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Oscillating Singularities in Locally Self-Similar Functions 

A. Arneodo, 1 E. Bacry,2 and J. F. Muzy1 
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2 Unite Fondamentale de Recherche de Mathematiques, Universite de Paris VII, Tour 45-55, 2 Place Jussieu, 

75251 Paris Cedex 05, France 

Singularities induced by oscillating behavior are analyzed using the wavelet transform. We define 
two local exponents which allow us to characterize both the singularity strength (HOlder exponent) 
and the instantaneous frequency of the oscillations. Such oscillating singularities are shown to appear 
generically in local self-similar functions which are invariant under a nonhyperbolic mapping. We 
illustrate our results on both isolated singularities and nonisolated singularities appearing in fractal 
signals generated by nonhyperbolic iterative function systems. 

During the past few years, there has been increasing 
interest in the study of irregular objects [1]. Fractal and 
multifractal concepts have been developed to describe the 
singular nature of such distributions through their scale 
invariance (self-similarity) properties [1,2]. They have 
been applied successfully in various physical situations 
ranging from the characterization of ramified patterns 
observed in growth experiments [3] to the study of the 
statistics of the velocity and the dissipation fields in fully 
developed turbulence [4,5]. In the latter context, some 
authors [6] advocate the use of models of eddy structures 
involving "spiral-type" behavior of the generic form 

f(x) = lx - xol 11 sinCx -=:oiP) ({3 > 0, Y > -1). 

(1) 
Unfortunately, the multifractal formalism introduced in 
Ref. [2(a)] does not take into consideration these oscillat­
ing singular behaviors. The aim of this Letter is to study 
such locally accumulating oscillating behavior using a 
tool that has proven particularly powerful for analyzing 
singular functions, namely, the wavelet transform (WT) 
[7]. Within the general framework of WT analysis, we 
introduce two local exponents a(x0) and c,o(x0 ). The ex­
ponent a (x0 ) can be seen as a generalization of the local 
singularity exponent commonly used in the multifractal 
description, whereas the exponent cp (x0 ) accounts for the 
behavior of the "instantaneous frequency." For singular 
behavior induced by "fast oscillations" [e.g., Eq. (1)], we 
show that cp(x0 ) plays an important role in the characteri­
zation of the strength of the singularity. This Letter is 
mainly devoted to the calculation of a and c,o for locally 
self-similar functions. We demonstrate that oscillating 
(nonoscillating) singularities are generically associated to 
invariance properties under nonhyperbolic (hyperbolic) 
mappings. We illustrate our purpose on particular 
examples including the fractal coding function recently 
introduced by Gutzwiller and Mandelbrot [8]. 

The WT of a signal permits an analysis both in physical 
space and in scale space. It consists in decomposing a 

signal in terms of wavelets which are constructed from 
one single function, the analyzing wavelet 1/J, by means of 
dilations and translations. The WT of a function f(x) is 
defined as [7] 

1 f +oo ( b) T.p(b,a) =- f(x)I/J ~ dx, 
a -eo a 

(2) 

where b is a space parameter (b E R) and a a scale 
parameter (a ER+*). The analyzing wavelet 1/J(x) is 
chosen well localized around x = 0 and with a vanishing 
integral so that a large value of IT.p(b,a)l corresponds 
to a large variation of f(x) over a distance a from the 
point x = b. Thus, as proved by Mallat and Hwang 
[9], if f(x) is singular at x = x0 , then, at any scale 
a (arbitrarily small), the function IT .p( ·, a)l is locally 
maximum at a point b(a) in the neighborhood of x0 . 

The points (b(a), a) in the space-scale half plane are 
generally referred to as WT modulus maxima (WTMM); 
they are lying on connected curves called maxima lines. 
These lines generally converge to the points where f is 
singular [9,10] [i.e., b(a)--+ Xo when a--+ o+]. Moreover, 
provided some first moments of 1/J are zero, one can 
recover [9-11] the HOlder exponent h(x0 ) off at the point 
x0 by studying the power-law behavior of the WT along a 
maxima line converging to x 0 : 

T if;((b(a), a)) ~ ah(xo), a--+ o+. (3) 

Let us recall that this exponent characterizes the singular­
ity strength of f(x) at the point x = x0 : 

f(xo + l) = f(xo) + lf(l)(xo) + · · · + W /n!)lnl(xo) 

+ O(lllh(xo)), (4) 

where n < h(x0 ) < n + 1 and f(k) is the kth derivative 
of f. 

However, Eq. (3) is not relevant in the case of oscillat­
ing singularities [9], i.e., such that the HOlder exponent 
is increased by more than 1 when the function is inte­
grated (this is generally induced by the presence of an 
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infinite number of accumulating oscillations in any neigh­
borhood of the singularity). Let us illustrate this irrele­
vance on the particular class of "infinitely oscillating" 
functions defined in Eq. (I). These functions are singular 
at x0 and correspond, according to the definition [Eq. (4)1, 
to the Holder exponents h(x0 ) = 'Y. The graph of such 
a function is displayed in Fig. 1 (a). As one can see in 
Fig. 1(b), the WTMM of this function are lying on an 
infinite (countable) number of maxima lines {ln}n<=E ap­
pearing at smaller and smaller scales. Each maxima line 
corresponds to an oscillation in the signal, and the scale 
at which it appears is proportional to the distance between 
two successive maxima lines. This distance can be seen 
as an "instantaneous period." It is clear that the WT along 
any maxima line, for a small enough, will not account for 
the singularity behavior off at x0 = 0 since none of these 
lines converge towards the point x 0 = 0. Thus, instead of 
following a maxima line, as in Eq. (3), one must "jump" 
from one line to another in order to converge towards x 0 

when going from large to small scales. Let us consider the 
maxima (bn, a,J which correspond to the greatest value of 
IT </t I on each line ln (if it is not unique we consider the one 
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FIG. I. Detection of the local exponents a(x0 ) and cp(x0 ) 

associated to an oscillating singularity. (a) Graph of the 
function f(x) = lx!Y sin(27T/ix!l!) for 'Y = ~ and {3 = l. The 
point x 0 = 0 corresponds to an oscillating singularity of f. 
(b) WT skeleton showing the positions of the modulus maxima 
for the signal in (a). The analyzing wavelet If; is the first 
derivative of the Gaussian function. The maxima are lying 
on maxima lines. Along each line ln, the symbol ( •) marks the 
point (an,h,) where the WT is the greatest. (c) log2 IT!/J(hn,an)l 
vs log2a,. The slope provides an estimate of a(x0 ) = 'Y /({3 + 
1). (d) log2 lbnl vs log2 an. The slope gives an estimate of 
cp(xo) = 1/({3 + 1). 

appearing at the largest scale). As shown in Fig. 1 (b), bn 
goes to x0 when an goes to 0. [It can be proven that the 
points (bn, an) belong to the "ridge" defined in Ref. [12] 
as the instantaneous frequency curve in the (b, a) space­
scale half plane.] Moreover, as illustrated in Fig. 1 (c), 
one can prove that, along this sequence, the WT modulus 
follows a power-law scaling 

(5) 

where a(x0 ) = 'Y /({3 + 1). The so-obtained local expo­
nent a(x0 ) is smaller than the Holder exponent h(x0 ) = 'Y· 
It thus appears that, in order to extract h(x0 ), we must 
characterize the oscillations of J(x), i.e., evaluate the ex­
ponent {3. From a and f3 we will then naturally recover 
'}' = h(xo). 

Since each of the maxima line corresponds to an 
oscillation in the signal, the abscissa bn behave like 
lhn- x 0 1 ~ n- 11!3. Moreover, the scale an is of the order 
of the distance between this maxima line and the next 
one, i.e., an ~ bn - bn+1 ~ n-({3+ 1)/{3. Thus the distance 
between the nth maxima line and the singularity x 0 scales 
like 

n --+ +cc' (6) 

where <;o(x0 ) = 1/({3 + 1). As illustrated in Fig. l(d), the 
exponent 'P (x0 ) can thus be extracted from a simple log­
log plot of the distance I bn - x 0 I vs the scale an. The 
HOlder exponent h(x0 ) can thus be recovered through the 
particularly simple relation 

h(xo) = a(xo)/<;o(xo). (7) 

Let us note that Eqs. (5), (6), and (7) hold for a general 
class of analyzing wavelets including the successive 
derivatives of the Gaussian functions [2(c)]. 

For a general function f, we define the exponent 
a (x0 ) as in Eq. (5) and 'P (x0 ) as the minimum of 'P (x0 ) 

[Eq. (6)] and l. The so-defined local exponents allow 
us to characterize very precisely the strength and the 
nature of a singular behavior at a given point x0 . Indeed, 
for a very large class of functions, one can prove 
that the relation [Eq. (7)] still holds; i.e., the strength 
of the singularity at x 0 is directly measured by the 
ratio a(x0 )/<;o(x0). Moreover, <;o(x0 ) = 1 indicates that x0 

corresponds to a nonoscillating singularity. In that case, 
we thus get a(x0 ) = h(x0 ); i.e., Eq. (3) holds and becomes 
the same as Eq. (5). On the other hand, a value of <;o(x0 ) 

smaller than 1 corresponds to an oscillating singularity 
and, consequently, to an exponent a(x0 ) smaller than 
h(x0 ). Equation (3) does not hold anymore. The smaller 
'P (x0 ) the more oscillating f in the neighborhood of 
x 0 . Moreover, one can prove that the derivative f'(x) = 
df /dx corresponds generically to the exponents a 1(x0 ) = 
a(x0 ) - 1 and <;o 1(x0 ) = <;o(x0 ). The HOlder exponent off' 
at x0 can thus be derived from the one off using Eq. (7): 

h'(xo) = h(xo)- 1/<;o(xo). (8) 
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Hence, the more oscillating the signal the more irregular 
its derivative. Let us note that mathematicians have re­
cently refined the notion of HOlder spaces by introducing 
a 2-microlocal spaces [13,14] that allows a better char­
acterization of the action of integration or differentiation 
operators in functional analysis. Our exponents a and q; 
can actually be linked to the 2-microlocalization local ex­
ponents sands' through the relation a = s + s'(l - q;). 

Let us now consider the class of functions (or distribu­
tions) f(x) which are locally self-similar around a given 
point x0 = 0. We suppose that there exists an increasing 
function F(x) with a fixed point x0 which is stable un­
der the iteration ofF and such that f(x) = f(F(x))/P(x), 
where P(x) is some smooth weight function satisfying 
0 < P(x0 ) :s; 1. This invariance property off can be eas­
ily transposed in terms of self-similarity of its WT [15]: 

T.p(b, a) = P;b) T(F(b),F 1(b)a), (9) 

where F'(x) is the first derivative of F(x). The same 
kind of relation naturally holds for the modulus maxima 
sequence (bn, an) corresponding to the greatest values of 
the WT along the maxima lines. By iterating this relation, 
one gets bn = F[nl(bo) and an = (F[n])'(bo)ao, where F[n] 
is the nth iterate of F. Moreover Tn = IT.p(bn,an)l ~ 
P(b0 )P(bi) · · · P(bn). One can distinguish two cases. 

(i) F 1(x0 ) < I; i.e., x0 is an hyperbolic fixed point. One 
can easily prove that lbn - xol ~ an ~ F'(xo)n when n -+ 

oo. One thus gets q; (x0 ) = 1; i.e., the singularity located at 
x 0 is a nonoscillating singularity and h(x0 ) = a(x0 ). The 
value of the exponent a(x0 ) depends upon the expression 
of P(x). In the case where P(x0 ) < 1, [Tn ~ P(xo)n], we 
obtain h(x0 ) = a(x0 ) = -ln(P)/ln[F'(x0)]. 

(ii) F'(x0 ) = 1; i.e., x 0 is a nonhyperbolic fixed point. 
Generically, in the neighborhood of x0 , one can write 
F(x) = F(xo) + x- xo- Clx - xolr + o[(x - xoYJ (C > 
0 and r > 1). Using the former expressions of bn 
and an, one gets lbn - xol ~ nl/(1-r) and an ~ nr/l-r_ 
We thus obtain, from Eq. (6), q;(x0 ) = 1/r < 1; i.e., x0 

corresponds to an oscillating singularity. Again, the value 
of the exponent a(x0 ) depends on the expression of P(x). 
The case where P(x0 ) < 1 is degenerated in the sense 
that a(x0 ) = +oo; i.e., h(x0 ) = +oo; j(x) is not singular 
at x = x0 , it is C" even though it is infinitely oscillating 
around x0 • However, in the same spirit as for SRB (Sinai­
Ruelle-Bowen) measures [16], if we choose the weight 
function P(x) = IF'(x)l'1 for x in the neighborhood of 
x0 ( TJ is an arbitrary positive real number), then we get 
Tn ~ [F[nl'(b0 )]'1To and thus a(xo) = TJ. f is singular at 
x 0 with an Holder exponent h(x0 ) = rTJ. 

Oscillating singularities thus appear generically in lo­
cally self-similar functions invariant under nonhyperbolic 
mappings. The functions x'>' sin(21Tjxf3) [Eq. (I)] are ac­
tually good examples of such functions. Indeed, they 
are invariant under the mapping F(x) = x/(1 + xf3) 11f3 
[F'(O) = 1 and r = f3 + 1] with P(x) ~ F'(x)'1 [where 
TJ = y /({3 + 1)]. According to the considerations just 

above, one easily recovers q;(O) = 1/r = 1/({3 + I) and 
a(O) = TJ = y/({3 + 1). In Fig. 2(c), we have displayed 
a fractal measure which has been constructed on the 
interval [0,1] by iterating the iterative function system 
(IFS) [17] shown in Fig. 2(a). Each branch of the 
IFS, F 1 (x) = x/(1 + 3x) [F2 (x) = (x + 1)/2], is associ­
ated with the weight function P 1 (x) = IF: (x)ill3 [P2 (x) = 
(1/2) 113]. Each point of the support of the measure can 

(a) (b) 

X X 

(c) 

0.003 

J ~ 0 

(d) 

0 X 

FIG. 2. Fractal distributions with oscillating behavior. (a) 
Two branch IFS, F 1(x) = x/(1 + 3x) and F 2(x) = (x + 1)/2, 
used to build the measure in (c). Only the second branch 
is hyperbolic [F((O) = 1,Fi(1) = ~]. (b) Two branch IFS, 
F 1 (x) = x/(1 + x) and F2(x) = 1/(2 - x), used to build the 
function in (d). Both branches are nonhyperbolic [F; (O) = 
Fi(l) = 1]. (c) Fractal measure generated by the two branch 
IFS shown in (a) when using the respective weight functions 
P 1(x) = IF;(x)lil3 and P2(x) = (1/2) 113 • Any point of the 
support of the measure can be addressed through a symbolic 
sequence of I 's and 2's. As F1 is nonhyperbolic, any 
symbolic sequence which ends with an infinite number of 1 
corresponds to an oscillating singularity (fl' = ~). (d) Graph 
of the Gutzwiller-Mandelbrot function generated by the two 
branch nonhyperbolic IFS displayed in (b). Constant ( < 1) 
weight functions are used; the oscillating behaviors are thus 
degenerated in the sense that a = h = +eo; i.e., the signal is 
not singular although infinitely oscillating. These behaviors are 
dense in [0,1]. All the other points correspond to nonoscillating 
singularities. 
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be addressed by a symbolic sequence of 1 's and 2's, 
e.g., x = 0 corresponds to the symbolic sequence 1111 ... 
whereas x = 1 corresponds to 2222 . . . . As the first branch 
is nonhyperbolic, one can show that all the symbolic se­
quences which end with an infinite number of 1 's corre­
spond to oscillating singularities. In the same way, the 
sequences ending with an infinite number of 2's corre­
spond to nonoscillating singularities. Actually one can 
show that this is also the case for any periodic symbolic 
sequence which does not end by an infinite number of 
1 's. Thus, in the neighborhood of any oscillating singu­
larity, there exists an infinite number of both oscillating 
and nonoscillating singularities. 

As the last example, let us consider the coding function 
introduced by Gutzwiller and Mandelbrot [8] in the 
context of chaotic Hamiltonian systems. It has been 
proven by Bessis and Mantica [18] that this function 
can be obtained using a 2-branch IFS [Fig. 2(b)] whose 
two branches are nonhyperbolic. The graph of this 
coding function is shown in Fig. 2(d). Nonoscillating 
(cp = 1, e.g., periodic symbolic sequences) and oscillating 
behavior (cp < 1) are locally accumulating. However, the 
weight functions associated to the nonhyperbolic branches 
are strictly smaller than 1. Thus, the oscillating behaviors 
are "degenerated" in the sense that they do not induce any 
singularity (a = h = +oo). These "smooth" behaviors 
are responsible for the slow decay of the j(a) singularity 
spectrum estimated by Gutzwiller and Mandelbrot [8] 
using the classical multifractal formalism. 

To summarize, we have thus defined two new local 
exponents which allow us to characterize very precisely 
both the nature and the strength of a singular behavior. 
These wavelet-based exponents [Eqs. (5) and (6)] can be 
seen as a generalization of the classical singularity expo­
nent. They appear to be crucial for the understanding of 
the change of local regularity properties of a distribution 
when operating differentiation or integration. Let us note 
that the classical multifractal formalism [or its wavelet­
based generalization [2(c),5,10]] accounts only for the 
fluctuations of the scaling exponent defined in Eq. (3), 
which has no meaning when oscillating singularities are 
present. We have shown that such oscillating behaviors 
generically appear in fractal objects that are self-similar 
under nonhyperbolic mappings. These situations are com­
monly encountered in mathematics or physics; let us 
mention, for example, the famous Riemann-W eierstrass 
function [ll(b)] or the Farey-tree partitioning of rationals 
used to study the distribution of mode-locking intervals 
for critical circle maps [19]. A "grand-canonical" multi­
fractal formalism that would account for the fluctuations 
of both exponents a and cp would be of fundamental in­
terest in this context. 

Note added.-After completion of this work, we have 
been aware of a work by S. Jaffard and Y. Meyer [14] 

who introduced similar exponents in the context of "shirp 
analysis." 
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