singularity spectrum D (h)= h = 1. To overcome this 
difficulty, one is tempted to analyze the signal using a 
"higher-order" SF method based on the increments of the 
increments of the signal. This point of view will be dis­
cussed at the end of this section. 

This problem in detecting singularities of Holder ex­
ponents h 2:: I does not show up when one uses the 
wavelet-transform analysis. According to Eq. (13), pro­
vided the analyzing wavelet t/J has enough vanishing mo­
ments, the Holder exponent can be correctly estimated 
from the local scaling behavior of the WT coefficients. 
From the orthogonality condition (9), one can see that 
any polynomial Pn(x -x0 ) which may mask locally the 
singular behavior of the signal [Eq. (11)], is canceled by 
the oscillations of the analyzing wavelet. Thus, within 
the WTMM framework, if the analyzing wavelet is well 
chosen, the estimate of the 7(q) spectrum [and in turn the 
D ( h ) spectrum] is not biased by the presence of regular 
behaviors {44-46]. 

In Fig. 2, we illustrate these considerations on a 
specific example. The considered signal is a recursive sig­
nal whose singularity spectrum can be computed analyti­
cally. Its construction rule involves mainly two steps. In 
a first step, we generate a singular measure that spreads 
over the whole sampling interval according to the follow­
ing standard iterative rule: an interval is divided into 
four segments of equal length; to each of them we assign 
the "algebraic" weights p 1 =0.49, p 2 =0.21, p 3 = -0.21, 
and p 4 =0.09, respectively. In a second step, the so­
constructed measure is integrated to obtain a singular sig­
nal. However, in order to obtain some Holder exponents 
greater than one, instead of simply integrating the mea­
sure, we perform a fractional integration of degree 
{J= 1. 7. The effect of a generalized integration of degree 
(3 (negative {J values actually correspond to generalized 
derivation) is to shift the D (h) singularity spectrum [70]: 
D(h)--+D(h -(3). The signal is plotted in Fig. 2(a). 
Some smooth parts are actually visible by a simple in­
spection of the signal; they correspond to Holder ex­
ponents that are greater than 1. The theoretical D (h) 
spectrum is represented by the continuous curve in Fig. 
2(d); it extends over the interval [0.83,2.04]. The results 
of the WTMM analysis are shown in Figs. 2(b), 2(c), and 
2(d). The computations were performed using the fourth 
derivative t/J< 4> of the Gaussian function as analyzing 
wavelet. This wavelet, which has its four first moments 
equal to zero, is well adapted to explore the full range of 
Holder exponents present in the signal. In Fig. 2(b), the 
behavior of the partition function Z(a,q) [Eq. (15)] is 
displayed versus a in a "log-log" representation, for three 
values of q =-5, 0, and 5, respectively. From Eq. (16), 
the slope of these plots versus q defines the 7( q) spectrum. 
The overall results of our 7( q) measurements are reported 
in Fig. 2(c). The numerical data remarkably fall on the 
analytical 7( q) curve. This excellent agreement is 
confirmed when comparing, in Fig. 2(d), the numerical 
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D (h) spectrum obtained by Legendre transforming the 
7( q) data, with the theoretical prediction. The 7( q) spec­
trum obtained for q > 0 with the SF method [using Eq. 
(18)] is shown in Fig. 2(e) for comparison. Along the line 
of the above theoretical discussion [Eq. (23)], the WTMM 
method provides a remarkable estimate of the 7(q) spec­
trum over the whole investigated range of q values, while 
below some critical value q = q *, the data corresponding 
to the SF method systematically deviate from the analyti­
cal 7(q) curve (solid line) and follow the trivial behavior 
7( q) = q - 1. In the range q < q *, the scaling beha vi or of 
the partition and the structure functions is dominated by 
the singularities of Holder exponents h ~ 1; the SF 
method is blind to these singularities which are mislead­
ingly identified to h = 1. For q > q *, the contributions of 
the strongest singularities with h < 1 are dominating 
and the SF method gives the correct values 
7(q)=minh[qh -D(h)]; in Fig. 2(e), the data from the 
WTMM and the SF methods converge to a unique nu­
merical 7(q) spectrum, in good agreement with the 
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FIG. 2. WTMM and SF analysis of a signal that possesses 
some singularities of HOlder exponents h ~ 1. (a) Graph of the 
signal s (x) constructed following an iterative deterministic rule 
(see text). (b) log2[Z(a,q)] vs log2(a) for different values of q 
[Eq. (15)]. (c) r(q) spectrum obtained with the WTMM method 
when using the fourth derivative lfJ14l of the Gaussian function 
as analyzing wavelet (e). (d) D(h) spectrum from the Legendre 
transform of the numerical r(q) data in (c). (e) Comparison of 
the r(q) spectra obtained, respectively, with the WTMM (e) 
and the SF ( A. ) methods. The dashed curve corresponds to the 
straight line r(q)=q -1. In (c), (d), and (e), the solid curves 
represent the theoretical predictions. 

analytical curve. 
Singularities of negative Holder exponent. A direct 

comparison can be performed between the wavelet 
analysis and the structure-function approach if one 
rewrites the definition of the increments in the following 
integral form: 

1 J+oo [X -xo ] f>j(xo,l)=l -oo a<!) -~- j(x)dx , (24) 

where a< 0 (x)=f>(x -1 )-f>(x). In this formulation, the 
local increment appears as a "wavelet coefficient" com­
puted in x 0 at scale 1 with the analyzing wavelet a(!). 
The above discussed inefficiencies of the increments to re­
veal Holder exponents greater than 1 come from the fact 
that only the first moment of a< 1 l is equal to zero. This 
special analyzing wavelet has been coined the "poor man 
wavelet" [66]. This nickname is all the more appropriate 
as a0 l suffers from another important drawback which 
appears when analyzing very strong singularities. To ac­
count for the strongest singularities which may exist in a 
signal, one needs to extend the definition (11) to tempered 
distributions. Roughly speaking, we will say that a distri­
bution f has, at x 0 , a Holder exponent h (x 0 ), if its primi­
tive (in the sense of distributions) has, at the same point, 
a local Holder exponent h (x 0 ) + 1 (we refer the reader to 
Ref. [59] for a more rigorous definition). According to 
this definition, the Holder exponent can take on negative 
values also [e.g., the Dirac distribution f>(x) can be con­
sidered as the derivative of the Heaviside function for 
which h (0)=0; thus, it has, at x =0, a Holder exponent 
h ( 0) = - 1]. The analyzing wavelet a 0 l is made of two 
Dirac distributions and therefore it cannot generally be 
integrated against a tempered distribution. Thus, when 
using Eq. (5) to study some distribution which has singu­
larities of negative Holder exponent, one can expect to 
observe severe instabilities in the computation of the 
structure functions. The study of the scaling behavior of 
the increments of a signal that displays some discontinui­
ties or other stronger singularities is a rather questionable 
procedure. 

In Fig. 3 we show the results of both the WTMM and 
the SF analysis of a signal that possesses some singulari­
ties of negative Holder exponent. The signal is illustrated 
in Fig. 3(a). Its construction follows the same iterative 
rule as the one used to generate the multifractal recursive 
signal in Fig. 2(a). The model parameters are p 1 =0.36, 
Pz =0.24, p 3 = -0.24, p 4 =0.16; the generalized integra­
tion parameter is {3=0.4. In Fig. 3(a), one can observe 
several "jumps" in the signal: they correspond to singu­
larities with negative Holder exponents. The analytical 
D (h) spectrum, represented by the solid line in Fig. 3(d), 
actually extends below the value h =0, over the range 
[ -0.1, 1. 36]. The WTMM analysis is reported in Figs. 
3(b), 3(c), and 3(d). The analyzing wavelet 1/J(Zl is the 
second derivative of the Gaussian function. In Fig. 3(b) 
are shown some plots of log[ Z (a, q)] vs log( a), for 
different values of q; determining the exponents 7( q) just 
amounts to extracting the slope of these graphs from a 
least-squares linear regression fit. As illustrated in Fig. 
3(c), the numerical data fall on a convex nonlinear curve 
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which is particularly well fitted by the theoretical r(q) 
spectrum. Its Legendre transform D (h), in Fig. 3(d), is a 
single humped curve characteristic of the multifractality 
of the signal; it is also in remarkable agreement with the 
theoretical D (h) spectrum. The comparison of the SF 
and WTMM methods is reported in Fig. 3(e) where the 
data for r( q) obtained from both methods are compared 
to the analytical spectrum. As expected theoretically, the 
SF method gives correct values as long as q is smaller 
than some q value q * *, whereas for q > q * *, the SF nu­
merical data systematically depart from the theoretical 
curve. The critical value q * * actually corresponds to the 
value of q where r(q) starts to decrease. This means that, 
for q > q **, negative Holder exponents are dominating 
the behavior of the partition function [from the proper­
ties of the Legendre transform, h corresponds to the 
derivative of r(q) with respect to q ]. The analyzing func­
tion A.< 1 l is not suited to account for these very strong 
singularities and the SF method becomes unstable. On 
the other hand, the WTMM method, which involves 
smooth analyzing wavelets, does not possess this draw-
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FIG. 3. WTMM and SF analysis of a signal that possesses 
singularities of negative Holder exponents. (a) Graph of the sig­
nal (see text for more details on its construction rule). (b) 
log2[Z(a,q)] vs log2(a) for different values of q. (c) r(q) spec­
trum obtained from the WTMM method using the second 
derivative ,p< 2 J of the Gaussian function as analyzing wavelet 
(e). (d) D(h) vs h from the Legendre transform of the numeri­
cal r(q) data in (c). (e) Comparison of the r(q) spectra comput­
ed, respectively, with the WTMM (e) and SF (.A.) methods. In 
(c), (d), and (e), the solid lines correspond to theoretical spectra. 

back and provides reliable estimates on the entire range 
of q values. 

Comments on the use of higher-order SF methods. As 
we have just seen, the interval on which the D (h) spec­
trum can be determined from the SF method is not only 
limited in the weak singularities range (h < 1 ), but it does 
not extend below h =0 as well. The particular shape of 
A.< ll(x) restricts the investigation to the window 
hE [0, 1]. In the same spirit, one could generalize this 
technique to higher- or lower-order SF approaches. For 
example, it can be shown that the square (or "box") func­
tion A. <Ol(x) is well appropriated to investigate the range 
of Holder exponents hE[ -1,0]. Let us point out that 
the singular measures that fall under the scope of the 
multifractal formalism described by Eqs. ( 1) and (2) are 
precisely characterized by this range of Holder ex­
ponents. A "zero-order" SF method that uses A. <Ol as 
analyzing function corresponds exactly to the classical 
"box counting" algorithm [7,11] commonly used in the 
literature [22]. In the same way, one could perform a 
"-1-order" SF method by using A.<-n, the primitive of 
A. <Ol; this would allow us to study the range 
h E [ - 2, - 1]. Similarly, the "second-order" SF method 
would involve A.< 2 l(x)=B(x + 1)-2B(x +tHB(x) and 
would account for the range h E [ 1, 2], and so on. One 
could even imagine a method which would consist in 
analyzing an experimental signal successively with 
A.< - ll, A.< 0 l, A. (I), A.< 2'1, . . . ; the overall spectrum is then 
reconstructed from the matching of all the associated 
spectra in their respective domains of validity. Besides 
the fact that such a method would be numerically 
cumbersome, it is not practically workable because of 
spurious boundary effects. For example, for A. (I), Eq. (23) 
shows that in the weakest singularities' direction, the 
D (h) spectrum is recovered only below some value 
h * < 1, which can be significantly smaller than one. In 
the opposite direction, the presence of singularities of 
negative Holder exponents might seriously disturb the es­
timate of D (h) for the strongest singularities of Holder 
exponent slightly larger than zero. These boundary 
mismatches of the successive spectra obtained using the 
A.<nl analyzing functions are rather difficult to control and 
they make the determination of the overall D (h) singu­
larity spectrum rather uncertain. 

V. SIGNALS NOT SINGULAR EVERYWHERE: 
EFFECfS OF THE PRESENCE 

OF NONSINGULAR BEHAVIOR 

First, let us note that in the general context of the in­
vestigation of the reliability of the SF approach, it is 
clear, from the discussion in Sec. IV, that this method 
does not make any distinction between all the Holder ex­
ponents that are greater than 1. Therefore, when investi­
gating signals that are not singular everywhere, the SF 
method will display the same deficiencies as before be­
cause of its inability to deal with polynomial behavior 
(h > 1) or with any general C"' behavior (h = + oo ). In 
this section, we will thus mainly concentrate on the appli­
cation of the WTMM method to signals that are not 
singular everywhere. 
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In the previous discussions and numerical applications, 
we have pointed out that the excellent results obtained 
with the WTMM method are mainly a consequence of a 
good choice of the analyzing wavelet t/J. Indeed, one has 
essentially to choose the number of vanishing low-order 
moments of t/J greater than the greatest Holder exponent 
hmax which characterizes the weakest singularities 
present in the signal. But one may wonder what happens 
with this method when hmax = + oo, e.g., when the signal 
is nonsingular ( C 00 ) on a set of finite Lebesgue measure. 

For the sake of simplicity, we will assume that the sig­
nal j(x)=s(x)+r(x) is a superposition of a singular 
part s ( x) living on a Cantor set [ s ( x) is assumed to be 
constant on each interval on which it is not singular] and 
a coo function r(x). Let us denote 78 (q) and D 8 (h) the 
multifractal spectra which characterize the singular sig­
nal s (x) alone. At each scale a 0 , the set of maxima lines 
.L 1 (a 0 ) off can be basically decomposed into two dis­
joint sets of maxima lines, L 8 (a 0 ) and .L,(a0 ), corre­
sponding to the lines created, respectively, by s (x) [and 
which are slightly perturbed by the presence of r (x)] and 
by the coo function r(x). It can be established [46] that 
along each line created by r(x) [E.L,(a0 )] the wavelet 
coefficients behave like aN in the limit a -o, where N is 
the number of vanishing moments of the analyzing wave­
let t/J [we suppose that N is chosen larger than the upper 
bound of the singularity range of s (x) ]. Moreover, if the 
regular function r ( x) does not oscillate too much [in such 
a way that the number of maxima lines in .L,(a0 ) be uni­
formly bounded], then the partition function defined in 
Eq. (15) splits into two parts: 

Z f(a,q)=Z 8 (a,q)+Zr(a,q)-a r,(ql +aqN, (25) 

where Z s and Z r correspond to summing over the maxi­
ma lines in .Ls and .L,, respectively. From Eqs. (16) and 
(25), one can show [46] that there exists a critical value 
q crit < 0 such that 

q > qcrit =7(q)=7s(q) ' 

q <qcrit=7(q)=qN · 
(26) 

One thus predicts the existence of a singularity in the 
7(q) spectrum. This nonanalyticity in the function 7(q) 
expresses the breaking of the self-similarity of the singu­
lar signal s(x) by the coo perturbation r(x). In the con­
text of the thermodynamical analogy, this phenomenon 
defines a phase transition [7,22,63-65]. Below the criti­
cal value qcrit (which is the analog of the inverse of a 
transition temperature), one observes a regular phase 
whereas for q > qcrit• one switches to a multifractal phase. 
Let us point out that, in contrast to the spurious phase 
transition previously obtained with the modified SF 
method [Eq. (20)], the phenomenon observed here con­
tains fundamental information on the signal considered. 
Equation (26) indicates that the 7( q) spectrum in the "Coo 
phase" is governed by the number N of vanishing mo­
ments of the analyzing wavelet. Therefore the experi­
mental observation of the variation of 7(q) according to 
Eq. (26) when N is changed, would be a decisive test of 
the presence of a highly regular part in the signal. 

In Fig. 4, we illustrate our purpose for the specific ex­
ample of a signal f (x) which combines a Coo component 
r(x)=R sin(81Tx) and a singular component s(x) which 
is the distribution function of a singular measure 11= 
s(x)= J~d/1 (this kind offunction is usually called "devil 
staircase"). The measure 11 is actually a Bernoulli mea­
sure lying on the triadic Cantor set. It is obtained by 
iteratively assigning the weights p 1 =0.6 and P2 =0.4 to 
the two intervals left at each step of the Cantor set con­
struction process. The signal is shown in Fig. 4(a). The 
spectra 78 (q)=7(q) and D 8 (h)=j(a=h) of the singular 
part s(x) are given by the 7(q) and /(a) spectra of the 
measure 11• as conventionally defined by Eqs. (1) and (2) in 
the context of the multifractal formalism for singular 
measures. The results of the WTMM measurement of 
the 7( q) and D ( h ) spectra of the signal f ( x) are shown, 
respectively, in Figs. 4(b) and 4(c). Two different analyz­
ing wavelets, namely, the first (t/J0 l) and the second (t/!( 2)) 

derivative of the Gaussian function [Eq. (10)] were used 
to compute the wavelet transform. For q > 0, both 
analyzing wavelets lead to numerically identical estimates 
for 7(q). On the contrary, for q <0, the numerical data 
obtained with t/J(I) and t/J( 2) separate from each other into 
two distinct straight lines of respective slope 1 and 2. We 
thus observe numerically the phase transition predicted 
by the above theoretical speculations. For positive q 
values, we recover the 7(q) spectrum of the underlying 
singular measure 11• while for q below some critical nega­
tive value qcrit> the shape of 7(q) is governed by the num­
ber N of vanishing moments of the analyzing wavelet: 
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FIG. 4. WTMM analysis of a signal which is nonsingular on 
some intervals. (a) Graph of the signal f(x)=s(x)+r(x), with 
r (x)= R sin( 81rx) and s (x) is the distribution function of a Ber­
noulli measure supported by the triadic Cantor set (see text). (b) 
r( q) vs q as obtained with the first [ ( o ) and ( .._ ) ] , the second 
[( o) and (e)], and the fourth [( o) and <•)] derivatives of the 
Gaussian function as analyzing wavelet; the solid lines corre­
spond to the theoretical predictions [Eq. (26)]; the dashed line is 
the part (q <qcrit) of the spectrum r,(q). (c) D(h) vs h from the 
Legendre transform of r(q); the symbols are the same as in (b). 
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r(q}=Nq (N = 1 for t/J(l) and N =2 for t/J( 2>). By Legen­
dre transforming r(q) one gets the D (h) singularity spec­
trum of j(x). As shown in Fig. 4(c), as long as 
q > qcrit(N), the numerical results obtained with both 
analyzing wavelets remarkably fall on the theoretical 
D(h) curve (solid line). For q ~qcrit(N), however, the 
Legendre transform of the self-similarity breaking linear 
behavior of r( q) produces a linear behavior fall off of the 
D (h) curve towards the limiting value h = 1 for t/J( 1 > and 
h =2 for t/J( 2l (actually h =N for t/J(Nl) where D (h) van­
ishes. This linear part is tangent to the theoretical D (h) 
spectrum (dashed line) and has a slope equal to qcrit(N). 
This is the signature of the phase transition phenomenon 
described above. 

Remark. We have shown that a coo component super­
imposed on a signal that is not singular everywhere mani­
fests in a phase transition phenomenon that masks the 
weakest singularities. However, since the wavelet 
coefficients behave like aN along the maxima lines created 
by the Coo function, by choosing N large enough and/or 
choosing a numerical threshold below which any local 
maximum is not considered, one can remove all the Coo 
maxima lines in .L,(a0 ) [cf. the definition (14) of .L(a0 ) in 
Sec. 11] and thus "numerically restore" the self-similarity 
of s(x). The whole r 5 (q) and D 5 (h) spectra can then be 
estimated. 

To show that this procedure is actually operational, we 
have reproduced the WTMM analysis on the same signal 
but with the fourth derivative of the Gaussian function 
[ t/J( 4l(x)] as analyzing wavelet. The faster decrease of the 
wavelet coefficients along the maxima lines of .L, 
(T"'[f](.,a)l 1e.L -a 4 ) makes more efficient the thresh-

' old discrimination of the maxima lines emanating from 
the singular part s(x). The so-obtained r(q) spectrum is 
shown in Fig. 4(b). Now the theoretical spectrum of the 
singular measure is recovered and no phase transition 
phenomenon is observed. Let us point out that the 
choice of such a threshold (or analyzing wavelet) is some­
what uncertain and strongly depends on various parame­
ters such as the number of sampling points, the relative 
amplitudes of r (x) and s (x) in the signal, etc. Indeed, a 
more reliably way to proceed consists in choosing N large 
enough [as compared to the largest Holder exponent of 
s (x)] so that the maxima lines induced by the regular 
part of the signal become easily distinguishable by the 
anomalously stiff decrease of the wavelet coefficients on 
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