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UNCOVERING A LOG-NORMAL CASCADE PROCESS IN 

HIGH REYNOLDS NUMBER TURBULENCE FROM WAVELET 

ANALYSIS 

A. ARNEODO, S. MANNEVILLE AND J.F. MUZY 

Centre de Recherche Paul Pascal, Univ. Bordeaux I 
avenue Schweitzer, 33600 Pessac, France 

We present a generalization of the Castaing et al. [1] approach of velocity 
intermittency using the wavelet transform (WT) . This description consists 
in looking for a multiplicative cascade process directly on the velocity field 
assuming that the probability density function (pdf) of the modulus max­
ima of the WT (WTMM) at a given scale a, Pa(T), can be expressed as a 
weighted sum of dilated pdf's at a larger scale a' > a: 

(1) 

The reader is referred to Ref. [2] for the computation of the WT of the 
velocity field and the restriction of the analysis to the modulus maxima 
of the WT (WTMM method). Our numerical method for estimating the 

Fourier transform Gaa' of the kernel Gaa' is described in Refs. [3, 4]. This 
wavelet-based method is applied to a turbulent velocity signal recorded in 
the Modane wind tunnel and kindly provided by Y. Gagne and Y. Malecot. 
The Taylor scale based Reynolds number is R>. c::: 2000 and the sample 
is 2.5 · 108 points long, with a resolution of roughly 3ry (where ry is the 
Kolmogorov scale), corresponding to 25000 integral scales. We then propose 
a two-point statistical analysis based on space-scale correlations [5]. 

1. Experimental results of the one-point statistical approach 

The computation of Gaa' for various pairs of inertial scales a < a' reveals 
the existence of a function s( a, a') and of a single kernel G such that Gaa' = 
(js(a,a') (i.e. formally Gaa' = GIZls(a,a')). According to the definitions given 
in Ref. [1], this means that the underlying cascade process is self-similar 
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Figure 1. The first three cumulants of Gaa' vs the sample length. Turbulent 
velocity signal for a = 770ry and a' = 1540ry ( o and dashed line), log-normal 
numerical process with m= 0.32 and rr2 = 0.03 ( • and solid line) and log-Poisson 
numerical process with A = 2, 6 = 0.89 and 1 = -0.082 (triangles and dots) for 
the two corresponding scales a = 28 and a' = 29 • The analyzing wavelet is a first 
order compactly-supported wavelet [4]. 

and that s( a, a') accounts for the number of cascade steps from scale a' to 
scale a. Such a cascade is said scale-similar (or scale-invariant) ifs( a, a') = 
ln( a'/ a). In the present case, s( a, a') turns out to be very well fitted by the 
functional form s( a, a') = ( a-!3 - a'-f3)j (3, where (3 ~ 0.095 quantifies the 
departure from scale-similarity (scale-invariance is restored for (3 ~ 0) [6]. 
Thus, the cascade process is self-similar but not scale-invariant. 

To analyze precisely the shape of G, we use the Taylor series expansion: 

G(p) = exp (2::::~ 1 q (ift) , where the (real valued) coefficients Ck are the 

cumulants of G. Figure 1 shows the first three cumulants Ck = s(a, a') Ck 

(for a given pair of inertial scales a < a') for the turbulence data and 
for both a log-normal (mean m and variance 0"2 ) and a log-Poisson (with 
the >., 8 and 1 parameters consistent with the ones proposed by She and 
Leveque [7]) synthetic numerical processes. Even though both numerical 
processes perfectly fit the first two cumulants, the log-Poisson model yields 
a third order cumulant that is more than one order of magnitude higher 
than the experimental one, whereas the very small (theoretically zero) third 
order cumulant of the log-normal numerical process still remains within the 
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Figure 2. WTMM estimation of the (q spectrum for the turbulent velocity signal 
[4]. (a) (q vs q. (b) Deviation of the experimental spectrum from qf3. The experi­
mental measurements ( o) are compared to the theoretical quadratic ESS spectrum 
of a log-normal process with m = 0.32 and u2 = 0.03 (solid line) and to the She 
and Leveque [7]log-Poisson prediction (dots). 

error bars of the experimental one. We thus exclude log-Poisson statistics as 
proposed in Ref. [7] and conclude that the statistics underlying the velocity 
fluctuations are log-normal, as soon as R).. > 1000. 

Testing the convolution formula (1) on the WTMM pdf's using a Gaus­
sian kernel yields results in very good agreement with the log-normal cas­
cade picture [4]. A second test oflog-normality lies in the scaling exponents 
(q of the velocity structure functions. As shown in Fig. 2(a), the exper­
imental spectrum, obtained using extended self-similarity (ESS) [8] and 
extended to negative values of q thanks to the WTMM method, remark­
ably coincides with the quadratic log-normal prediction. The log-Poisson 
prediction [7] provides a good approximation of (q for q E [ -6, 6). How­
ever, plotting the deviation of the (g's from the Kolmogorov (1941) linear 
q/3 spectrum (Fig. 2(b)), reveals a systematic departure ofthe log-Poisson 
prediction from the experimental spectrum, whereas the log-normal model 
still perfectly fits the experimental data. 

2. Space-scale correlations of the WT: a two-point statistical 
analysis 

To get a deeper insight into the nature of the statistics, we study the space­
scale correlations of the "magnitude" w( x, a) of the velocity field at point 
x and scale a [5]. w(x, a) is defined as the logarithm of a local average 
over a size a of the wavelet coefficients at scale a around the point x. 
Here, we use the velocity increments to compute w(x, a). Figure 3 shows 

various correlation functions C(~x,a,a') = w(x,a)w(x + ~x,a'), where 
the overline stands for ensemble average and w for the centered process 
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Figure 3. Increment magnitude correlation functions of the turbulent velocity sig­
nal. (a) "One-scale" correlation functions C(6.x,a) = C(6.x,a,a), at scale a= 8 
(down triangles), 16 ( •), 32 (squares) and 64 (up triangles). (b) ' Two-scale" cor­
relations functions at scale a = 8, a' = 16 (down triangles), a = 16, a' = 16 ( • ), 
a = 16, a' = 32 (squares) and a = 16, a' = 64 (up triangles). The solid line corre­
sponds to a non scale-invariant, log-normal cascade model with f3 = 0.3, 0"2 = 0.27. 
a, a', and 6.x are expressed in mesh size(~ 3ry) units. 

w-w. Once again, the experimental results are in very good agreement with 
a log-normal, non scale-invariant cascade. However, the cross-over from the 
value C( .6..x = 0, a, a) down to the fitted curve and the fact that the scale­
invariance breaking exponent f3 takes a different value when computed from 
the space-scale correlations of the increment magnitude (/3 = 0.3) and from 
the WTMM estimation of the kernel G (f3 = 0.095) suggest that simple 
(even non scale-invariant) self-similar cascades are not sufficient to account 
for the space-scale structure of the velocity field. 
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