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Singularity Spectrum of Fractal Signals from 
Wavelet Analysis: Exact Results 

E. Bacry/· 2 J. F. Muzy, 1 and A. Arneodo 1 

The multifractal formalism for singular measures is revisited using the wavelet 
transform. For Bernoulli invariant measures of some expanding Markov maps, 
the generalized fractal dimensions are proved to be transition points for the scal­
ing exponents of some partition functions defined from the wavelet transform 
modulus maxima. The generalization of this formalism to fractal signals is estab­
lished for the class of distribution functions of these singular invariant measures. 
It is demonstrated that the Hausdorff dimension D(h) of the set of singularities 
of Holder exponent h can be directly determined from the wavelet transform 
modulus maxima. The singularity spectrum so obtained is shown to be not dis­
turbed by the presence, in the signal, of a superimposed polynomial behavior of 
order n, provided one uses an analyzing wavelet that possesses at least N > n 
vanishing moments. However, it is shown that a C"' behavior generally induces 
a phase transition in the D(h) singularity spectrum that somewhat masks the 
weakest singularities. This phase transition actually depends on the number N 
of vanishing moments of the analyzing wavelet; its observation is emphasized as 
a reliable experimental test for the existence of nonsingular behavior in the con­
sidered signal. These theoretical results are illustrated with numerical examples. 
They are likely to be valid for a large class of fractal functions as suggested by 
recent applications to fractional Brownian motions and turbulent velocity 
signals. 

KEY WORDS: Multifractal formalism; invariant measures; fractal signals; 
Holder exponents; wavelet analysis; wavelet transform modulus maxima. 

1. INTRODUCTION 

Fractal and multifractal concepts(l-3 ) are now widely used in a variety of 
physical situations. (4-

6
) In its present form, the multifractal approach is 

essentially adapted to describe the statistical scaling properties of singular 
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measures. <2· 7-
12) Notable examples of such measures are the invariant prob­

ability measure of a dynamical system, <2· 3• 
9

-
12) the harmonic measure of a 

diffusion-limited aggregate, <4
• 

6
• 

13-15 l the distribution of a voltage drop 
across a random resistor network, <4• 

13
• 

14) and the spatial distribution of the 
dissipation field of fully developed turbulenceY· 16-18 l The multifractal for­
malism <Zl involves decomposing fractal measures into intervowen sets, each 
of which is characterized by its singularity strength a and its Hausdorff 
dimension f(a). The so-called /(a) singularity spectrum was shown 
to be intimately related to the "generalized" fractal dimensions(19- 21l 

Dq = T(q)/(q- 1) that can be extracted from the power-law behavior of the 
partition function (in the limit !--+ 0 +) 

(1) 

where the sum is over disjoint intervals of size land /1;(/) is the measure 
contained in each interval. Actually, there exists a deep analogy that 
links the multifractal formalism with that of statistical thermo­
dynamicsY0-12·22-24) The variables q and T(q) play the same role as the 
inverse of temperature and the free energy in thermodynamics, <25 l while the 
Legendre transform 

f(a) = min [qa- T(q)] (2) 
q 

indicates that instead of the energy and the entropy, we have a andf(a) as 
the thermodynamic variables conjugate to q and T(q). This thermodynamic 
multifractal formalism has been worked out in mathematics in the context 
of dynamical systems theory. <22-24) But rigorous proofs of the above 
connection have been only limited to some restricted classes of singular 
measures, e.g., invariant measures of some expanding Markov maps 
("cookie cutter" Cantor sets) on an interval or a circle, <9• 10J the invariant 
measure associated to the dynamical systems for period doubling and for 
critical circle mappings with golden rotation number. (10l It has recently 
been developed into a powerful technique accessible also to experimen­
talists. Successful applications have been reported for multifractal measures 
which appear beyond the scope of dynamical systems. <6 l 

In several phenomena, fractals appear not only as singular measures, 
but as singular functions. (l, 13• 

14) The examples range from plots of various 
kinds of random walks to interfaces developing in reaction-limited growth 
processes and to turbulent velocity signals at inertial range scales. <6l There 
have been several attempts to extend the concept of multifractality to 
singular functions. <26

• 
27 l In the context of fully developed turbulence, the 
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multiscaling properties of the turbulent velocity signal were investigated 
by calculating the moments of the probability density function of 
(longitudinal) veloCity increments(26

• 28- 30
> 

bv1(x) = v(x +I)- v(x) (3) 

over inertial separation !. By Legendre transforming the scaling exponents 
( P of the structure functions of order p 

(4) 

one gets the Hausdorff dimension D(h) of the subset of ~ for which 
velocity increments behave as fh. In a more general context, D(h) will be 
the spectrum of Holder exponents for the singular signal under study and 
thus will have a similar status as the f( ex) singularity spectrum for singular 
measures. But there are some fundamental limitations to the structure 
function approach, which intrinsically fails to fully characterize the D(h) 
singularity spectrum. <31

• 
32

> Even though one can extend this method from 
integer to real positive p values by considering an absolute value on 
velocity increments <27 l in Eq. ( 4 ), the structure functions generally do not 
exist for p < 0, since there is no reason a priori that the probability density 
function of bv 1 vanishes for bv 1 = 0. Thus, only the strongest singularities 
are amenable to the velocity structure function method and only partial 
information on the D(h) spectrum (actually its increasing left-hand part) 
can be extracted. Moreover, the measurement of the contribution of Holder 
exponents h < 1 (singularities in the first derivative of the signal) can be 
dramatically disturbed by the presence of regular behavior as well as the 
existence of weakest singularities with h > 1 (singularities in higher 
derivatives). In ref. 33 we systematically reviewed the intrinsic insufficien­
cies of the structure function method. Even though this method was a first 
interesting step toward a multifractal theory of singular functions, this 
theory is still lacking and there is still a need for an appropriate powerful 
technical tool to deal with fractal functions. 

In previous work<31
-

33
> we elaborated on a novel strategy which is 

likely to provide a practical way to determine this entire singularity spec­
trum D(h) directly from any experimental signal. This approach is essen­
tially based on the use of a mathematical tool introduced in signal analysis 
in the early 1980s: the wavelet transform. (34

-
38 > The wavelet transform 

has been recently emphasized as a very efficient technique to collect 
microscopic information about the scaling properties of multifractal 
measures. <39

• 
40

) Extensive applications to various multifractal measures, 
including the invariant measures of some well-known discrete dynamical 
systems, have clearly demonstrated its fascinating ability to reveal the 
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hierarchy that governs the spatial distribution of the singularities. <39
--4

4
) 

What makes the wavelet transform such an attractive tool in the present 
study is that its singularity scanning ability equally applies to singular 
signals as to singular measures. <31

-
33

• 
40

• 
45

--4
7

) 

Indeed, the simplest way of performing a multifractal analysis of a 
singular measure<2 l is to partition it using boxes of size f. Then the measure 
in each box of size I can be characterized by a singularity strength IX by 
JiAI),..., /'\ where the index i denotes the box number. The number of 
occurrences of a particular value IX defines the f( IX) singularity spectrum by 
N(IX)-J-f<"-l. A wavelet can actually be seen as an oscillatory variant of a 
characteristic function of a box (i.e., a "square" function). Thus, one can 
generalize in a rather natural way the multifractal formalism to singular 
functions by defining some partition functions in terms of the wavelet coef­
ficients. <31

-
33

) Let us note that by choosing a wavelet which is orthogonal 
to polynomial behavior up to order N, one can make the wavelet transform 
blind to the regular behavior of a function, <31

-
33

• 
40l remedying in this way 

one of the main difficulties inherent to the dramatic failure of the structure 
function method [note that the square function is the primitive of what has 
been called the "poor man's wavelet": 1/J(x)=b(x-1)-b(x), implicitly 
used in the increment method and which is only orthogonal to constants]. 
Then, from the Legendre transform of the scaling exponents r( q) of these 
wavelet-based partition functions, one can extract the whole D(h) spectrum 
of Holder exponents. Indeed, at a given scale, instead of using a continuous 
integral over space [like the increment method in Eq. (4)], we sum 
discretely over the local maxima of the wavelet transform <47

) so that we 
remove divergencies for q < 0 and also incorporate the multiplicative struc­
ture (if there is any) of the singularity distribution directly into the calcula­
tion of the partition function. <31. 

32 l Each connected line of local maxima is 
likely to emanate from a singularity of the signal. <47

> Along these maxima 
lines, the wavelet transform behaves at small scales<47 l as a power law 
with an exponent h(x) which is equal to the Holder exponent of the signal 
at the point x. The number of such lines at a certain scale a and corre­
sponding to the same h defines the D(h) spectrum of Holder exponents by 
N(h) "'a-D<hJ (when a goes to zero). Moreover, one can further proceed to 
an adaptive scale partitioning which consists in maximizing (or minimizing 
according to the sign of q) the partition function by choosing the optimal 
wavelet covering. In this spirit, the free energy r(q) is obtained as a trans­
ition point for the scaling exponent of some partition function and the 
entropy D( h) can be shown to be the Hausdorff dimension of the set of 
singularities of Holder exponent h. 

In our previous work<31
• 

32 l we have outlined the main trends of our 
multifractal approach of singular functions based on wavelets and shown 
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some successful applications to fractional Brownian motions and fully 
developed turbulence data. Our purpose here is to give rigorous proofs of 
the validity of this formalism when applied to a self-affine function which 
is the distribution function of a Bernoulli measure lying on a ( discon­
nected) Cantor set invariant under some affine Markov map. We also 
derive exact results when this class of self-affine functions is perturbed by 
a polynomial or a general coo behavior. We comment on the possibility of 
extending this mathematical analysis to a larger class of singular functions, 
with the ultimate goal of establishing the foundations of a universal 
multifractal theory of singular distributions including singular measures 
and singular functions. 

The paper is organized as follows. Section 2 contains some back­
ground material on the (one-dimensional) continuous wavelet transform. 
We define the wavelet transform modulus maxima <47 J and the notion of 
maxima lines. In Section 3, we revisit the multifractal formalism for 
singular measures using the wavelet decomposition. We give rigorous 
proofs that the generalized fractal dimensions [and consequently the 
f(a) spectrum by Legendre transforming r(q)= (q-l)Dq] of Bernoulli 
invariant measures of some expanding linear Markov maps can be 
obtained as transition points for the scaling exponents of some partition 
functions defined either from the continuous wavelet transform or from the 
wavelet transform maxima lines only. In Section 4, we prove that, when 
using the latter approach, these results naturally extend to self-affine func­
tions that are distribution functions of the above multifractal Bernoulli 
measures. We demonstrate that the Hausdorff dimension D(h) of the set of 
singularities of Holder exponent h can be directly determined from the 
wavelet transform maxima lines. We also prove that the determination of 
this singularity spectrum is not disturbed by the presence of polynomial 
behavior of order n, provided one uses an analyzing wavelet that possesses 
at least N > n vanishing moments. This is no longer true when considering 
any coo perturbation; it generally results in a nonanalytiCity of the D(h) 
singularity spectrum which displays a phase transition<12

•
48

-
51 J that masks 

the weakest singularities. This phase transition is shown to depend on the 
number N of vanishing moments of the analyzing wavelet. The rigorous 
proof of the existence of this phase transition is rather technical and 
requires some additional hypothesis. Section 5 is devoted to numerical 
applications which illustrate that our theoretical results are valid for non­
compact support analyzing wavelets which decrease fast enough at infinity, 
and for a larger class of self-affine functions including some functions that 
are almost everywhere singular. We conclude in Section 6. 
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2. THE WAVELET TRANSFORM 

The wavelet transform of a function f according to the analyzing 
wavelet 1/t is defined as<3

4-
38

) 

1 Joo (X- b) Tl/t[f](b,a)=;; -oo Vi a f(x)dx (5) 

where a E IR + * and b E ll~t Generally 1/t is chosen to be localized in both 
space and frequency, so that Tl/t can be seen as an accurate space-frequency 
analysis (b is the space parameter and 1/a is the frequency parameter). 
Moreover, ljt is usually chosen to be orthogonal to polynomials, so that 
T"' [/] can be used to "detect" the singularities of f. Indeed, in order to 
detect a singular behavior such as x"'+n (ne N and ae ]0, 1[), which is 

. masked by a regular behavior Pn(x) [where Pn(x) is a polynomial of degree 
smaller than n + 1 ], 1/t has to satisfy<40

' 
45

) J xkljt(x) dx = 0 for 0 ~ k ~ n. 
For our purpose, we will mainly assume the following: 

(Hl) 1/t is a real-valued function which has a compact support 
( c J -1/2, 1/2[). 

(H2) 1/t is C 2
. 

If (Hl) is replaced by ljt(x)=O(x-k), 'Vk>O, similar theorems are 
obtained, but the proofs are more complicated. To make the point of this 
paper as clear as possible, we have chosen to use a compactly supported 
analyzing wavelet. 

In the same way we have defined the wavelet transform of a function 
in Eq. (5), we can extend the wavelet transform to a measure fl., <39

-4
4

) 

Tl/t[fl.](b,a)= J 1/t(x-b)dfl.(X) 
Supp !' a 

(6) 

where Supp f1. is the support of fl.. Notice that, in this definition, we have 
omitted the 1/a normalization factor which appears in Eq. (5), so that 

(7) 

where 1/t' denotes the first derivative of 1/t and f(x) = J ~ dfl.(X ). Equation (7) 
will allow us to derive results about functions (Section 4) from results 
about measures (Section 3). For the sake of simplicity, Tl/t[fl.](b, a) and 
Tl/t[f](b, a) will be referred to as T"'(b, a). 

We need two more definitions (cf. ref. 47]). 

Definition 1. (x, a) E IR x IR + * [sometimes referred to as x(a)] will 
be said to be a modulus maximum of the wavelet transform Tl/t iff 
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If (x, a) is a modulus maximum, then 

ar 
_1/1 (x a)= 0 
ab ' 

Definition 2. We call a maxima line at scale a0 ( >0) of Tl/l any 
connected curve I in the (b, a) half-plane so that: 

(a) (x,a)El-=a~a0 and (x,a) is a modulus maximum of Tl/l. 

(b) 1:/a, 0<a~a0 =3xEIRj(x,a)El. 

Notation 1. 2'(a0 ) will denote the set of all the maxima lines at 
scale a0 and 2' the set of all the maxima lines (at any scale). 

Notation 2. If lE2'(a0 ) and if a~a0 , then lla will denote the set 
{ ( x, a') E lj a' ~ a}. 

Notation 3. If lE 2', a1 will denote the maximum scale a which 
satisfies 3/1 E 2' (a), I c 11 • 

Notation 4. For the sake of simplicity, if I is a subset of IR, we will 
(improperly) write l c I whenever for any (x, a) in /, x belongs to I. 

3. DETERMINING THE GENERALIZED FRACTAL DIMENSIONS 
OF A MEASURE FROM ITS WAVELET TRANSFORM 

3.1. The Dynamical System 

Let us consider the expanding piecewise linear maps Ton A= [0, 1] 
for which r- 1(A) is a finite union of disjoint intervals 

s 

T- 1(A) = U Ai (8) 
i= I 

Let g be the smallest gap between two consecutive intervals, i.e., 

g = min { dist(Ai, Ai+ d} (9) 
i 

We then define 

(10) 

where 0 < A.i < 1. Let A= infi ).i. We also set 

Ak1, ..• ,k.=AnTk; 1(A)nTk; 1 oTk; 1 (A)··· nTk, 1 o ··· oTk; 1 (A) (11) 

7



Then it is clear that if J denotes the invariant set under the mapping T, J 
is the limit of the set (when n- + oo) 

i.e., J can be written as 
00 

J= n ,d(n) 

n 

k;=J ... s 
i= l···n 

A kt~···,kn (12) 

(13) 

The mapping T is a linear version of more general one-dimensional 
mappings usually referred to as "cookie cutters"<9 l or expanding Markov 
maps. (IOJ To this mapping one can associate a family of invariant measures 
called the Bernoulli measures associated to T. A Bernoulli measure is a 
measure Jl which satisfies 3(P~>···' Ps) E ]0, 1 [s, 2..,; p; = 1, so that 

(14) 

The generalized fractal dimensions D q ( q E IR) of such a measure <2• 19- 21 l are 
then given by the following equation: 

D(q) = r(q) 
q-1 

where r(q) is obtained by solving 

s Pi 
L A <(q) = 1 
i= 1 i 

(15) 

(16) 

The f( rx) singularity spectrum <2• 
9

• 
10

) is then obtained by Legendre trans­
forming r( q ), 

f(rx) = min (rxq- r(q)) (17) 
q 

In the following section, the measures Jl we consider are Bernoulli measures 
of T which have a gap g [Eq. (9)] different from 0. The set of such 
measures will be called .A. 

3.2. Exact Results 

In the following, for any interval /, /(a) will denote the same interval 
"extended" in both directions by aj2, i.e., /(a) = {I+ a/2} u {I- a/2}. 

Let Jl E .A (i.e., f..L is a Bernoulli measure with g > 0 ). 
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Lemma 1. Local self-similarity of the wavelet transform, Va, 
O<a<g, VbE ]-eo, eo[: 

(i) b r: A(a) => To/J(b, a)= 0. 

(ii) bEA(a)=>VkE{l, ... ,s}, To/J(b,a)=(1/Pk) To/J(Tj; 1(b),).ka). 

Proof. Let us distinguish the two cases: 

(i) br:A(a). Then, To/J(b,a)=O follows easily from the fact that t/J 
has a compact support in ]-1/2, 1/2[ [cf. (Hl)] and that SuppJ.lcA. 

(ii) bEA(a). Let ke{l, ... ,s}; then, by setting x'=Tj; 1(x) one 
obtains 

To/J(b, a)= I t/1 (x- b) df.l(X) =.!._I t/1 (Tk(x)- b) df,l(x) 
A a Pk Ak a 

and by using Eq. (10) we get 

To/J(b, a)=.!._ I t/1 (x- r; l(b )) df.l(x) 
Pk Ak A.ka 

As Tj; 1(b)EAk(A.ka) and A.ka<a<g, therefore, if XEAk' with k:pk', then 
!x- Tj; 1(b)l >g/2. It follows that 

3.2.1. Extracting t{q) from the Continuous Wavelet 
Transform. Let f.l E .A; we then introduce the following partition 
function for q ~ 1 and p E IR {see refs. 40, 52, and 53): 

Lemma 2. Renormalization of Kp,q(a): Vp E IR, Vq ~ 1, V a< Ag, 

Proof. Let a< Ag. From (Hl) and from the fact 
Supp f.l c (U; A;), it follows that To/J( ·,a) I (U;A,(a))C = 0; therefore 

s 

K0,q(a)=J !To/J(b,a)!q-tdb= L J !To/J(b,a)!q-tdb 
IR k= 1 Ak(a) 

(18) 

(19) 

that 
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Then, by setting b = T; 1(b') [Eq. (10)], 

s 

Ko,q(a)= L f ).k IT"'(Ti: 1(b), aw-l db 
k = 1 A(aj}.k) 

and by using Lemma 1 (ii ), 

Moreover, for b~A(aj).k), by using Lemma l(i) (a/}-k<g), we get 
T"'(b, ajA.k) = 0. It follows that 

Finally, by multiplying both sides by a-P, we obtain Eq. (19). I 
In order to get the main theorem [i.e., how to extract the Dq from 

Kp.q(a)], we need to study the class of functions which satisfy a renorw 
malization relation like Eq. ( 19 ). The following lemma was first stated in 
ref. 40; we reproduce its proof in Appendix A. 

Lemma 3. Let f:IR+--+IR+ that satisfies 3seN, 3(c1 , •.. ,cs)E 
(!RH)', 3(tl1, ... , As)E ]0, 1]', and 3g>0 so that 

O<a<g~f(a)= ktl ckf(;J 

Then, the following two relations hold: 

(i) If'v'e, O<e<g, sup[e,gJ/(x)< +oo, then 

(ii) If'v'e, O<e<g, inf[e.gJf(x)>O, then 

By applying this lemma for f = Kp,q, we get a method to recover r(q) 
from Kp,q• for q ~ 1. 

Theorem 1. Let fJ. E .A. Let Kp,q(a) be its corresponding partition 
function defined in Eq. (18) and let D q = r( q )/( q- 1) be its generalized 
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fractal dimensions [Eqs. (15) and (16)]. Then, for q ~ 1, o(q) IS the 
transition exponent, so that 

p-1<T(q-1)= lim Kp,q(a)=O 
a-o+ 

p-1>T(q-1)= lim Kp,q(a)= +oo 
a-o+ 

Remark. For a general analyzing wavelet !/!, it seems unlikely that a 
similar theorem would hold for q::::;; 1. Indeed, it seems difficult to "control" 
the parts of T 1/1 which are close to 0 for any kind of 1/1. In the very par­
ticular case where 1/1 is a "nice" strictly positive function, it has been shown 
in ref. 53 that a theorem similar to Theorem 1 holds for all q; but, as we 
will see in Section 4.2, in order to extract the singularity spectrum of a 
function, it is fundamental to estimate r(q) (for all q) using an analyzing 
wavelet with vanishing moments<40

• 
45

) (and therefore which oscillates 
around 0). 

3.2.2. Extracting t(q} from the Wavelet Transform 
Modulus Maxima. The main idea is that, instead of defining a parti­
tion function by using at each scale a all the values T 1/t( b, a) (bE IR ), we will 
only use the values of T 1/1 at its modulus maxima (JI, 

32 l (see Definition 1 ). 
One could define the partition function Zp,q(a)=:Lia-PiTI/I(xi(a),aW 
(where {xi (a) L are the modulus maxima at scale a); even though it is very 
easy to show that Zp,q satisfies a renormalization property [like Eq. (19)], 
we still do not have any control on sup[e,gJ Z (for q<O) as required by 
Lemma 3(i). In order to circumvent this difficulty, instead of using the 
values of Tl/t at the modulus maxima, we are going to use the maximum 

· values of IT 1/11 along the maxima lines (see Definition 2 ). 
Let us make two additional mild hypotheses. We suppose that: 

(H3) 3a>0 so that !l'(a)#0. 

(H4) Va>Ag, !l'(a) is a finite set. 

These hypotheses allow us to define the following partition function (for 
q E IR): 

(20) 
a--+ Zp,q(a) =a -P I ( sup IT 1/!(x, a')l )q 

/e.!t'(a) (x,a')el 

Remark. Let us note that this definition is more or less equivalent to 
choosing an "optimal" covering of the support of 11 (using different scales) 
which maximizes (for q ~ 0) or minimizes (for q < 0) the partition function. 
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This is very close to the original definition of the partition function 
described in ref. 2. 

From now on Tk and t;; 1 (k E { 1, ... , s}) will denote the following 
(b, a) half-plane maps: 

Tk(b, a)= (Tk(b), ajAk) 

t;; 1(b, a)= (T;; 1(b ), aAd 

Lemma 4. Renormalization of Zp,q: 'v'(p,q)eiR 2
, 'v'a<Ag, 

s Pk (a) zp,q(a) = L Ap zp,q T 
k= 1 k k 

(21) 

(22) 

Proof. (a) Let le!e(a), a<g. From Lemma 1(i) and the fact that l 
is a set of modulus maxima, it follows that l c A(a) (see Notation 4 ). 
Therefore, by using Lemma 1(ii), 'v'ke {1, ... , s}, 'v'(x, a')el, 

T.p(x, a')=_!_ T.p(T;; 1(x, a')) 
Pk 

and then lk = t;; 1(./) E !e(Aka ). Moreover, from the definition of t;; I, 
lkcAk(a). It then follows that any maxima line at scale a corresponds to 
s distinct maxima lines {Id ke {1, ... ,s), respectively, at scale Aka and included 
in Ak(a). 

(b) Conversely, let le!e(a), a<Ag. From (H1) and the fact that 
supp J1. c U; A;, it follows that T .pI (U; A;(a))C = 0. Then it is clear that 
3!je {1, ... , s}, so that lcAj(a). Then, by using Lemma 1(ii), 'v'(x, a')el 

T.p(x, a')= pjT.p(Tj(x, a')) 

from which one deduces that Tj(l) E !e(aj).). Thus, any maxima line at 
scale a corresponds to a unique maxima line at one of the scales 
{a/Ad ke {1, ... ,sJ. 

From these two results, one can get easily that if a< Ag, !e(a) 
can be decomposed into s disjoint subsets {.Pk(a)he{ 1, ... ,s)• where 
!ek(a)= {le!e(a), lcAk(a)}. Moreover, !ek(a)= Tf: 1(!e(aj).k)). Therefore 

s 

Z 0,q(a)= I (sup IT.pl)q= L I (sup IT.pW 
le!i'(a) I k= 1 le!i'k(a) I 

s s 

=I L (sup IT.pl)q= I L (sup JT.paTf: 1l)q 
k=1 lefi:1(!i'(a/A.k)) I k=1 le!i'(a/A.k) I 
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Then, by using Lemma l(ii), 

Equation (22) follows by multiplying this relation by a-P. I 
In order to apply Lemma 3 to f = Z p.q, we need to prove that V q E IR, 

VeEIR+*, sup[s,Ag]zp,q<oo and inf[s,AgJZp,q>O. Obviously, the hard 
part is to prove that sup[s,AgJ Zp,q # oo for q < 0. For that purpose, we 
need to find a lower bound for sup 1 IT"' I ['v' I E !t (a)]. 

Lemma 5. 'v'a<Ag, V/Eff(a), 3!nEN, 3!(k1 , ... ,kn)E{l, ... ,s}n so 
that: 

(a) Tk1 · · · Tk)l) E !f(a/(Ak1 · · · },kJ). 

(b) aj(},k1 · · · Akn_ 1):::::; Ag < aj(Ak1 .. · A.kJ 

Moreover, the following equation holds: 

T 1/t !1 = P k1 · .. Pkn T 1/t 0 T kn ° · · · 0 T k1 !1 

Proof. We proved in the proof of Lemma 4(b) that V lE !£ (a) 
(a<Ag), 3!jE {l, ... ,s} so that Tj(l)Eff(a/A.j). Moreover, we saw that for 
this particular j, T.p 11 = pj T"' o Tj !1• By applying this result several times, j 
takes successively the values k 1, k2 , ... , until aj(Ak1 · · · A.kJ becomes greater 
than Ag. I 

Lemma 6. 3C E IR + * so that 

Va<Ag, 'v'IE!f(a) 

where 1Xmax =sup;(lnp;/ln A.;). 

sup IT .pI ;;;:: Ca"m"' 
I 

Proof. It is clear that 'v'/Eff(a) (a>Ag), 3C1>0 so that 
sup(x,a')etiT.p(x, a')!> C1• From (H4) it follows that there exists a strictly 
positive constant C 1 so that 

C1 = inf C1 
a>Ag,/e.fE(a) 

Now let IE!f(a) (a<Ag) and let k 1 , ... ,kn given by Lemma 5. Let 
In= Tk" .. · Tk1(/) [ln E ff(a0 ) with a0 > Ag]. We then obtain 
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sup IT"'(x,a')I=Pk1 ···Pk. sup IT"'(x,a')I;::C,.Pk,···Pk. 
(x,a') E I (x,a') E In 

::>.: C ) ln Pk1/ln).k 1 1ln Pk /lnJ.k 
7 l"kl •••Aknn n 

....._ C ( 1 1 )sup;(ln p;/ln ).; ) 
,:::; 1 ILkt .•• ILkn 

::>.: C (A ... ) )"max A "max ::>.: C (!!._) C<max A C<max ::>.: Ca"max I 
7 I kt "kn-I kn 7 I Ag 7 

We are now able to state the main theorem of this section. 

Theorem 2. Let f1 EAt. Let Zp,q(a) be its corresponding partition 
function defined in Eq. (20) and let Dq=•(q)/(q-1) be its generalized 
fractal dimensions [Eqs. ( 15) and ( 16)]. Then, 'if q E IR, •( q) is the transition 
exponent so that 

p < 7:(q) => lim zp,q(a) = 0 
a -....o+ 

p > •(q) => lim zp,q(a) = + 00 
a -....o+ 

Proof. From Lemma 6 it follows that "ie E IR + *, SUP[e,Ag] zp,q < 00 

(for negative q) and that inf[e,AgJZp,q>O (for positive q). Moreover, 
since fdf1(X)=1, then "iee!R+*, inf[e,AgJZp,q>O (for negative q) and 
SUP[c,Ag] zp,q < 00 (for positive q). We then apply Lemma 3 to f = zp,q• I 

4. DETERMINING THE SINGULARITY SPECTRUM OF A 
FUNCTION FROM ITS WAVELET TRANSFORM MAXIMA 
LINES 

The purpose of this section is to present a method (31
• 

32
> to determine 

the singularity spectrum (see Section 4.1) of a function f which displays a 
fractal recursive singular structure. We will consider the class of functions 
f corresponding to the distribution functions of the measures J.l in A 
"perturbed" by a Coo function r, i.e., 

f(x) = r dJ.l + r(x) 
0 

(23) 

In the following sections, we will study the case where r is a polynomial 
and then generalize it to any coo function. Let us first define what we call 
the singularity spectrum of a function. 
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4.1. Singularity Spectrum of a Function 

The singularity spectrum f( a) of a multifractal measure f1 is defined as 
the Hausdorff dimension of the see2 l 

s~ = { Xo E Supp J1/rx(xo) = rx} (24) 

where a(x0 ) describes the local behavior of f1 around x 0 , i.e., it is the largest 
exponent r:t. so that 

J dfl(X)=o(s~) 
/x-xo/ <& 

for 8--+ o+ (25) 

We will define, in the same way, the singularity spectrum D(h) of a 
function f from its Holder exponents. (45

• 
46 l 

In the following, f(rx) will always denote a singularity spectrum of a 
function, and f( x) will denote the function which is analyzed. 

Definition 3. A function f is said to be of Holder exponent h(x0 ), 

at the point x 0 E IR, iff h(x0 ) is the largest exponent h such that there exists 
a constant A E IR + and a polynomial P n( x) of order n such that for all x 
in a neighborhood of x 0 

(26) 

If f is c ro, then h(xo) = + 00 for all Xo in IR. In the following, Hf will 
denote the set of finite Holder exponents of f. We then naturally define 
D( h) as follows. (26 l 

Definition 4. The singularity spectrum of a function f is the 
function D(h) (hE Hf) such that 

D(h) = dimH {x0 E IR/h(x0 ) = h} (27) 

where dimH denotes the Hausdorff dimension. (S4 l 

It immediately follows that if f1 EA, the singularity spectrum D(h) of 
the function 

f(x) = r dfl + r(x) (28) 

[where r(x) is C"'] is the singularity spectrumf(rx) of the measure f.i.: 

h =a ==:>D(h) = f(a) (29) 
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Therefore, extracting D(h) is equivalent to extracting the function r(q) 
corresponding to the measure Jl [f( a) is deduced by Legendre trans­
forming r(q); cf. Eq. {17)]. Thus, for the particular case where r=O, by 
combining Theorem 2 (using 1/1' as the analyzing wavelet) and Eq. (7), 
one can_ easily derive a way of determining r(q) from the wavelet transform 
maxima lines of f. Let us state the corresponding theorem for the more 
general case where r is a polynomial. 

4.2. Determining the Singularity Spectrum of 
f(x) = J~ dtJ + P n(x) (Where P n Is a Polynomial) 

Theorem 3. Let Jl E .A. Let P n(x) be a polynomial of order n and 
f(x)=J0dJI+Pn(x). Let 1/1 be an analyzing wavelet with N>n vanishing 
moments, i.e., Vk, 0 ~ k ~ n, J xkljl(x) dx = 0. Let Z{q be the corresponding 
partition function [Eq. {20)]: 

Z{q(a)=a-P L (sup ITI/t[f](x,a')l)q {30) 
le!t'(a) (x.a')el 

Then, for all q in ~. r(q) [Eq. (16)] is the transition exponent such that 

p < r(q) = lim Z{q(a) = 0 
a-o+ 

p>r(q)= lim z;q(a)= +eo 
a-o+ . 

The singularity spectrum off is then obtained by Legendre transforming 
r(q). 

Proof. According to the definition of the wavelet transform of a 
function f [Eq. ( 5)], 

1 I (x-b) T"'[f](b,a)=;; 1/1 a f(x)dx 

= Tl/t [f dJl J (b, a)+~ I 1/1 (x: b) Pn(x) dx 

Using Eq. (7), we obtain 

1 I (x-b) Tt/l[f](b, a)= - T op[JI](b, a)+;; 1/1 a Pn(x) dx 
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where 'f' denotes the following pnm1t1ve of 1/f: 'f'(x)= J~oo 1/J(t) dt. 
Moreover, since ljJ has N vanishing moments with N > n, we have 

and, therefore, 

T~~t[!J(b, a)= - T !l'[.u](b, a) 

Then, by applying Theorem 2 (with the analyzing wavelet '!'), it follows 
that r(q) is the transition exponent corresponding to Z{q· I 

Remark. It is very important to notice that the proof of Theorem 3 
required the use of Theorem 2 with the analyzing wavelet 'f'(x) = 
J~ oo 1/J(t) dt, which has N -1 = n vanishing moments ( 'f' is thus oscillating 
around 0). Such an analyzing wavelet makes the control of the part where 
T !l' is close to 0 very difficult and therefore keeps us from defining the 
partition function as an overall sum of the wavelet coefficients raised 
to the q power [as in Eq. (18)]. Using a partition function based on the 
wavelet transform modulus maxima seems to be the most "natural" way to 
circumvent this difficulty. (31- 33 l 

Let us now study the general case where r is any coo function. 

4.3. Determining the Singularity Spectrum of f(x) = J~ dJ.J + r(x) 
(Where r Is C "") 

Let s(x) = J~ df.l and let !lf and 2, be the sets of the maxima lines of 
the wavelet transform off and of s, respectively. In this section, we will 
suppose that ljJ satisfies: 

(H5) Vk, Os:;.k<N, J xkljl(x)dx=O and J xNijl(x)dx::/=0. 

Let us prove that the wavelet transform of r is of the order of aN when 
a goes to zero. (40J 

Lemma 7. There exists a coo function R(b, a) uniformly bounded 
for a€ [0, a0 ] (and bin a compact) such that 

(31) 

Proof. By definition of the wavelet transform, 
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Then, by replacing r(b + ax) by its Taylor expansion around b, we get 

N-1 J (ax)k f 
T"'[r](b,a)= k~o 1/J(x) k! rlkl(b)+ 1/J(x)(ax)Ne(b,ax)dx 

where e is a Coo function uniformly bounded for a E [0, a0 ] (and b in a 
compact). The first N terms of the right-hand side of this equation vanish 
[cf. (H5)]; it follows that 

where R is coo and uniformly bounded for aE [0, a0] (and b in a 
compact). I 

We then obtain, from the definition of f, T"'[f](b, a)= 
T"'[s](b, a)+aNR(b, a). This means that we have "perturbed" the wavelet 
transform of s, at scale a, by a term of the order of aN. The purpose of this 
section is to study how this term perturbs the behavior of the partition 
function Z{,q [Eq. (30)] at small scales, i.e., to compare the limit when a 
goes to 0 of the two following functions: 

z;,q(a)=a-p L (sup IT"'[s](x,a')l)q (32) 
le.fL',(a) (x,a')el 

and 

Z{,q(a) = a-P L ( sup I T"'[f](x, a')l )q (33) 
le.fL'J(a) (x,a')el 

For that purpose we need to study the structure of !ft with the specific goal 
to relate it to the structure of~-

Lemma 8. Let le!ft and let b(t) and a(t) (te]O,l]) be two 
continuous functions such that { (b(t), a(t)) Le JO,IJ cl and lim~-> 0 a(t) = 0. 
Then, 3b1e IR such that lim~--> 0 b(t) = b1• 

Proof. The proof of this lemma is given in Appendix B. 

Let us first examine the case where b, does not belong to J (the 
support of f1. ); since J is a closed set, there exists e > 0 such that 
]b 1 -e,b1 +e[nJ=~ and thus [using (Hl)], fort small enough, 
T"'[s](b(t), a(t))=O. Therefore, T"'[f](b(t), a(t))=a(t)N R(b(t), a(t)) and 

sup I T"'[f](b(t), a(t))l = O(aN) (34) 
a(t),;;; a 

The maxima line represented by (b(t), a(t)) is a maxima line of T"'[r]. 
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What about the maxima lines of Tt/t[s]? How are they perturbed? 
The following lemma partially answers this question. 

Lemma 9. Let us suppose that: 

(H6) N> max(amax' 3amax/2- 1) [see (H5) for the definition of N 
and Lemma 6 for the definition of 1Xmaxl 

(H7) d(oTt/t[s]/ob) = (o 2Tt/t[s]/ob 2
) db+ (o 2 Tt/t[s]joa ob) da =f. 0 on 

any maxima line in 2,. 

(H8) o2Tt/t[s]job 2 =f.0 on any maxima line in~" except at its 
boundary points. 

Then for all s > 0, there exists a0 > 0, k > 1, and C > 0 such that 

Va<a0 , VlE2,(a), a1>a/(1-s) then 3!11 E2j(a) suchthat 

V(x, a') E I, 3!(x1 , a') E 11 , (35) 

where a, is defined as in Notation 3 (in Section 2). Moreover, 

Tt/t[f](x 1 , a')= Tt/t[s](x, a')[1 + ry(x, a')] 

where ry(x, a') is a function which is uniformly bounded by a decreasing 
function F(a') (independent of I) which goes to 0 when a' goes to 0. 

In the following, P( I) will denote the corresponding perturbed line /1 • 

Proof. The proof is given in Appendix C. 

This lemma mainly says that if we consider a maxima line lE 2,( a) 
and if we are not too close to the point where this line just "appears" [i.e., 
a1 >a/( 1 - t:) ], then I is just shifted when perturbing s by r. Moreover, the 
value of T"' on this new maxima line is slightly changed. However, this 
lemma does not say anything about what happens near the point where the 
line appears (i.e., a close to a 1 ). If I E 2,( a), a 1 < oo, then it is easy to prove 
that a, corresponds to an abscissa x 1 so that (x,, a1) is the point of the (b, a) 
half-plane where l "appears." From (H7) it follows that this point can be 
only of two types: 

1. The value of T"'[s] at this point is 0. 

2. The value of o2T t/t[s ]job 2 at this point is 0 and o2T"' [s ]/oa ob =f. 0. 

For each case we want to find a way to control aPU) with respect to a 1. 

Lemma 1 0. Let us suppose that: 

(H9) If both Tt/t[s] and oT"'[s]/ob are vanishing at a certain point, 
then both oT"'[s]joa and o2T"'[s]job 2 are nonzero. 
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then aP(I) < at!(l- c:) (36) 

Proof. The proof is given in Appendix D. 

From Lemmas 9 and 10, it follows that a line /1 E ..2j(ad "comes" 
from· the perturbation of a line in !£. if and only if 3/ E fE.(a), 
(1- e)a < a 1 < a/(1- e) such that P(lla(J-e)) = l 1 1a(l-e)· This will be used 
later for the definition of the set .:l"p( a). 

Then the "end" of a line (x1, a1), when perturbated, can move at most 
by a factor of ( 1 - e) toward small scales or large scales. We now need to 
find a way to control the value of Tl/t[f] around the end of the line. It can 
be proved easily that Ve, 3C > 0 such that 

Vl E !l',(a) sup IT"'[s]l < C sup IT"'[s]l (37) 
I llo-,)2a 

Indeed, we first compare 

and S2 = sup ITI/t[s]l 
1i(l-')2a 

for all a in [ Ag, g] and for all the maxima lines I in !£.(a); we so obtain 
a constant C such that (37) holds; we then use Lemma 5 to extend it to 
all scales a> 0. From Lemma 9 it follows that the relation (37) holds 
when replacing l by /1 = P(l). By considering the same two cases as in 
Appendix D, one can easily prove that it extends to any line which "comes" 
from the perturbation of a line in !£., i.e., we have the following result: 

Lemma 11. There exists C ( > 1) such that for any line /1 E ..2j(ad 
which comes from the perturbation of the line lE 2,( a) [i.e., ( 1 -e) a< 
a1 < a/(1 -e) such that P(/1 a(l-e)) = / 1 I a(l-•j] we have 

sup IT"'[JJI < C sup IT"'[/] I (38) 
I, h lo-,?aJ 

Up to now, we have found two kinds of maxima lines in ..2f, those 
which were maxima lines of Tl/t[r] [Eq. (34)] and those which came from 
the perturbation of the maxima lines in !£.. Let us suppose that they are 
the only ones, i.e., 2f(ad can be subdecomposed (for a1 < a0 ) into two 
subsets: the set .?p(a1) and the set .?N(a1): 

(39) 
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where 

2"p(a 1 ) = { 11 E £j-(a 1 )/3/ E 2,(a ), ( 1 - e )a< a1 < a/(1- e), 

P(ll a(l- e)) C /1 I a(l- e)} 

2"N( ad = {lE£}-( ad/sup IT"' I "'a' N when a' -~> 0} 
I la' 

We will also suppose that for small enough a, 2"N(a) has a finite constant 
number of elements nN =1= 0. We can then compare the two partition 
functions z;,q [Eq. (32)] and Z{q [Eq. (33)]. 

lemma 12. \fq E IR, 3( C1, C2) E !R +\ 
Z{q(a(1 -e));;:.: c 1 (aNq- p + z;,q(a )[1 + o( 1)]) 

Z{q(a/(1- e))~ Cz(aNq-p + z;,q(a)[1 + o(1)]) 

when a goes to 0 (e is defined in Lemma 10). 

Proof. We will only give the proof of the second inequality; the first 
one can be proved in the same way. From the definition (33), it follows 
that (we use the variable name a1 instead of a to be consistent with the 
notations of Lemmas 9 and 10) 

+ I (sup ITo,~~(f]W) 
/1 € .sf'N(OJ/(1- e)) /1 

(40) 

By definition of 2"N, the second term is 

L: (supiTo,~~[f]l)q<CnNafq (41) 
ltc.sf'N(at/(1-e)) /1 

On the other hand, we get [Eq. (38) is used for positive values of q] 

I (sup ITo,~~[f]l)q= I ( sup ITo,~~[/JI)q 
/1 € .sf'p(OJ/(1- e)) . h /1 € .sf'p(aJ/(1- e)) lliaJ/(1-c) 

~ C' I ( sup IT"' [f] I )q 
/1 € .sfp(atf(l·-e)) IIIal(l-c) 
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Moreover, if /1 E .Pp(aJ!(l- ~:)), then /1 "comes" from a perturbed line 
lE !e.( a), i.e. (cf. definition of .Pp), with a> a 1 > ( 1 - e )2 a and P(l[ a(l- e))= 
l 1 /a( 1 -e)· As a(l-~:)>a 1 (1-e), we also have P(l/a1(1-e))=l1 /a1( 1 -e)· It 
thus follows that 

L: (sup/TwUJ/)q~C' I ( sup ITwUJI)q 
l1 E .!i'p(a!/(1- e)) h le .!t',(a) P(/la!(l-,)l 

By using Lemma 9, we obtain 

L: (sup/TwUJI)q~C' I (sup ITw[s](l+ry)[)q 
11e.!t'p(a!/(l-e)) l1 lefe,(a) lla!(l-e) 

~ C" I (sup /Tw[s](l +ry)/)q 
I E Ie,(a!) I la! 

where we have used Eq. (37) for q < 0. Note that from Lemma 9, ry(x, a') 
is a function which is uniformly (in x) bounded by a decreasing function 
F(a') independent of I which goes to 0 when a' goes to 0. Then we get 

L: (sup/Tw/)q~C"' L: (sup/Tw[s]/)q[l+F(ad]q 
i)efep(a!/(1-e)) l1 le.!i',(a!) I 

~C"' L: (sup/Tw[s]/)q[l+o(1)] (42) 
I E .!t',(a!) I 

By inserting (41) and (42) in (40), we finally obtain 

Z{.q(a1/(1-e)) < Cl(nNafq-p + z;)ad[1 + o(l)]) 

The lower bound for Z{.q(a(1- e)) can be computed using the same 
technique. I 

We are now ready to state the main theorem of this section. 

Theorem 4. There exists qcrit < 0 such that: 

(a) If q > q crit, then r( q) is the transition exponent such that 

p < r(q) => lim zt q(a) = 0 
a-o+ ' 

p>r(q)=> lim z;,q(a)= +oo 
a-o+ 

(b) Ifq<qcrit,then 

p<qN=> lim ZL(a)=O 
a-o+ 

p>qN=> lim Z{,q(a)= +oo 
a-o+ 
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Proof. Let us first recall that r(q) rs an increasing convex 
function '2• 

9
• 

10
l that satisfies 

r(q)- (q-1)cxmax 

r(O) < 0 

when q-+- oo 

Then, as N>cxmax [cf. (H6)], there exists a unique q=qcrit<O such that 
r(q)=Nq. Moreover, as r(q) is convex: 

(a) q>qcrit=>r(q)<Nq. 

(b) q < qcrit => r(q) > Nq. 

Let us distinguish the two cases: 

(a) q>qcrit [Nq>r(q)]. We distinguish two situations: 

(i) p<r(q). By using Theorem 3 (with r=O) we get limZ~ja)=O. 
Moreover, Nq- p > 0 and from Lemma 12 one deduces lim ZJ,q(a) = 0. 

(ii) p > r(q). By using Theorem 3 (with r = 0) we get lim Z~ja) = 
+oo, and thus from Lemma 12, lima_ 0 Z£q(a)= + oo. 

(b) q<qcrit [Nq<r(q)]. We distinguish again two situations: 

(i) p>Nq. Then Nq-p<O, and therefore aNq-p-+00. From the 
lower bound of Lemma 12, one gets lim zJ,q(a) = oo. 

(ii) p<Nq<r(q). Asp<r(q), one gets from Theorem 3 (r=O) that 
Iim Z~ja) = 0. Moreover, aNq-p-+ 0, and from the upper bound of 
Lemma 12 it follows that lim z;,q(a) = 0. I 

Let us comment on this theorem before moving on to numerical 
applications. 

4.4. Some Important Comments on Theorem 4 

Phase Transition Phenomenon. From Theorem 4, we conclude that 
in the case where some maxima lines of !£f decrease like aN (i.e., some 
maxima lines of T"' [ r] are converging, in the sense of Lemma 8, toward 
bd:.J), then we are not able to recover the whole function r(q). Indeed, 
we can extract numerically (by studying the transition exponent of ZJ,q) a 
function rN(q) that matches r(q) only for q>qcrit (qcrit<O): 

q > qcrit => r N(q) = r(q) 

q < qcrit => TN(q) = Nq 

This nonanalyticity of the function r( q) expresses the breaking of the 
self-similarity of the underlying singular measure by the coo perturbation 
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r(x). In the context of a thermodynamic analogy, this phenomenon corre­
sponds to a phase transition. (12. 

48
-

51
) Below the critical value qcrit (which 

corresponds to the transition temperature) one observes a regular phase, 
whereas for q > qcrit one switches to a singular (multifractal) phase. Then, 
if D(h) denotes the singularity spectrum of/and DN(h) the one we deduce 
from rN(q) [by Legendre transforming rN(q), Eq. (17)], the curve 
y = D N(h) can be seen as the curve y = D(h) in which a part is replaced by 
the line which is tangent to the curve and which passes by the point (h = N, 
y = 0) (see Fig. 2d ). Of course, if N is changed, then the shape of D N( h) 
changes. Conversely, if, when we change N, the singularity spectrum we 
measure DN(h) does not change, then it is likely that T"'[r] does not 
"interfere" in the measurement of D(h ). Indeed, if it was interfering, it 
would mean that there would be some maxima lines in .!if along which the 
decay of T"'[f] would depend in a certain way on T"'[r]. As T"'[r] 
directly depends upon the order N of the analyzing wavelet 1/1 (cf. Lemma 
7), we would expect a change in DN(h) when changing N (i.e., changing the 
analyzing wavelet). 

Consequently, if we use the technique corresponding to Theorem 4 to 
measure the singularity spectrum of an experimental signal u(x) [i.e., 
measuring numerically the transition exponents of the partition function 
z~.q as defined in Eq. (30)], then a good test to find out whether our 
measurements corresponding to q < 0 are "reliable" or not consists in 
proceeding to different measurements of D(h) using different analyzing 
wavelets(31- 33 l (e.g., 1/J, if;', 1/J", ... ) in order to check whether or not the D(h) 
curve is sensitive to the shape of the analyzing wavelet. 

Measuring the Hausdorff Dimension of the Set Which Supports the 
Singularities of f. If f is a function, one can prove that the maximum 
value of D(h) corresponds to the Hausdorff dimension of the set of the 
abscissa where f is singular [i.e., dimH{x e IR, h(x) # + oo}]. Note that 
from the Legendre transform, the maximum value is obtained for q = 0. Let 
us point out that, even in the presence of a C 00-behavior-induced phase 
transition, this Hausdorff dimension is never alterated provided qcrit < 0. 

5. NUMERICAL APPLICATIONS 

In this section, we report some numerical applications that illustrate 
the relevance and the generality of the theoretical results derived in this 
paper. Even though we have established our main theorems for analyzing 
wavelets with compact support, we will carry out our numerical examples 
with analyzing wavelets that belong to the class of commonly used 

24



real-valued wavelets defined by the successive derivatives of the Gaussian 
function <3

4--
38 ): 

t/l(k)=(-l)k+l dk (e-xz;z) 
dxk (43) 

These wavelets are actually well localized in both direct and Fourier spaces 
and thus are well adapted to the spectral algorithm we use to compute the 
continuous wavelet transform. Moreover, the fast decrease of the Gaussian 
functions when x goes to infinity is sufficient for our theoretical demonstra­
tions to remain valid, as pointed out in Section 2 when stating the working 
hypotheses (Hl) and (H2). 

Example 1. Our first application concerns a signal whose singular 
part s( x) is the distribution function of a Bernoulli measure 11- E Jt over the 
unit interval A= [0, 1]. More precisely, 11- is the invariant measure of one 
member of the class of expanding piecewise linear maps T defined in Sec­
tion 3.1, with s = 2, }" 1 = A2 = 1/3, p 1 = 0.6, and P2 = 0.4. Thus r- 1(A) is the 
union of two disjoint intervals separated by a gap g = 1/3. The so-obtained 
devil staircase s(x) is actually perturbed by the addition of a coo function 
r(x) = R sin(8nx), i.e., a sine function over four periods. The signal 
f(x) = s(x) + r(x) is shown in Fig. la. The set of the maxima lines of the 
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Fig. 1. Maxima lines of the wavelet transform of the function f(x)=s(x)+r(x), where 
r(x) = R sin(8nx) and s(x) is the distribution function of the measure p. e ,1{ with s = 2, 
A. 1 = }.2 = 1/3, p 1 = 0.6, arid p 2 = 0.4. (a) Graph of f(x). (b) Wavelet transform maxima lines 
of s(x). (c) Wavelet transform maxima lines of f(x). The analyzing wavelet is 
t/t(2 >(x) = (l-x2

) exp( -x2/2). 
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wavelet transform of f(x), as computed with the analyzing wavelet 
ljl 2(x)=(l-x2 )e-x

2
12

, is shown in Fig. le. Note that 1/1(2
) has its first two 

moments vanishing, which implies N = 2 from the hypothesis (H5) in 
Section 4.3. The wavelet transform maxima lines of the devil staircase s(x) 
alone [without the perturbation r(x)] are shown in Fig. lb for com­
parison. The main observation is that each maxima line in Fig. 1 b is 
recovered in the wavelet transform representation of the Coo perturbed 
devil staircase in Fig. le. Even though the corresponding maxima lines in 
Figs. lb and le may differ by a slight shift at the largest scales, they con­
verge to the same point of the support of f1. when the scale goes to 0 (the 
amplitude of the shift goes to zero when a goes to zero; see Lemma 9). But 
some additional maxima lines can be identified in Fig. le. Along these 
"extra" lines, the amplitude of the wavelet transform IT "'(2)[/] I is found to 
decrease like aN= a2, as illustrated in Fig. 2a, where I T"'121[/] I is plotted 
versus a in a log-log representation. This aN power-law behavior is 
systematically obtained for each of these additional maxima lines in Fig. le. 
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Fig. 2. Measurement of the singularity spectrum of the multifractal signal shown in Fig. la. 
(a) Local scaling exponents revealed in log-log plots of T,[f](x, a) versus a along maxima 
lines of .Pp (continuous lines) or of .!l'N (dashed lines). (b) Plot of log2 z£.q(a)/(q -1) 
versus log2 a for different values of q. In (a) and (b) the analyzing wavelet is 
rft(2)(x) = (1- x2) exp( -x2/2). (c) 1:(q) versus q as obtained with the analyzing wavelets 
rjt(l>(x)= -xexp(-x2/2) (0, .&) and rjt 121(x) (0, e); the solid lines correspond to the 
theoretical predictions from Theorem 4; the dashed line is the part (q < qc) of the 1:(q) curve 
of the underlying measure p., which is masked by the C"' behavior. (d) D(h) versus h from 
the Legendre transform of 1:(q); the symbols are the same as in (c). 
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It departs significantly from the power-law behavior IT 1/1(2) [f] I ~ arx with 
:t. ~ :t.max = ln p2/ln A2 = ln 0.4/ln 1/3 = 0.834 ... , extracted along maxima lines 
emanating from the singular part s( x) of the signal (Fig. 2a ). The set £}- of 
maxima lines of ITI/J(2)[f]l can thus be decomposed into two subsets: the 
set !t?p of the maxima lines originating from the singularities of s, and the 
set !t?N of the maxima lines induced by the C 00 sine contribution. This 
result can be seen as a numerical illustration of the relevance of Eq. (39 ), 
which is the basic hypothesis of our demonstration in Section 4.3. 
Moreover, the number of extra maxima lines induced by the Coo behavior 
is finite and directly related to the number of periods of the sine function. 

From the values of IT 1/1 [f] I on the set £}- of maxima lines shown in 
Fig. le, one can compute the partition function zt,q(a) defined in Eq. (30) 
and consequently estimate T(q) as a transition value for the scaling 
exponent of zt,q(a) in the limit a-+0+. Practically, T(q) is extracted 
from the scaling behavior of ZL(a)-a"<qJ over a significantly wide range 
of scales. <31

-
33

) As illustrated in Fig. 2b, for three different values of 
q = + 10, 0, -10, determining r( q) just amounts to extracting the slope of 
In Z£q(a) versus In a from a least-square linear regression fit. The overall 
results of our r(q) measurement are reported in Fig. 2c. The computa­
tions have been performed using two different analyzing wavelets: 
rjJ< 1l(x)= -xe-x2

12 (N=l) and rjJ< 2l(x)=(I-x)e-x212 (N=2). For q>O 
(open circles in Figs. 2c and 2d ), both analyzing wavelets lead to numeri­
cally identical estimates for T( q ). On the contrary, for q < 0, the numerical 
data obtained with rjJ(ll (solid triangles) and rjJ 12l (solid circles) separate 
from each other into two distinct straight lines respectively of slope 1 and 
2. We thus observe numerically the phase transition phenomenon predicted 
by Theorem 4. For positive q values, we recover the r(q) spectrum of the 
underlying singular measure J.t [Eq. (16)], while for q below some critical 
negative value qcriu the shape of the r(q) curve is dictated by the number 
N of vanishing moments of the analyzing wavelet. Our numerical results in 
Fig. 2c are in excellent quantitative agreement with the analytical spectra 
(full lines) predicted by Theorem 4, and clearly deviate from the theoretical 
T(q) spectrum [cf. Eq. (16)] (dashed line) for q<qcrit· As far as a precise 
estimate of the critical value qcrit (which depends on N) is concerned, 
large-scale simulations would be necessary to lessen the crossover effect 
observed around this q value. 

By Legendre transforming r(q), one gets the D(h) singularity spectrum 
of f(x). As shown in Fig. 2d, as long as q > qcrit(N), the numerical results 
obtained with the two analyzing wavelets rjJ(ll and rjJ< 2l (circles) fall 
remarkably on the theoretical D(h) curve (full line). For q<qcrit(N), 
however, the Legendre transform of the linear behavior of T(q) (cf. Fig. 2c) 
produces a linear falloff of the D(h) curve toward the limiting value h = 1 
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for 1/J(IJ and h = 2 for 1/1(2) (actually h = N for 1/J(Nl), where D(h) vanishes. 
This linear part is tangent to the theoretical D( h) spectrum (dashed line) 
and has a slope equal to qcrit(N). It is the signature of the phase transition 
phenomenon described in Section 4.4. Thus, in this example, the presence 
of the Coo sine behavior prevents us from measuring most of the right-hand 
side of the D(h) spectrum. But, as pointed out in Section 4.4, this 
phenomenon is analyzing wavelet dependent, and the use of different 
analyzing wavelets provides us with a clear diagnostic of whether or not 
the weakest singularities are masked by C 00 contributions. 

Let us remark, however, that one can practically identify all the 
maxima lines that belong to the set !l'N from the characteristic behavior of 
the wavelet transform (TI/t(NJ[f]vaN). Then, by computing partition 
functions restricted to the set !l's one can "restore" the self-similarity and 
determine the whole singularity spectrum. (33

> 

Example 2. Our second application is an illustration of the robust­
ness of our theoretical results that are likely to extend to a large class of 
singular functions which do not necessarily meet the conditions required by 
our mathematical analysis. The signal in Fig. 3a is a random function over 
[0, 1 ], generated from the distribution function of a measure f.1. that does 
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Fig. 3. Measurement of the singularity spectrum of the multifractal signal f(x) = s(x) + r(x), 
where r(x) = R sin(8:n:x) and s(x) is the distribution function of a measure p. randomly 
distributed over the whole interval (gap g = 0) with s = 4, 21 = 22 = 23 = 24 = 1/4, p 1 = 0.845, 
p 2 = -p3 =0.362, andp4 =0.155 (see text). (a) Graph of a realization off. (b) ;:(q) versus q. 
(c) D(h) versus h. In (b) and (c), the solid line corresponds to the analytical spectra. The 
analyzing wavelet is 1/1(2>(x) = (1-x2) exp( -x2j2). 
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not belong to .A since the condition g > 0 has been relaxed and some of 
the p,. have been allowed to take negative values. More precisely, f1. is 
constructed along the lines of the definitions in Section 3.1, with s = 4, 
21 = ).2 = A. 3 = A4 = 1/4, p 1 = 0.845, p 2 = - p 3 = 0.362, and P4 = 0.155. The 
randomness is introduced in the respective order of the assigned weights Pi> 
at each step of the construction process [i.e., f.l(Ak 1, ••• ,kJ = Pa1(kll · · · Pan(kn)' 

where a 1 , ... , an are independent random permutations of the set { 1, ... , s} 
and correspond to the same law]. The values of the ).,. have been chosen 
so that there is no gap in the support of J.l., i.e., Supp f1. =A = [0, 1]. 
Furthermore, we have introduced a drift in our signal by superimposing 
the same coo perturbation r(x) as the one used in Example 1: f(x) = 
s(x) + r(x) with r(x) = R sin(8nx). 

To estimate r(q), we proceed as for Example 1, by computing the 
scaling behavior of the partition function ZL(a) over a significantly wide 
range of scales. Indeed, our measurement requires some averaging over 
several realizations of the random construction process described above. <32 J 

The results of this statistical analysis, performed with the analyzing wavelet 
1{1(2), are shown in Fig. 3b. The numerical data (circles) fall on a convex 
nonlinear curve which is particularly well fitted by the theoretical r(q) 
spectrum (solid line). Its Legendre transform, D(h), in Fig. 3c, is a single­
humped curve which is also in remarkable agreement, up to numerical 
uncertainties, with the theoretical singularity spectrum (solid line). The 
maximum of the D(h) curve is found to be 1, as expected for a function 
which is almost everywhere singular (cf. Section 4.4 ). Moreover, the 
range of Holder exponents [hmin• hmaxJ detected numerically matches the 
theoretical interval of singularities of J.l., [e!min• C!maxJ, where 
am;n=lnp 1/lnA1 =0.121... and amax=lnp4/lnA.4 =1.345 .... Let us mention 
at this point that no "phase transition" phenomenon is observed for this 
class of signals when operating with different analyzing wavelets 1/J(NJ_ 

Let us stress that for almost everywhere singular functions that are 
perturbed by an additional coo function, the local behaviorof the wavelet 
coefficients is likely to be generally dominated by the power-law exponent 
governed by the singularities of f. Thus, provided the analyzing wavelets 
have a number of vanishing moments N> hmax' the computation of the 
partition . function z;,q(a) will not be affected and consequently the 
singularity spectrum of the measures D(h) will not be alterated. Signals 
having singularities distributed over the whole sampling interval are com­
monly encountered in various situations in applied sciences. <1• 4-6, 13• 14l We 
refer the reader to our preliminary numerical study in refs. 31 and 32, 
where our statistical approach based on wavelets has been successfully 
applied to fractional Brownian motions and to fully developed turbulent 
signals. 
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6. CONCLUSION 

To summarize, we have presented a first theoretical step toward a 
unified multifractal theory of singular distributions including singular 
measures and singular functions. The step performed here is a cautious one: 
we have only considered distribution functions of Bernoulli measures lying 
on disconnected Cantor sets invariant under some affine Markov maps, 
possibly perturbed by coo contributions. Our proofs have been established 
under specific hypotheses concerning the self-affine function under study as 
well as the shape of the analyzing wavelets. But our results are likely to 
remain valid under less stringent conditions. In particular, the hypothesis 
(H 1) for the analyzing wavelet to have a compact support can be relaxed 
into an algebraic decay t/J(x)= O(x-k), k>O, but at the expense of some 
(unnecessary) complications in the proofs. On the other hand, the results 
of some numerical applications strongly suggest that one should be able to 
extend our rigorous study to distribution functions of more general 
measures, e.g., the invariant measures of nonlinear expanding Markov 
maps including measures lying on a nonlacunar sets, real-valued measures 
that possesses a recursive structure, and the invariant measures of some 
well-known nonhyperbolic one-dimensional mappings (period-doubling 
Cantor set and the critical golden mean quasi periodic trajectories). 
Moreover, we expect our theoretical results to apply to more general self­
affine functions, such as the realizations of some stochastic processes. 
Preliminary investigations in this context indicate that fractional Brownian 
motions<SS) are likely to be amenable to such a rigorous treatment relying 
on the wavelet decomposition. 

This mathematical study provides algorithms for determining the D(h) 
singularity directly from the considered self-affine function. Preliminary 
results reported in refs. 31 and 32 of an analysis of a fully developed 
turbulent velocity signal show that this method is readily applicable to 
experimental situations. Applications of this wavelet approach to turbulent 
dynamics in fractal growth phenomena, critical fluctuations in colloidal 
systems, and DNA "walk" nucleotide sequences are currently in progress. 
We believe that this method of determination of the singularity spectrum 
of fractal signals is likely to become as useful as the well-known phase­
portrait reconstruction, Poincare section, and first-return-map techniques 
for the analysis of chaotic time series. 

APPENDIX A 

We reproduce here the proof of the following lemma that one can find 
in ref. 40: 
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Lemma 3. Letf: ~+~~+that satisfies 3s EN, 3(c1 , ... , cs) E (~ + *)', 
3(). 1 , ••• , J.s)E ]0, 1]', and 3g>0 so that 

O<a<g=-f(a)= I ckf(~) (Al) 
k= I Ak 

Then the two following relations hold: 

(i) If'v's, O<s<g, sup[e,gJ/(x)< +oo, then 

L c k < 1 <=> lim /(a) = 0 
k a-o+ 

(ii) If 'v's, 0 < e < g, inf[e, gJ f(x) > 0, then 

l:ck>l<=> lim f(a)= +oo 
k a-o+ 

Proof. We will only prove the first part. The proof for the second 
part is along the same lines. Let j+ : ~ + ~ ~ + be the function that satisfies 
the following conditions: 

1. O<a<g=>j+(a)?;;f(a). 

2. j+ is monotonic. 

3. If v: ~ + ~ ~ + satisfies conditions 1 and 2, then v( a) ?;; j+ (a) for 
0 <a< g, i.e., j+ is the smallest monotonic function majorizing f. For 
a E ]0, g] it is explicitly given by one of the following expressions: 

(a) If limSUPa-o+ f(a) < oo, thenj+(a) = SUPye [O,a] f(y). 

(b) Iflimsupa-o+f(a)=oo, thenj+(a)=supye[a,gJ/(y). 

In the following Amax will denote sup; { .. q and Arnin will denote 
inf; {).,.}. Let us suppose that f' + is another function satisfying the 
conditions 1-3, but with a constant g', 0 < g' <g. Then let us prove that 
there exists Yf > 0 such that 

f'+(a)=j+(a) for a<rt (A2) 

In the case where j+ is given by (a), this is obvious. Suppose now that j+ 
is given by the second expression (b). Then f' + is also obtained by a 
similar formula. For 0 <a< g' we have 

j+(a) = sup f(y) = max ( sup f(y), sup f(y)) 
ye [a,g] ye[a,g'] yE[g',g) 

=max(J'+(a), est) 

and therefore, since by hypothesis f' + (a) ~ oo monotonically as a goes to 
0, Eq. (A2) holds for a small enough. 

From the hypothesis that f is bounded away from oo on any closed 
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subset of ]0, g ], it follows that j+ (a)< oo for a e ]0, g]. Using the relation 
(Al) and the fact thatj+ majorizesf, we may write, for O<a<gAmin• 

f(a)~ kt1 ckj+ (;J (A3) 

The right-hand side of this inequality is the sum of monotonic functions; it 
is thus a monotonic function. It majorizes f on ]0, gAmin]. Therefore, since 
j+ is extremal [condition 3 and Eq. (A2)], it follows that for a small 
enough, j+ satisfies the same type of equation: 

j+(a) ~ k~1 ckj+ C~J 

~ (I ck) max (1+ (*)· j+ (A a )) 
k= 1 m1n max 

where we have used the monotonicity of j+ (a small enough). Since 
L~ = 1 ck < 1, it follows from 0 < Amin:;;:; Amax:;;:; 1 that 

lim j+(a)= lim f(a)=O 
a-o+ a-o+ 

The proof for the case :L~= 1 ck > 1 is similar. We only have to replace j+ 
by f-, i.e., the maximal mono tonic function that minorizes f, and to 
replace the majorizations by minorizations. I 

APPENDIX B 

We want to prove the following lemma (cf. Section 4.3 ). 

Lemma 8. Let leftj and let b(t) and a(t) (te ]0, 1]) be two 
continuous functions such that { ( b( t ), a( t))}, e ]O, 1] c l and lim, _ 0 a( t) = 0. 
Then, 3b1e IR such that lim,_ 0 b(t) = h1• 

Proof. Let us suppose that the function b(t) does not converge when 
t goes to 0, i.e., 

3eeJRH, 'v't0 e]O,l], 3(t1,t2)e]O,t0e lb(td-b(t2)1>e (Bl) 

Since a(t) is C0 and goes to 0 when t--tO, then Eq. (Bl) can be rewritten 
as follows: 

(B2) 

Then, it is clear that there exists an n (large enough) so that the maxima 
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line I is going to cross an infinite number of times (and at smaller and 
smaller scales) at least one of the "holes" of the set 

Jd(n)= u A 
k;= 1 .. ·S 

i= 1 ··-n 

kJ, ... ,kn 

Moreover, if b belongs to this hole and if a is small enough, then 
T 1/1 [ s] ( b, a) = 0 (because 1/1 has a compact support) and therefore 
T.p[f](b, a)= T.p[r](b, a). In other words, if l= [b 1 , b2 ] is the interval 
representing this hole, then 'Vb E /, there exists a series (adke N (going to 0) 
so that 'Vk, (b, ak) E I and T.p[f](b, ak) = T.p[r](b, ak)· Since (b, ak) is a 
modulus maxima, then oT.p[r]job(b, ak) = 0. It follows that 

J 1/1' C ~b) r(x) dx= 0 

which is equivalent to 

J 1/J'(x)r(b+akx)dx=O 

By replacing r(b + akx) by its Taylor series at the order N + 1, we get 

N+ 1 ( )P 
L J 1/J'(x) ak~ r<Pl(b) dx + o(a~ + 1 ) = 0 (B3) 

p=O p. 

Moreover, by using the hypothesis (HS), it follows that f xklj!'(x) dx = 0 for 
0 ~ k < N + 1 and f 1/J'(x )xN + 1 # 0; therefore Eq. (B3) becomes 

a~+ 1 (r<N+1l(b) J ljJ'(x)xN+ 1 dx+o(l))=o 

which implies that r<N+ 1l(b)=0. It follows that r<N+l)/ 1 =0; therefore 
r /1 is a polynomial of order N and then, for small enough a, 
T 1/1 [f] ( ·, a) /1 = Cte. This last result contradicts the fact that the {( b, ak) h 
are modulus maxima of T.p. I 

APPENDIX C 

We want to prove the following lemma (cf. Section 4.3 ). 

Lemma 9. Let us suppose that: 

(H6) N > max( 1Xmaxo 3etmaxl2- 1) [cf. (H5) for the definition of N 
and Lemma 6 for the definition of ccmaxl 

(H7) d(oT.p [s ]job)= (o 2T .,[s ]job 2
) db+ (o 2T .p[s ]joa ob) da # 0 on 

any maxima line in 2.. 
(H8) o2T.p[s]job 2 #0 on any maxima line in 2. except at its 

boundary points. 
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Then for all 8 > 0, there exists a0 > 0, k > 1, and C > 0 such that 

Va<a0 , VIE!fl,(a), a1>a/(1-8) then 3!11 E2j-(a) suchthat 

V(x, a') E /, 3!(x1 , a') E 11 , 

Moreover, 

To~r[f](x 1 , a')= To~r[s](x, a')[1 +IJ(x, a')] 

where 17(x, a') is a function which is uniformly bounded by a decreasing 
function F(a') (independent of I) which goes to 0 when a' goes to 0. 

Proof. (H7) mainly means that the maxima lines of To~r[s] do not 
"bifurcate"; it implies that the distance between two modulus maxima 
(belonging to two different maxima lines) at the same scale a (with a 
varying from Ag to g) is bounded away from 0. Then, by using the self­
similarity property [Lemma 1(ii)], it follows that there exists a constant 
C > 0 so that the minimum distance between two maxima lines at scale 
a> 0 is greater than Ca (for the sake of simplicity we will suppose that 
C = 1 ). Then, if I E 2, and k > 1, we define the following neighborhood 
of 1: 

"fk(l) = { (x', a), 3(x, a) E !fix- x'l < ak} 

By definition, "fk(l) does not contain any modulus maximum belonging to 
another maxima line. 

We fix 8 > 0 (8 small). By the definition of a modulus maximum (see 
Definition 1), To~r[s] does not vanish on any maxima line in 2,. Then there 
exists C 1 > 0 such that for all/ E fil,(a) (with Ag ~a ~g) with a1 > a/(1- 8), 
then 

in a neighborhood of I 

Furthermore, by using the self-similarity property [Lemma 1(ii)], one can 
prove (in the same way in which we proved Lemmas 5 and 6) that there 
exists a 1 > 0 such that 

V a< ar. VIE fil,(a) such that a1> a/(1- 8) then 

(x, a') E "fk(l) = IT o~r[s ](x, a')l > C 1 a'!l.max (Cl) 

Similarly, one can prove [from (H8)] that there exists C2 >0 and a2 >0 
such that 

Va<a2 , VIEfi's(a) such that a,>a/(1-8) then 

(x,a')E"f/k(l)= 
02~~~s](x,a') >C2 a'"max- 2 (C2) 
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Let a0 =min(a 1,a2 ). From now we will suppose that a<a0 , le.:l'.,(a), 
a,>a/(1-e). Moreover, we choose k::::l+k1 with amaxl2<k 1 < 
N- cxmax + 1 (such a k 1 exists because N > 3a.max/2 - 1 ). We then consider 
(x, a') El and we want to prove that there exists a unique modulus 
maximum of Tl/t[f] at a point (x~> a') E "f''k(l). Let us suppose that T"'[s] 
is negative and i3 2T "'[s ]ji3b2 positive in "f'k(l) (the other case, corresponding 
to T"'[s] positive and o2TI/t[s]job 2 negative, can be solved in the same 
way). 

Then, we are looking for a point x().)=(x+A.,a') (with IA.i<ak) 
which would be a maximum of Tl/t[f]. From Lemma 7, one can easily 
prove that there exist two functions R 1 and R2 (uniformly bounded by a 
constant C) so that 

oT"'[f] (x(A.)) = oTifl[s] (x(A.))+ a'NR (x(4)) (C3) 
ab ab 1 

and 

We are looking for A. such that d(A.)=oT"'[f]/Bb(x(J.))=O. From Eqs. 
(C2) and (C4), we get that 

(CS) 

(R1 and R2 are defined independently of/. So we can assume that we have 
chosen a0 small enough so that C2 a"m••- 2 -CaN>O.) Then dis a strictly 
increasing function. On the other hand, if A. > 0, it follows from Eq. ( C2) 
that 

oT~is] (x(..t)) > CzA.a'"max-z 

and therefore, using Eq. (C3 ), 

d(A.) > CzA.a'"max -2- Ca'N 

One thus gets 

(since k 1 < N -1Xmax + 1 we can suppose that we have chosen a0 small 
enough so that the right-hand side is strictly positive). In the same way we 
get 
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Therefore, d is an increasing function which goes [when x(A) varies in 
~(!)] from negative values to positive values; it has one single zero: 
A= A(x, a'). As d is strictly increasing, this zero corresponds to a point 
where Tl/t[f] is an extremum (i.e., the second derivative of Tl/t with respect 
to b _is not 0 ). Let us determine the sign of T l/t [J] at the point 
(x+).(x, a'), a'). The maximum absolute value of the second derivative is 
uniformly smaller than C'a'- 2 (where C' is a uniform upper bound of 
T l/t [s] ); then as (x +),,a') E ~ (/) we get 

Tl/t[J](x +A, a')= Tl/t[s ](x, a')+ A 2 
02~~~s] (x +A, a')+ a'N R(x +A, a') 

< - c 1 a'~rnax + C' a'21
<I + C" a' N (C6) 

where C1o C', C" are "global" constants. Moreover, as k 1 > rxmax/2 and 
N> rxmax [see (H6)], we can choose a0 small enough so that 

T l/t [f](x +A, a')= Tl/t [s ](x, a')[l + 17(x, a')] < 0 (C7) 

with 

It follows that the modulus maximum (x, a') of Tl/t[s] has been "trans­
formed" into the modulus maximum (x+A(x, a'), a') of Tl/t[f]. 

We still need to prove that the line I is "transformed" to a set 11 which 
is a continuous line. From (C5) we get 

(C8) 

Then, by using the implicit function theorem, we know that around each 
modulus maximum (x + A(x, a'), a') there exists a small line [E~(/)] along 
which oTl/t[f]job is zero. Let us call11 the union of all these lines. Since 
we have the same control on Tl/t[f] as we had on Tl/t[s] [in terms of 
lower bounds of the consecutive derivatives in ~(/)], /1 is made of 
modulus maxima and is a close set relative to the set ~(/). Moreover, if 
k =.1 + k1 < k' < 1 + N- rxmax + 1, then at any scale a', /1 is always at a 
distance greater than a'k- a'k' from the right and left borders of "fk(l). On 
the other hand, from Eq. (C8), it follows that a connected line of maxima 
cannot go down (to the small scales) and then up (to the large scales); this 
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means that on such a line there is a unique modulus maximum at each 
scale. Thus, if we consider the longest connected line /2 c./1 , it is easy to 
prove that /2 contains modulus maxima as close as we want to the scale 0 
and that l 2 =l1. I 

APPENDIX D 

We want to prove the following lemma (see Section 4.3 ). 

Lemma 10. Let us suppose that: 

(H9) If both T"'[s] and oT"'[s]job are vanishing at a certain point, 
then both oT"'[s]joa and o2T"'[s]job 2 are nonzero. 

Then 3e, 3a0 , 'VIE!f'.(a), a1>aj(l-e), 

Proof. The proof uses very similar techniques to those used in 
Appendix C, but it is much longer and not very interesting. Thus, we do 
not give the full proof, but just describe the main trends. 

Let us first give two definitions: 

(a) In the following, we will say that ( b, a) is an extrem urn of TV! iff 
oT"'/ob(b, a)= 0. 

(b) Moreover, in the same way as in Definition 2, we will call an 
extremum line of T"' any connected line made of extrema. [We 
define also g-ext(a) and g-ext as in Notation 1.] 

As seen in Section 4.3, a point (x1, a1) where a maxima line first 
"appears" can be of two types (see 1 and 2 in Section 4.3 ). From (H9 ), it 
follows that these two types are exclusive: 

(1) T"'[s](x"a1)=0. By the continuity of oT"'[s]job and by the 
definition of a,, it is clear that oT"'[s]job(x" a1)=0 and that there exists 
an extrema line in g-~x1(a 1 ) which contains !. Then, from (H9), we get 
o2T"'[s]job 2(x" a1) ;i:O and by using the implicit function theorem, it 
follows that there exists e small and t•xt E g-~x1 ( atf( 1 -e)) such that l c. rxt 
[let us note that the self-similarity property, Lemma l(ii), allows us to 
choose e independently of !]. Indeed, the beginnings of the proofs in 
Appendix C [until Eq. (C6)] hold when applied to z•xt, and we thus get 
a perturbed extrema line pext(/"x1

) E 2?1(aJ(l- e)) [with P(l) c pext(/"~1 )]. 

Moreover, we know [from (H9)] that oTV![s]joa(x1, a1) ;i: 0 and therefore 
(for e small enough) (x, ad(l-e))Elext is not a modulus maximum of 
T"'[s] (i.e., it is either a positive minimum or a negative maximum). For 
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a1 small enough, it is clear that this will still be true for the corresponding 
perturbed extremum (x+A.(x,atf(l-s)),atf(l-s))EPext(/"xt). Thus, if 
11 E !E.J, P(l) c 11 , then 11 c pextwxt) and a PU) ~ atf(l- s ). 

(2) 8 2T"'[s]job 2(x1,a1)=0. As 8 2 T"'[s]joboa(x~>a1)#0 [see (H7)], 
by using the implicit function theorem, one can show that there exists e 
(small and independent of /) and an extrema line /ext which contains the 
point (x1, a1). Let us just consider the portion /"f1 of /ext which is around 
(x1, a1) [i.e., { (x, a) E /ext, a1( 1 -17) <a< atf( 1 -17)}]. Then, in the same 
way as in the proof in Appendix C, but by exchanging the roles played by 
a and x, we can associate to any extremum (x, a) E /";1 a unique perturbed 
extremum (x, a+ A.( a, x)) with IJ"I <a\ k > 1. Moreover, if (x, a) is not a 
modulus maximum (but just an extremum), then, for a1 small enough, 
the corresponding perturbed extremum is also not a modulus maximum. 
One can then prove that the perturbed portion remains "around" the 
scale a, and that it contains the end of P(l) [i.e., (xPU)• aP(I))]; thus, 
aPUl~at/(1-e). I 
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