
HAL Id: hal-01557121
https://hal.science/hal-01557121

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Random cascades on wavelet dyadic trees
Alain Arneodo, Emmanuel Bacry, Jean-François Muzy

To cite this version:
Alain Arneodo, Emmanuel Bacry, Jean-François Muzy. Random cascades on wavelet dyadic trees.
Journal of Mathematical Physics, 1998, 39 (8), pp.4142-4164. �10.1063/1.532489�. �hal-01557121�

https://hal.science/hal-01557121
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


m-

ies of

ure:

ith
the
n

amics,
py,

een

easures,

riod-

e been

for

s
ns to
Random cascades on wavelet dyadic trees
A. Arneodo
Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France

E. Bacry
Centre de Mathe´matiques Applique´es, Ecole Polytechnique, 91128 Palaiseau, France

J. F. Muzy
Centre de Recherches Mathe´matiques, Universite´ de Montréal, C.P.6128 S. Centre Ville
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We introduce a new class of random fractal functions using the orthogonal wavelet 
transform. These functions are built recursively in the space-scale half-plane of the 
orthogonal wavelet transform, ‘‘cascading’’ from an arbitrary given large scale 
towards small scales. To each random fractal function corresponds a random cas-
cading process ~referred to as a W -cascade! on the dyadic tree of its orthogonal 
wavelet coefficients. We discuss the convergence of these cascades and the regu-
larity of the so-obtained random functions by studying the support of their singu-
larity spectra. Then, we show that very different statistical quantities such as cor-
relation functions on the wavelet coefficients or the wavelet-based multifractal 
formalism partition functions can be used to characterize very precisely the under-
lying cascading process. We illustrate all our results on various numerical ex-
amples.

I. INTRODUCTION

Fractal and multifractal concepts1–3 are now widely used to characterize multiscale pheno
ena that occur in various situations in physics, chemistry, geology and biology.4–13 The multifrac-
tal formalism has been originally established to account for the statistical scaling propert
singular measures.2,3,14–21This formalism lies upon the determination of the so-calledf (a) sin-
gularity spectrum2 which quantifies the relative contribution of each singularity of the meas
Let Sa be the subset of pointsx where the measure of ane-box Bx(e), centered atx, scales like
m(Bx(e));ea in the limit e→01, then by definition, f (a)5dimH(Sa) is the Hausdorff-
dimension ofSa . Actually, there exists a deep analogy that links the multifractal formalism w
that of statistical thermodynamics.22–24 This analogy provides a natural connection between
f (a) spectrum and a directly observable spectrumt(q) defined from the power-law behavior, i
the limit e→01, of the partition function2,25 Zq(e)5( im(Bi(e))q;et(q), where the sum is taken
over a partition of the support of the singular measure into boxes of sizee. The variablesq and
t(q) play the same role as the inverse of temperature and the free energy in thermodyn
while the Legendre transformf (a)5minq(qa2t(q)) indicates that, instead of energy and entro
we have a and f (a) as the thermodynamical variables conjugate toq and t(q),
respectively.2,16–18,26 Let us recall that this thermodynamic multifractal formalism has b
worked out in mathematics in the context of dynamical system theory.22–24 However, rigorous
proof of the above connection has been made only on some restricted classes of singular m
e.g., invariant measures of some expanding Markov maps~‘‘cookie-cutter’’ Cantor sets! on an
interval or a circle,17,21 the invariant measure associated to the dynamical systems for pe
doubling and for critical circle mappings with golden rotation number.17 It has been developed
into a powerful technique accessible also to experimentalists. Successful applications hav
reported for multifractal measures which appear beyond the scope of dynamical systems.6,10 Al-
though valid for deterministic multifractals only, this description has been mainly applied
characterizing stochastic systems. But there is no reason,a priori, that all the realizations of the
same stochastic multifractal measure correspond to a uniquef (a)-curve. Each realization has it
own unique distribution of singularities and one crucial issue is to relate these distributio
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some averaged versions computed experimentally. As emphasized in Ref. 27, one can take
advantage of the analogy with the thermodynamic formalism by using methods created s
cally to study disorder in spin-glass theory.28 When carrying out replica averages of the rando
partition function associated with a stochastic measure, one gets multifractal spectrat(q,n) that
generally depend on the number of membersn in the replica average chosen~let us note thatn
50 andn51 correspond, respectively, to commonly used quenched and annealed averag!.27

Then by Legendre transformingt(q,n), some type of averagedf (a) spectra are being found.27

Some care is thus required when interpreting these average spectra in order to avoid som
understanding of the underlying physics.

Multiplicative cascade models have enjoyed increasing interest in recent years as the
digm of multifractal objects.1–3,27,29The notion of cascade actually refers to a self-similar proc
whose properties are defined multiplicatively from coarse to fine scales. In that respect, it oc
a central place in the statistical theory of turbulence.13,29 Since Richardson’s famous poem,31 the
turbulent cascade picture has been often invoked to account for the intermittency pheno
observed in fully developed turbulent flows:29,30 Energy is transferred from large eddies down
small scales~where it is dissipated! through a cascade process in which the transfer rate at a g
scale is not spatially homogeneous, as supposed in the theory developed by Kolmogo
1941,32 but undergoes local intermittent fluctuations.13 Over the past 30 years, refined mode
including the log-normal model of Kolmogorov33 and Obukhov,34 multiplicative hierarchical cas-
cade models like the randomb-model, thea-model, thep-model ~for a review see Ref. 29!, the
log-stable models35–37 and more recently the log-infinitely divisible cascade models38–41 with the
rather popular log-Poisson model advocated by She and Leveque,42 have grown in the literature a
reasonable models to mimic the energy cascading process in turbulent flows. On a very g
ground, a self-similar cascade is defined by the way the scales are refined and the statistic
multiplicative factors at each step of the process.27,29,37One can thus distinguish discrete cascad
that involve discrete scale ratios leading to log-periodic corrections to scaling~discrete scale
invariance43!, from continuous cascades without preferable scale factors~continuous scale invari-
ance!. As far as the fragmentation process is concerned, one can specify whether some co
tion laws are operating or not;27 in particular one can discriminate between conservative~the
measure is conserved at each cascade step! and nonconservative~only some fraction of the mea
sure is transferred at each step! cascades. More fundamentally, there are two main classe
self-similar cascade processes: deterministic cascades that generally correspond to solvab
els and random cascades that are likely to provide more realistic models but for which
theoretical care is required as far as their multifractal limit and some basic multifractal prop
~including multifractal phase transitions!are concerned.27 As a notable member of the later clas
the independent random cascades, introduced by Mandelbrot~commonly calledM-cascades!30,44

as a general model of random curdling in fully developed turbulence, have a special statu
they are the main cascade model for which deep mathematical results have been obtaine45,46

However, in physics as well as in other applied sciences, fractals appear not only as s
measures, but also as singular functions.1,4–13 In order to stay in the context of fully develope
turbulence, directly observable quantities are the velocity field or the temperature field rathe
the dissipation field.13,47 A classical way of analyzing the intermittent character of turbul
velocity signals consists in calculating the momentsSp( l )5^dv l

p&; l zp of the probability density
function of longitudinal velocity incrementsdv l(x)5v(x1 l )2v(x) over inertial separation
l .13,47,48 As originally prompted by Frisch and Parisi,49 by Legendre transforming the scalin
exponentszp of the structure functionsSp , one expects to get the Hausdorff dimensionD(h)
5minp(ph2zp11) of the subset ofR for which the velocity increments behave asdv l; l h. In a
more general context,D(h) will be defined as the spectrum of Ho¨lder exponents of the signa
under study and thus will have a similar status than thef (a)-singularity spectrum for singula
measures. Unfortunately, as pointed out by Muzyet al.,50 there are some fundamental limitation
to the structure function approach which intrinsically fails to fully characterize theD(h) singu-
larity spectrum. In previous work,51–54we have shown that there exists a natural way of perfo
ing a multifractal analysis of fractal functions which consists of using the continuous wa
transform.55–57 By using wavelets instead of boxes, like in the classical multifractal formalis2

one can take advantage of the freedom in the choice of these ‘‘generalized oscillating box
get rid of possible smooth behavior that could mask singularities or perturb the estimation o
2
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strengthh.52,53 The other fundamental advantage of using wavelets is that the skeleton defin
the wavelet transform modulus maxima~WTMM! provides an adaptative space-scale partition
from which one can extract theD(h) singularity spectrum via the scaling exponentst(q) of some
partition functions defined on the skeleton. The so-called WTMM method50–54 therefore gives
access to the entireD(h) spectrum via the usual Legendre transformD(h)5minq(qh2t(q)). We
refer the reader to Refs. 52,58 for rigorous mathematical results. Let us mention that for the
reasons previously raised for stochastic multifractal measures, the theoretical treatment of r
multifractal functions requires special attention. Let us also note that in a more recent work59–61

we have further generalized the WTMM multifractal formalism in order to incorporate in
statistical description~which applies for cusp-like singularities only! the possible existence o
oscillating singularities. This new ‘‘grand canonical’’ description allows us to get the singul
spectrumD(h,b) which accounts for the statistical contribution of singularities of Ho¨lder expo-
nenth and oscillation exponentb ~whereb characterizes the local power-law divergence of
instantaneous frequency!.

Beyond the multifractal description, there is, however, the practical issue of defining in
concrete way how to build a multifractal function. Schertzer and Lovejoy35 suggested a simple
power-law filtering~fractional integration!of singular cascade measure as a mean to stochasti
simulate fields reminiscent of passive scalars in turbulence. In the same spirit, the bounde
cade model of Marshaket al.62 consists in acting on the multiplicative weights during the casc
in physical space. In Ref. 63, the midpoint displacement technique for building fractional Br
ian motions was generalized to generate deterministic or random multiaffine functions. The
goal was achieved in Refs. 52,53 by combining fractional or ordinary integration with si
measures obtained by recursive cascade like procedures. Several other attempts to simula
thetic turbulence’’ that shares the intermittency properties of turbulent velocity data have pa
succeeded.64–66 More recently, the concept of self-similar cascades leading to multifractal m
sures has been generalized to the construction of scale-invariant signals using orthonormal
basis.67–70Instead of redistributing the measure over sub-intervals with multiplicative weights
allocates the wavelet coefficients in a multiplicative way on the dyadic grid. This method a
us to generate multifractal functions from a given deterministic or probabilistic multiplica
process. The main goal of this paper is to provide some mathematical framework to ra
W -cascades on wavelet dyadic trees.67–70

The paper is organized as follows. In Secs. II and III, we explain how theW -cascades are
built using a wavelet orthogonal basis and we characterize the regularity properties of the
responding random fractal functions by studying the support of their singularity spectrum.
support is linked to the statistical spectrum obtained with the wavelet based multifr
formalism.50–54 The self-similarity kernel41,68–72which, from a statistical point of view, charac
terizes the self-similarity properties of a cascade process~in a different way from the multifracta
formalisms!is introduced in Sec. IV. In Sec. V, we compute explicitly the correlation function
two wavelet coefficients of aW -cascade.73 It is proved to follow a power-law behavior whe
varying the spatial distance of the two coefficients. The statistical spectrum, the self-sim
kernel as well as the correlation function are shown to be numerically well estimated direc
the fractal function, using its wavelet decomposition~continuous, orthogonal or its associate
extrema representation!with an arbitrary analyzing wavelet. All these results are illustrated
various computer generated numerical signals.

II. INTRODUCING WAVELET RANDOM CASCADES

A. The periodic wavelet orthogonal decomposition

As mentionned in the introduction, aW -cascade67–70is built recursively on the dyadic grid o
the orthogonal wavelet transform,55–57 involving only scales that range between a given la
scaleL and the scale 0~excluded!. Thus the corresponding fractal functionf (x) does not involve
scales greater thanL. We can thus consider, for the sake of simplicity, thatf (x) is a periodic
function of periodL. In the following we will chooseL51. TheW -cascade will then be define
using a periodic orthonormal wavelet basis74 of Lper

2 (@0,1#), i.e., the space of 1-periodic function
with finite energy.
3
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Such a basis can be constructed using two functionsf(x) and c(x) of Lper
2 (@0,1#) (c is

referred to as theanalyzing wavelet!by means of translations and dilations ofc(x)

c j ,k52 j /2c~2 j x2k!, j >0, 0<k,2 j 21. ~1!

One can prove55–57,74that the so-obtained family of functions$f(x),$c j ,k% j ,k% is an orthonormal
basis ofLper

2 (@0,1#) if f andc satisfy some conditions. Among these conditions,c(x) should be
localized around 0 and haveNc (>1) vanishing moments

E
0

1

xnc~x!dx50, for alln,Nc . ~2!

Thewavelet coefficients$cf ,$cj ,k% j ,k% of a functionf (x) are then defined~modulo a normalization
factor! as the coefficients off in the orthonormal wavelet basis

5 cf5^ f ,f&5E
0

1

f ~x!f~x!dx,

cj ,k52 j /2^ f ,c j ,k&52 j /2E
0

1

f ~x!c j ,k~x!dx.

~3!

Remark:Let us note that the usual definition of the wavelet coefficients does not involve
normalization factor.55–57 However, as we will see in Sec. III, the normalization factor 2j /2 has
been introduced so that the Lipschitz exponent can be directly deduced from the pow
behavior of the coefficients$cj ,k% j ,k .

Since$f(x),$c j ,k% j ,k% is an orthonormal basis, one gets the reconstruction formula

f ~x!5cff~x!1(
j >0

22 j /2 (
0<k,2 j

cj ,kc j ,k~x!. ~4!

On the one hand, let us note that, since all thec j ,k have at least one vanishing moment,cf

essentially ‘‘captures’’ the mean value off . This explains why it is often referred to as th
approximation coefficient.55–57 On the other hand, assuming that the scale 1 ‘‘corresponds
c(x), one can easily prove thatc j ,k(x) is localized aroundx5xj ,k and corresponds to the scaleaj

with

xj ,k522 j k and aj522 j . ~5!

Therefore,cj ,k essentially captures the details off (x) around the pointxj ,k and at the scaleaj .
They will be referred to as thedetail coefficients.55–57As displayed in Fig. 1, these coefficients l
on adyadic grid in the space-scale half-plane.

B. Building a W -cascade

In this section, we build a random functionf (x) by specifying its wavelet coefficients$cj ,k% j ,k

and cf . The coefficientcf is chosen to be an arbitrary random variable and the$cj ,k% j ,k are
defined recursively in the following way:68–70

H c0,051,

cj ,2k5Wj 21,k
~ l ! cj 21,k ,

cj ,2k115Wj 21,k
~r ! cj 21,k ,

~6!

for all j ( j >1) andk (0<k,2j 21) and where theWj ,k
(e) (e5 l or r ) are independent identically

distributed~i.i.d.! real valued random variables.
Notation 1: Since all the random variables Wj ,k

(e) are i.i.d., we will often omit the indexes j,k
and (e) and we will use W as the generic name for these variables.
4
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As illustrated in Fig. 1, this recursive rule can be seen as a cascade process going from
scales~starting at scale 1!to smaller scales. It lies on a binary tree whose nodes are the wa
coefficients and whose branches basically correspond~apart from the sign of the coefficients! to
the same action of multiplying byW.

In the following, such a recursive rule will be referred to as aW -cascadeand f (x) will be
referred to as the functioncorrespondingto theW -cascade. Let us note that both aW -cascade
and its corresponding function are fully defined by the analyzing waveletc, the laws ofcf andW.

Let us note that the so-obtained functionf (x) @assuming that the infinite sum in Eq.~4!
converges#is self-similarin the sense that the law of a wavelet coefficientucj 1 ,ku at the scale 22 j 1

can be linked to the law of another wavelet coefficientucj 2 ,k8u at scale 22 j 2.22 j 1 using a
multiplicative random variable depending only on the ratio of the two scales

ucj 1 ,ku5 l ucj 2 ,k8uXj 12 j 2
,

where5 l stands for the equality in law and whereXn5uW1 . . . .Wnu ~theWi ’s are i.i.d real valued
random variables with the same law asW). Thus, from a statistical point of view, the details of th
function f at a scalea1 are the same as the details at a scalea2 up to a rescaling factor tha
depends only ona1 /a2.

In this section, we just gave a ‘‘theoretical’’ description of aW -cascade. Indeed, we have n
proved that the sum in Eq.~4! does converge in some sense towards a random functionf (x). This
will be the purpose of the next section. Actually, we will not only prove that, for almost
realizations of theW -cascade, Eq.~4! does converge inLper

2 (@0,1#), but we will also be able to
characterize some regularity properties of the limit function.

Remark:A W -cascade can be related to theM-cascades previously introduced in Re
44–46. AnM-cascade is defined using the same recursive rule as aW -cascade@Eq. ~6!#, but the
cj ,k’s no longer correspond to wavelet detail coefficients: At stepj of the recursion, a measurem j

on @0,1# is defined bym j@xj ,k ,xj ,k1aj #5cj ,k (;k,0<k,22 j ), wherexj ,k andaj are defined as in
Eq. ~5!. In Ref. 45, the authors proved that, under certain conditions~onW), m j converges towards
a nondegenerated measurem ~when j→1`). Thus the main difference betweenM-cascades and
W -cascades is thatM-cascades are fractal measure models whereasW -cascades are fracta
function models.M-cascades can be used, for instance, for modeling the energy dissipatio

FIG. 1. Sketch of the construction rule of aW -cascade. The wavelet coefficients$cj ,k% j ,k lie on a dyadic grid. At each
scaleaj522 j , the grid displays 2j coefficients with abscissaxj ,k522 j k. The value of the wavelet coefficientcj ,2k ~resp.
cj ,2k11) is obtained from the value of the wavelet coefficientcj 21,k by multiplying it by Wj 21,k

( l ) ~resp.Wj 21,k
(r ) ) as defined

in Eq. ~6!.
5
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turbulent flow29,30,33–42whereasW -cascades can be used directly for modeling the velocity sig
of the same flow.67–70 Moreover, as we will see in the next section, the underlying wav
structure of aW -cascade makes the proofs for convergence of the cascade and for the cha
ization of the corresponding fractal function much easier than forM-cascades.

Remark:Let us note that Eq.~6! can be rewritten as

H lnuc0,0u50,

lnucj ,2ku5 lnucj 21,ku1 lnuWj 21,k
~ l ! u,

lnucj ,2k11u5 lnucj 21,ku1 lnuWj 21,k
~r ! u.

If uWu is log-normal, these equations correspond to what one could call atree-autoregressive
process. This process is of order 1 in the sense that the regression involves only one
Actually, we are currently working on higher order models. The notion of autoregressive m
lying on a tree~including the orthonormal wavelet dyadic tree! has been introduced by Bassevil
and collaborators.75 Let us emphasize that, besides the fact that the processes they stud
autoregressive directly on thecj ,k and not on their logarithm and that the processes we conside
not really correspond to autoregressive processes in the sense that they are not asymp
stationnary~i.e., $ ln cj,k%j for a fixed k is not stationary even whenj→1`), our approach is
significantly different from theirs since we concentrate on the analysis of the fractal functionf (x)
itself and not on the properties of the tree-process.

III. CONVERGENCE AND REGULARITY OF A W -CASCADE

A. Convergence

In order to get the convergence of the sum in Eq.~4! for a given realization of theW -cascade,
we need to have upper bounds of the wavelet detail coefficients$cj ,k% j ,k . Actually, we are going
to study the law of the maximum of the wavelet coefficients$cj ,k%0<k,2 j at a given scale 22 j .
This is the purpose of the following lemma which is proved in Appendix A.

Lemma 1: Let us consider the wavelet coefficients$cf ,$cj ,k% j ,k% of a givenW -cascade asso-
ciated to the random variable W [Eq. (6)]. Let mj5maxkucj,ku (m051) and Qj

a the subset of the
probability spaceV

Qj
a5$vPV,mj.22 j a%.

Let us set qj
a5Prob$Qj

a% and

pj
a5Prob$uW1 . . . Wj u.22 j a%,

where the Wi are i.i.d random variables with the same law as W. Then

qj
a<2 j pj

a .

Thus in order to get an upper bound toqj
a , we just need an upper bound ofpj

a . Sincepj
a can be

rewritten in the following way:pj
a5Prob$( i 51

j log2uWiu>2ja%, we can easily get an upper boun
by using a large deviation property~see Appendix B for the proof of the following Lemma!.76

Lemma 2: (Same notations as in Lemma 1.) IfE(log2uWu),1` then for all
a,2E(log2uWu), for all e.0, there exists J.0 such that for all j.J

pj
a,ej e2 j ~F~a!21!,

where F(a) is defined as the Legendre transform of the functiont(q)

F~a!5 inf
q

~qa2t~q!!, ~7!

and wheret(q) is defined as

t~q!52 log2 E~ uWuq!21, ;qPR. ~8!
6
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Moreover, F(a) is a concave function, such that F(2E(log2uWu))51 and which is increasing on
] 2`,2E(log2uWu)] and decreasing on@2E(log2uWu),1`@.

We are now ready to state the convergence proposition. For this purpose, we have to
two hypothesis on the law ofW. Basically these hypothesis ensure that small values ofW are
much more probable than large values. This ‘‘asymetry’’ of the distribution function ofW ensures
that, for almost all realizations, the wavelet coefficients will ‘‘fastly’’ converge to 0 when the s
goes to 0 and thus that the sum in Eq.~4! will converge.

Proposition 1:~Convergence!.Let us consider a givenW -cascade associated with the ran
dom variable W [Eq. (6)]. If the law of W is such that

(H1) 0,2E(log2uWu) and
(H2) 'h.0, Fu [0,h[,0 @where F is defined in Eq. (7)],
then for almost all realizations of theW -cascade, the sum in Eq. (4) converges in Lper

2 (@0,1#).
Proof: Let a5h/2. Thus 0,a,2E(log2uWu)) and F(a),0. By combining Lemma 1 and

Lemma 2, one gets that~for e arbitrarily small andj large enough!

qj
a<2 j pj

a,ej e2 jF ~a!

and thus

(
j

qj
a,`.

This last inequality can be rewritten as( j Prob$Qj
a%,`. By using the Borel-Cantelli lemma, on

thus gets

Prob$Qj
a infinitely often%50,

which is equivalent to say that for almost all realizations of theW -cascade, there existsJ such
that mj<22 j a for j >J. This implies that

(
j >J

(
0<k,2 j

22 j cj ,k
2 <(

j >J
mj

2<(
j >J

222a j,`.

Thus the sum in Eq.~4! converges inLper
2 (@0,1#). h

B. Regularity

The global regularity of a function is easily characterized by its orthogonal wavelet co
cients. Indeed, one can prove77 that f (x) is uniformly Lipschitza ~for 0,a,Nc) if and only if
there exists a constantC such thatucj ,ku,C22 j a for all j andk.

Let us recall thatf is said to be uniformly Lipschitza with aP]0,1], if there exists a constan
C such thatu f (x)2 f (y)u,Cux2yua. Moreover,f is uniformly LipschitzaP]n,n11], if f (n) is
uniformly Lipschitza2n ~where f (n) is thenth derivative off ).

Remark:Let us note that the 2j /2 factor in Eq.~3! has been chosen so that the power-l
behavior ofucj ,ku when j→1` directly gives the Lipschitz regularitya ~instead ofa11/2 if
there were no factor!.

Thus, as for proving the convergence, in order to get the Lipschitz regularity off , as long as
Nc is large enough, one just needs to get upper bounds to the wavelet transform coefficien
the work has already been done in the previous section. The following proposition is a
application of Lemma 1 and Lemma 2.
7
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Proposition 2:~Maximum global regularity!.Let us consider a givenW -cascade associated
with the random variable W [Eq. (6)]. Let us suppose that the law of W is such that

(H1) 0,2E(log2uWu) and
(H2) 'h.0, Fu [0,h[,0 [where F is defined in Eq. (7)].

Let us define

amin5sup$h,2E~ log2uWu!,F~h!,0%. ~9!

If a,amin (0,a,Nc) then, for almost all realizations of theW -cascade,f (x) is uniformly
Lipschitza.

Proof: The proof is very similar to the proof of the convergence proposition~Proposition 1!.
First, let us note that~according to that proposition! ~H1! and~H2! ensure the convergence of th
cascade. Let us choosea,amin and 0,a,Nc . We thus have 0,a,2E(log2uWu) and F(a)
,0. Again, by combining Lemma 1 and Lemma 2 one gets that

(
j

Prob$Qj
a%,`.

By using the Borel-Cantelli lemma, one deduces that Prob$Qj
a infinitely often%50. This means

that for almost all realizations of theW -cascade, there existsJ such thatmj<22 j a for j >J, i.e.,
f is uniformly Lipschitza. h

Remark:Let us note that, in most common cases,W is such that the left branchFl of F ~i.e.,
the branch corresponding toF(a) for aP] 2`,2E(log2uWu)]) is invertible. Thusamin just cor-
responds to the value

amin5Fl
21~0!. ~10!

The localHölder exponent1,53 h(x0) measures the local regularity of a functionf at a given
point x0. It is defined as the greatest exponenth such that there exists a constantC and a
polynomialP(x) such that

u f ~x!2P~x!u,Cux2x0uh, for x in a neighborhood ofx0 .

One can easily prove thath(x0) is greater than the ‘‘maximum global regularity’’ off ~i.e., the
maximuma such thatf is uniformly Lipschitza). Thus, Proposition 2 can alternatively be se
as a ‘‘minimum local regularity’’ proposition:

Corollary 1: ~Minimum local regularity!. Under the hypothesis (H1) and (H2) of Propositio
2, for almost all realizations of theW -cascade, the local Ho¨lder exponent of f at any point x i
greater than or equal toamin , i.e.,

;x, amin<h~x!.

All the arguments we used in the Lemmas 1 and 2 for deriving upper bounds to the ab
value of the wavelet coefficients can easily be inverted to get lower bounds. These new le
will lead to a ‘‘maximum local regularity’’ proposition. We are not going to give the full proof
this proposition since it is very close to the proof of the minimum local regularity proposition
will just give the main steps of the proof.

Proposition 3:~Maximum local regularity!. Let us consider a givenW -cascade associated t
the random variable W@Eq. ~6!#. Let us suppose that the law of W is such that

(H1) 0,2E(log2uWu) and
(H2) 'h.0,Fu [0,h[,0 [where F is defined in Eq. (7)].
Let us define

amax5 inf$h.2E~ log2uWu!,F~h!,0%. ~11!

Then, for almost all realizations of theW -cascade, the local Ho¨lder exponent h(x) of f(x) at any
point x [as long as h(x),Nc] is smaller than or equal toamax, i.e.,
8
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Proof: We use the same notations as in Sec. III A except that we invert all the inequ
signs. We definem̃j5minkucj,ku, the subsetQ̃j

a of V

Q̃j
a5$vPV,m̃j,22 j a%,

and q̃ j
a5Prob$Q̃j

a% its measure. We also setp̃ j
a5Prob$uW1 . . . Wj u,22 j a%. Then, using exactly

the same proof as for Lemma 1, one can show that

q̃ j
a<2 j p̃ j

a .

If E(log2uWu),1` and a.2E(log2uWu) then a large deviation property76 leads ~as for
Lemma 2!to

;e, 'J.0, ; j .J, p̃ j
a,ej e2 j ~F~a!21!.

Then we choosea.amax with 0,a,Nc . We thus havea.2E(log2uWu) andF(a),0. By
using the Borel-Cantelli lemma in the same way as we did in Proposition 2, one gets th
almost all realizations of theW -cascade, one hasm̃j.22 j a.

Moreover, one can prove78–80 that if h(x0) (,Nc) is the Hölder exponent of a functionf at
the pointx0, and if h is such that the wavelet coefficients off verify

ucj ,ku<aj
h1

uxj ,k2x0uh

u lnuxj ,k2x0uu
, ~12!

whereaj→0 andxj ,k→x0 are defined in Eq.~5!, thenh>h(x0).
Sincecj ,k>m̃j.22 j a, one gets thata.h(x0). Moreover,a can be chosen arbitrarily close t

amax, thusamax>h(x0). h

Remark:In most common cases,W is such that the right branchFr of F is invertible. In that
case, in the same way we had Eq.~10!, one gets

amax5Fr
21~0!. ~13!

Generally, a good way to characterize the singular behavior of a function is to compu
singularity spectrum D(h).49–54 It is defined as

D~h!5DimH~$xPR,h~x!5h%!, ~14!

whereh(x) is the Hölder exponent of the function at the pointx and DimH(P ) stands for the
Hausdorff dimension of a set of pointsP . Thus one can restate Corollary 1 and Proposition 3
terms of the support ofD(h):

Corollary 2: ~Support of the singularity spectrum!. Under the hypothesis (H1) and (H2) o
Proposition 2, for almost all realizations of theW -cascade, the support of the singularity spe
trum D(h) of f is included in the largest interval on which F(a)>0, i.e., the interval@amin ,amax#
[Eqs. (9) and (11)].

Remark:Let us note that the Ho¨lder exponents of a given function are fully characterized
its wavelet coefficients$cj ,k% j ,k @through Eq.~12!# as long as these exponents are smaller thanNc .
Thus theD(h) singularity spectrum of the functionf (x) corresponding to aW -cascade does no
depend on the analyzing waveletc that is chosen to build the cascade providedNc is large
enough. Particularly, as long asc satisfiesNc.amax @whereamax defined in Eq.~11! depends
only on the law ofW#, the cascade will correspond to the same singularity spectrum.

Remark:It was proved in Ref. 81 that for any function, the left branchDl(h) of the singularity
spectrum off is smaller than the left branchFl(a) of the spectrum obtained with the multifract
formalism. Since the singularity spectrum obtained with the multifractal formalism leads
almost all realizations of a givenW -cascade, to the functionF(a) defined by Eq.~7!, one can
easily prove that for anyW -cascade we have
9



actal

in-
alue of

ect
e of
-

a

s of

text of

normal

on.
tifractal
Dl~h5a!<Fl~a!.

Definition 1: From now on, the function F(a) [Eq. (7)] will be referred to as thestatistical
spectrumof theW -cascade.

Both spectraD(h) andF(a) bring valuable information on theW -cascade. TheD(h) spec-
trum has been initially introduced for characterizing the singular behavior of deterministic fr
signals. It was proved52,58 that, for a large class of self-similar functions, theD(h) spectrum can
be obtained using the wavelet based multifractal formalism. In the case of randomW -cascades,
we actually get two spectra: the spectrumD(h) for each realization~whicha priori depends on the
realization!and the statistical spectrumF(a) that characterizes the probability that a given s
gular behavior appears in a realization of the cascade. Thus, for instance, the maximum v
F(a) corresponds to the most probable singular behavior in a realization of aW -cascade. On the
other hand, the negative values ofF(a) correspond to ‘‘rare’’ events that one should not exp
to observe in almost all realizations. In the next section, we will show that, in the cas
W -cascades, the wavelet based multifractal formalism50–54 actually leads to a very reliable nu
merical estimation of theF(a) spectrum. Along with thekernel function41,68–72 that we will
introduce in Sec. IV and the correlation functions73 in Sec. V, these statistical quantities allow
very accurate characterization of the random process.

Before moving on, let us first illustrate our purpose with some numerical simulation
W -cascades corresponding to different laws forW.

C. Numerical simulations of W -cascades

As stated in the Introduction, random cascade models have been introduced in the con
the phenomenological study of fully developed turbulence.27,29,30,33–42They were proposed to
mimic, in some sense, the kinetic energy transfer from coarser scales to smaller ones. Log-
statistics have been first guessed, 40 years ago, by Kolmogorov33 and Obukhov34 in order to
account for the so-called ‘‘intermittency phenomenon’’ while the ‘‘log-Poisson’’ model39 has
been recently proposed by She and Le´vèque42 as a more accurate description of this phenomen
Let us illustrate the results discussed above on these two models when extrapolated to mul
functions.

1. Log-normal W -cascades

Let us first start withW being a log-normal random variable. Ifm ands2 are, respectively, the
mean and the variance of lnuWu then a straightforward computation leads to

t~q!52
s2

2 ln 2
q22

m

ln 2
q21,

and

F~a!52
~a1m/ ln 2!2 ln 2

2s2
11.

Thus a log-normalW -cascade is converging inLper
2 (@0,1#) if

~H1! m,0 and ~H2!
umu
s

.A2 ln 2.

Moreover, by solvingF(0)50, one getsamin andamax

amin52
A2s

Aln 2
2

m

ln 2
and amax5

A2s

Aln 2
2

m

ln 2
. ~15!

In Fig. 2, we illustrate one realization of a ‘‘very irregular’’ (amin50.13) log-normal
W -cascade as well as one realization of a ‘‘more regular’’ one (amin50.3). Thet(q) andF(a)
spectra corresponding to the irregularW -cascade are displayed on the same figure.
10
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2. Log-Poisson W -cascades

Let l be the mean and the variance of the Poisson variableP. We consider that the law o
lnuWu is the same asP ln d1g. A straightforward computation leads to

t~q!5
l~12dq!2gq

ln 2
21,

and

F~a!5S a

ln d
1

g

ln 2 ln d D S lnS a ln 21g

2l ln d D21D112
l

ln 2
.

In Fig. 3, one realization of a log-PoissonW -cascade is shown together with the correspo
ing t(q) andF(a) spectra.

D. Computing the F„a… statistical spectrum using the multifractal formalism approach

Let us imagine that we have a large number of numerical signals which correspond to
ent realizations of the same random functionf (x). In order to characterize the self-similar beha
ior of the underlying cascade process, one could try to compute theF(a) statistical spectrum. In

FIG. 2. Log-normalW -cascades.~a! Realization of the random function corresponding to a log-normalW -cascade using
the ‘‘Daubechies 5’’ compactly supported orthonormal wavelet basis.56 The law of lnuWu is Gaussian with mean
m520.33 ln 2 and variances250.02 ln 2. From Eq.~15! one gets thatamin50.13 andamax50.53.~b! Realization of the
random function corresponding to a log-normalW -cascade using the ‘‘Daubechies 5’’ wavelet with the following para
eter values:m520.8 ln 2 ands250.125 ln 2. From Eq.~15! one gets thatamin50.3 andamax51.3. The fact thatamin is
greater for the cascade in~b! (amin50.3) than for the cascade in~a! (amin50.13) explains why the graph in~a! appears to
be much more irregular than the graph in~b!. ~c! The t(q) function @Eq. ~8!# for the W -cascade illustrated in~a!. The
symbols (d) correspond to the data computed using the WTMM method@Eq. ~16!# with an order 2 spline wavelet on 100
realizations of length 65536 of theW -cascade. These numerical data are in remarkable agreement with the theo
prediction ~solid line!; this illustrates the fact that the determination of thet(q)-spectrum can be performed using an
analyzing wavelet~i.e., not necessarily the one that was used for building the cascade!. ~d! TheF(a) statistical singularity
spectrum@Eq. ~7!# for the W -cascade illustrated in~a!. The numerical spectrum (d) was obtained by Legendre trans
forming thet(q) data in~c!. The theoretical spectrum~solid line! provides a remarkable fit of the data.
11
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order to do so, one can use thewavelet based multifractal formalismapproach50–54which consists

of computing apartition functionẐ j (q) corresponding, at each scale 22 j , to the spatial average
of the wavelet coefficients to the powerq

Ẑ j~q!5 (
realization ~r !

(
0<k,2 j

ucj ,k
~r !uq. ~16!

If the number of realizations is large enough, one can approximate realization averages by
ability averages and get

Z j~q!5 (
0<k,2 j

E~ ucj ,kuq!52 jE~ ucj ,kuq!. ~17!

Since the law ofcj ,k is the same as the law ofW1 ...Wj , one finally gets

Z j~q!52 jE~ uW1 . . . Wj uq!52 jE~ uWuq! j .

Thet(q) function @and consequently theF(a) spectrum#is obtained by analyzing the power-la
scaling ofZ j (q) along the scalesaj522 j

Z j~q!52 jE~ uWuq! j5aj
2 log2 E~ uWuq!21

;aj
t~q! aj→0, ~18!

and

F~a!5 inf
q

~qa2t~q!!. ~19!

As long as the number of realizations is large, this approach leads to very precise estim
of F(a). However, from a practical point of view, we have made a major assumption: We
assumed that the realizations of the wavelet coefficients$cj ,k% j ,k were known. This is clearly no
the case since the only way to recover them from the realizations off is to compute the scala
products of these realizations with thec j ,k’s; but we do not know what the analyzing waveletc

FIG. 3. Log-PoissonW -cascades.~a! Realization of the random function corresponding to a log-PoissonW -cascade using
the ‘‘Daubechies 5’’ compactly supported orthonormal wavelet basis.56 The mean of the Poisson variableP is l52 and
the law of lnuWu is the same asP ln d1g with d50.88 andg520.11.~b! Thet(q) spectrum@Eq. ~8!# for theW -cascade
illustrated in~a!. The data (d) computed using the WTMM method@Eq. ~16!# with an order 2 spline analyzing wavelet o
1000 realizations of length 65535 of theW -cascade, are in perfect agreement with the theoretical prediction~solid line!.
~c! The F(a) statistical singularity spectrum@Eq. ~7!# for the W -cascade illustrated in~a!. The numerical spectrum (d)
obtained by Legendre transforming thet(q) data in~b! is compared to the theoretical spectrum~solid line!.
12
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is! What happens if we analyze the functionf with a different analyzing waveletc1? Indeed, one
can show55–57that the new wavelet coefficients$cj ,k

(1)% can be expressed as a linear combination
the old ones

cj ,k
~1!5 (

k8, j 8
Kc,c1~ j 2 j 8,k2k8!cj 8,k8, ~20!

whereKc,c1 is a function that depends onc andc1 only. This function basically corresponds t
the scalar product ofc j ,k with c j 8,k8

1 . Let us note that the functionK is localized in both variables
and, from a numerical point of view, ifc and c1 are both well localized in Fourier and direc
spaces, then the sum in Eq.~20! involves only a few terms. Before showing numerical applic
tions, let us try to understand roughly how this affects the computation ofF(a).

Let us note that theF(a) spectrum@and this is true also for any statistical quantity that
based on how the details off (x) change along scales#is not changed when changing the unde
lying W -cascade independently on the scale. Indeed, for instance, if one multiplies each w
coefficientcj ,k @defined recursively in Eq.~6!# by a random variableXj ,k whose law does no
depend onj or k, then the power-law behavior ofZ j (q) does not change along the scales

Z j~q!52 jE~ ucj ,kuq!52 jE~ uWuq! jE~ uXuq!;aj
t~q! , aj→0.

Actually, this is exactly what happens if one replaces each coefficientcj ,k by a linear combination
of itself and its ‘‘sons’’ coefficientscj 11,2k andcj 11,2k11

cj ,k8 5l1cj ,k1l~ l !cj 11,2k1l~r !cj 11,2k11 . ~21!

Indeed, it is easy to prove that the law ofcj ,k8 is the same as the law ofW1 . . . Wj (l11l ( l )W( l )

1l (r )W(r )) which can be rewritten ascj ,kXj ,k with Xj ,k5l11l ( l )W( l )1l (r )W(r ) ~which does not
depend onj ).

It is somewhat more intricate when one performs a linear combination of the coeffic
along the space axis

cj ,k8 5l1cj ,k1l2cj ,k11 . ~22!

One can easily prove that, among the 2j coefficients at the scale 22 j , 2l have, with their right
neighbor, the first common ancestor at a scale 22 l . Thus one can express the new partiti
function Z j8(q) as

Z j8~q!5(
l 50

j 21

2lE~ uWuq! lE~ ul1W1
~1! . . . Wj 2 l

~1! 1l2W1
~2! . . . Wj 2 l

~2! uq!, ~23!

where theWi
(1) and theWi

(2) are i.i.d. random variables with the same law asW. Let Tl be thel th
term in the latter sum, i.e.,

Tl52lE~ uWuq! lE~ ul1W1
~1! . . . Wj 2 l

~1! 1l2W1
~2! . . . Wj 2 l

~2! uq!.

Let us note that the last termTj 21 behaves asZ j (q):

2 j 21E~ uWqu! j 21E~ ul1W1
~1!1l2W1

~2!uq!;C~q!2 jE~ uWqu! j5C~q!Z j~q!, ~24!

whereC(q) does not depend onj . Thus one just needs to get an upperbound to all the other te

(
l 50

j 22

Tl<(
l 50

j 22

2lE~ uWuq! lE~~ ul1W1
~1! . . . Wj 2 l

~1! u1ul2W1
~2! . . . Wj 2 l

~2! u!q!,

<C1~q!(
l 50

j 22

2lE~ uWuq! lE~ ul1W1
~1! . . . Wj 2 l

~1! uq1ul2W1
~2! . . . Wj 2 l

~2! uq!,
13
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<C2~q!(
l 50

j 22

2lE~ uWuq! lE~ uWuq! j 2 l ,

<C2~q!(
l 50

j 22

2lE~ uWuq! j5C3~q!2 jE~ uWuq! j5C3~q!Z j~q!,

whereC1(q), C2(q) andC3(q) do not depend onj . From this last inequality and from Eq.~24!,
one deduces that the new partition functionZ j8(q) @Eq. ~23!# behaves as expected

Z j8~q!;Z j~q!, j→1`.

Thus as for Eq.~21!, when one performs the linear combination on the wavelet coeffici
corresponding to Eq.~22!, the partition function displays exactly the same power-law beha
when the scale goes to 0. Actually, one can easily prove that this result still holds whe
combine the two linear combinations~21! and ~22!.

Proposition 4: Let us consider a givenW -cascade associated to the random variable W [E
(6)]. Let Z j (q) be the associated partition function defined by Eq.~17! and letl1, l2, l ( l ) and
l (r ) in R. If we redefine the wavelet cascade coefficients cj ,k in the following way:

cj ,k8 5l1cj ,k1l2cj ,k111l~ l !cj 11,2k1l~r !cj 11,2k11 ,

then the newly obtained partition functionZ j8(q) behaves as the first one

Z j8~q!;Z j~q!, j→1`.

Proof: The proof is straightforward and left to the reader. h

We thus expect the multifractal formalism to lead to a good determination of theF(a)
statistical spectrum independently of the considered analyzing wavelet. Actually, it is like
provide a good estimation of the left branch ofF(a) (q.0) but not of the right branch which
corresponds to negative values ofq. Indeed, the linear combination~20! might lead to null wavelet

coefficients that would induce instabilities in the computation ofẐ j (q) @Eq. ~16!# for q,0. In
order to circumvent these instabilities, one should use theWavelet Transform Modulus Maxim
~WTMM! method introduced in Refs. 50–54. It basically consists in computing the part
function only on thelocal modulus maximaof the wavelet transform. Let us recall that th
modulus maxima$xi(a)% i of the continuous wavelet transform are defined at each scalea as the
position of the local maxima of the absolute value of the wavelet transform.80,82These maxima lie
on connected curves calledmaxima lines. The set of all the maxima lines existing at scalea will

be denotedL(a). Then, the WTMM method consists in replacing the partition functionẐ j (q) by
a new partition function which is stable for allq’s in R

Ẑ j
~max!~q!5 (

l iPL~a!
~ sup

~x,a8!P l i

uTc1~x,a8!u!q, ;qPR,

whereTc1(b,a) corresponds to the continuous wavelet transform off (x) at scalea and position
b using the analyzing waveletc1.

As shown in Figs. 2 and 3, the WTMM method leads to a very good estimation of theF(a)
statistical spectrum whatever the law ofW and the analyzing waveletc1 are.

IV. THE SELF-SIMILARITY KERNEL

The functionf (x) associated to aW -cascade is self-similar in the sense that the detailsf
at large scales are ‘‘similar’’ to its details at smaller scales up to a normalization factor. L
look at how this property translates on the laws of the wavelet coefficients. LetPj be the prob-
ability distribution function~p.d.f.! of the coefficientsucj ,ku (Pj does not depend onk). Let
Pj

(log)(x) be the p.d.f. of logucju
14
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Pj
~ log!~x!5exPj~ex!.

If j 2. j 1 then

logucj 2
u5 logucj 1

u1 loguWj 111u1 . . . 1loguWj 2
u. ~25!

This equation can be rewritten as

Pj 2

~ log!~x!5Pj 1

~ log!
* Gj 1 , j 2

~x!, ~26!

where* denotes the convolution product andGj 1 , j 2
(x)5G * . . . * G, whereG(x) is the p.d.f. of

loguWu.41,68–72In the Fourier space, one gets

P̂j 2

~ log!~p!5 P̂j 1

~ log!~p!Ĝs~ j 1 , j 2!~p!. ~27!

In the case of theW -cascades,s( j 1 , j 2)5 j 22 j 1 represents the number of steps of the casc
from the scale 22 j 1 to the scale 22 j 2. Of course, one cannot pick up any functions. It must satisfy
the ‘‘transitivity’’ relation

sj 1 , j 3
5sj 1 , j 2

1sj 2 , j 3
, ~28!

and the ‘‘reflexivity’’ relation

sj , j50. ~29!

Using any functions that satisfies both Eqs.~28! and~29!, relation~27! can be seen as afirst order
self-similarity propertythat links the details at a scale 22 j 2 to the details at a larger scale 22 j 1. The
link is made through theself-similarity kernel Gj 1 , j 2

(x) whose Fourier transform is of the form

Ĝs( j 1 , j 2). In the physical space, the kernel relation becomes41,68–72,83–87

Pj 2
~ex!5E Gj 1 , j 2

~u!e2uPj 1
~ex2u!du. ~30!

As we have seen, in the case ofW -cascades , the kernel functionGj 1 , j 2
(x) depends only on

j 22 j 1, i.e., only on the logarithm of the ratio of the two corresponding scales 22 j 1 and 22 j 2. This
can be seen as a ‘‘scale-stationarity’’ property of the self-similarity kernel.38 In the following, a
function that satisfies Eq.~27! with s( j 1 , j 2)5 j 22 j 1 will be referred to as ascale-similarfunc-
tion.

Let us note that, in the case of scale similar functions, the self-similarity kernel is dir
linked to the statistical spectrum obtained by the multifractal formalism@Eq. ~19!#. Indeed, the
partition function@Eq. ~17!# can be rewritten as

Z j~q!52 jE~ ucj ,kuq!52 jE equPj
~ log!~u!du52j P̂ j

~ log!~ iq !.

Using relation~27! in the scale-similar case@i.e., s( j 1 , j 2)5 j 22 j 1] and relation~18!, one gets

Z j~q!52 j Ĝ2 j~ iq !P̂0
~ log!~ iq !52 j Ĝ2 j~ iq !Z0~q!;22 j t~q!.

The self-similarity kernel and thet(q) spectrum are thus linked by the relation

t~q!5 log2 Ĝ~ iq !21. ~31!

Remark:Let us note that iff (x) corresponds to the Brownian motion, the orthogonal wav
coefficients$cj ,k% j ,k correspond to i.i.d white noises and thus the kernelGj 1 , j 2

(u) defined by Eq.
~30! corresponds to the dirac distributiond(u).68,69
15
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From a numerical point of view, one can compute the kernel of aW -cascade by computing
the wavelet coeffcients$cj ,k% j ,k and the p.d.f.Pj

(log) at two different scalesj 1 and j 2.68,69 Then,
from Eq.~27!, Ĝj 1 , j 2

(p)5 P̂j 2

(log)(p)/P̂j1
(log)(p), i.e., the self-similarity kernel is obtained by perform

ing the deconvolution ofPj 2

(log) by Pj 1

(log) . As pointed out in the remark just below, this deconv

lution requires some special care in order to avoid numerical instabilities.68,69

Remark:In order to computeĜ, one has to perform a deconvolution. The deconvolution
performed in the Fourier space and thus consists basically in dividingP̂j 2

(log) by P̂j 1

(log) . This

division is unstable in the neighborhood of the~high! frequenciesp for which P̂j 1

(log)(p).0. The

smaller the support ofPj 1

(log) , the slower the decay ofP̂j 1

( log) and thus the more stable the deco

volution. In order to decrease the support ofPj 1

(log) , one could compute the p.d.f.Pj
(log),(max) of the

logarithm of the values of the modulus maxima of the continuous wavelet transform inste
computing the p.d.f.Pj

(log) of the logarithm of the orthogonal wavelet coefficients. Since, in
case of deterministic self-similar signals, the self-similarity properties are captured by the mo
maxima,53,54,88it is likely that, in the stochastic case, the self-similarity relation~26! still holds if
Pj

(log) is replacedPj
(log),(max). Actually, from a numerical point of view, one can check68–70 that it

does hold with a very good precision for any scalea and not only for the dyadic scalesaj

522 j . Since the support ofPa
(log),(max) is much smaller than the one ofPa

(log) , it gives a much more
stable numerical method for performing the deconvolution and thus for computing the k
Ga,a8.

Figures 4 and 5 report the results of the numerical computation of the self-similarity kern
log-normalW -cascades when using different analyzing waveletsc.68–70For the same reasons a

FIG. 5. Numerical computation of the scale dependence of the self-similarity kernelĜa,a8(p) of the log-normal

W -cascade studied in Fig. 4.~a! m(a,a8)5] Im(Ĝa,a8)/]pup50 vs ln(a/a8); ~b! s2(a,a8)52]2(lnuĜa,a8u)/]p2up50 vs
ln(a/a8). The symbols correspond to the following values of the reference scalea8525 (d), 26 (s), 27 ~j!, 28 (h), 29

(3) and 210 (n). The solid lines correspond to the theoretical predictions given by Eq.~33!.

FIG. 4. Numerical computation of the self-similarity kernel of a log-normalW -cascade with parametersm520.37 ln 2

and s250.026 ln 2.Ĝa,a8(p)5uĜa,a8ue
iFa,a8 as computed fora/a855, when using the Haar wavelet (d), an order 1

spline wavelet (s) and the complex Morlet wavelet (j).56 ~a! uĜa,a8u vs p; ~b! Fa,a8 vs p. The solid lines correspond to
the theoretical predictions given by Eq.~32!.
16
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the ones we previously mentioned when estimating theF(a) statistical spectrum, sinceĜ depends
only on t(q) @Eq. ~31!#, its estimation should not depend upon the choice ofc. This is clearly
verified in the numerical simulations reported in Figs. 4 and 5. Moreover, the data shown i
4 are in remarkable agreement with the theoretical shape of a log-normal kernel

Ĝa,a8~p!5eipm~a,a8!2p2s2~a,a8!/2, ~32!

where

H m~a,a8!5m ln~a/a8!,

s2~a,a8!52s2 ln~a/a8!.
~33!

For values ofupu<7, one does not see in the numerical data any significant departure from
Gaussian behavior of the kernel modulusuGa,a8u, as well as from the linear behavior of its pha
Fa,a8.

As far as the scale dependence of the self-similarity kernel is concerned, we have plo
Fig. 5, m(a,a8)5] Im(Ĝa,a8)/]pup50 and s2(a,a8)52]2(lnuĜa,a8u)/]p2up50 as functions of
ln(a/a8). One can see that, for different values of the reference scalea8, all the points obtained
when varying the scalea fall on a unique straight line which matches perfectly the theoret
predictions@Eq. ~33!# and confirms the scale-similarity of the log-normalW -cascade under study

V. CORRELATION FUNCTIONS IN W -CASCADES

The tree structure of aW -cascade induces correlations between different details of the
responding functionf (x).73,88,89These correlations can be characterized by computing the c
lation between two wavelet coefficients at an arbitrary scalea522 j and at a distanceDx
522 jDk. Since the wavelet coefficients$cj ,k%k at a given scale 22 j are not stationary ink, we will
compute an ‘‘averaged version’’ of the correlation function:73

Proposition 5: Let us consider a givenW -cascade associated with the random variable
[Eq. ~6!#. Let aj522 j andDxj ,Dk522 jDk. If we define C(Dxj ,Dk ,aj ) as the correlation function

C~Dxj ,Dk ,aj !5
1

2 j (
k50

k,2 j 2Dk

Cov~ logucj ,ku, logucj ,k1Dku!, ~34!

whereCov stands for the covariance. Then

C~Dxj ,2p,aj !5s2~ j 2p2212p2 j 11!, ;p, j ,

wheres2 is the variance ofloguWu.
Proof: By definition one has

C~Dxj ,2p,aj !5
1

2 j (
k50

k,2 j 22p

Cov~ logucj ,ku, logucj ,k12pu!.

Let us fix k and setk15k, k25k1Dk. Let us suppose that the last common ancestor~on the
binary tree of theW -cascade!of cj ,k1

andcj ,k2
is at scale 22d( j ,k1 ,k2) @in the followingd( j ,k1 ,k2)

will be referred to as theW -distancebetween the two wavelet coefficients#. Then, one can write

ucj ,k1
u5uW1u . . . uWd~ j ,k1 ,k2!uuWd~ j ,k1 ,k2!11

~1! u . . . uWj u~1!,

and

ucj ,k2
u5uW1u . . . uWd~ j ,k1 ,k2!uuWd~ j ,k1 ,k2!11

~2! u . . . uWj u~2!,

where all theWi , Wi
(1) andWi

(2) are i.i.d. random variables with the same law asW. Then their
covariance is
17
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Cov~cj ,k1
,cj ,k2

!5 (
i 51

i 5d~ j ,k1 ,k2!

Cov~ loguWi u, loguWi u!5s2d~ j ,k1 ,k2!,

wheres2 is the variance of loguWu. Then

C~Dxj ,2p,aj !522 js2 (
d50

d5 j 21

Nj ,2p~d!d, ~35!

where Nj ,2p(d) is the number of wavelet coefficientscj ,k (0<k,2j22p) such thatcj ,k and
cj ,k12p are at aW -distanced. It is clear thatNj ,2p(d)50 for d> j 2p. Moreover, one can easily
show that

;d, j 2p, Nj ,2p~d!52pNj 2p,1~d!.

SinceNj ,1(d)52d, Eq. ~35! becomes

C~Dxj ,2p,aj !522 js2 (
d50

d5 j 2p21

2pNj 22p,1~d!d,

52p2 js2 (
d50

d5 j 2p21

2dd,

52p2 js22~~ j 2p!2 j 2p2122 j 2p11!,

5s2~ j 2p2212p2 j 11!. h

From this Proposition, one easily deduces the asymptotic behavior of the corre
function:73

Corollary 3: WhenDx is small (a,Dx!1), the correlation functionC(Dx,a) @Eq. ~34!# of
a W -cascade behaves as a logarithm function

C~Dx,a!52s2 log2~Dx!1o~Dx!. ~36!

Thus, asymptotically, the correlation function does not depend on the scalea. From a numeri-
cal point of view, the cascade is constructed from the scale 1 (j 50) down to a small scale
~corresponding to the sampling rate of the numerical signal! 22J. If, on the contrary, we conside
that the sampling rate is 1, then the signal has a total sizeL52J. IncreasingJ amounts in building
a signal longer. The last corollary means that73

C~Dx,a!;s2 log2~L/Dx!, ~37!

whena,Dx!L.
Using the same kind of computations, one gets that the ‘‘two-scale’’ correlation fun

C(Dx,a,a8) between the coefficients at scalea and the coefficients at scalea8 actually follows
the same law asC(Dx,a) as long asDx is greater than the supremum ofa anda873

C~Dx,a,a8!;s2 log2~L/Dx!, ~38!

when sup(a,a8),Dx!L.
All these results are illustrated in Fig. 6 in the case of a log-normalW -cascade. As seen in

Figs. 6~a!and 6~b!, the numerical computation of both the ‘‘one-scale’’C(Dx,a) and the ‘‘two-
scale’’ C(Dx,a,a8) correlation functions are in very good agreement with the theoretical pre
tions given by Eqs.~37! and ~38!.

Remark:By the same kind of arguments as the ones used in Sec. III, one expects Eqs.~37!and
~38! to hold even when computing the correlation functions using an analyzing waveletc1 which
is different from the waveletc used to build theW -cascade.
18
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VI. CONCLUSION

To summarize, we have presented a first theoretical step towards a rigorous mathe
treatment of random cascading processes on the dyadic tree of their orthogonal wavelet
cients. We have elaborated on the convergence of theseW -cascades and discussed the regula
of the limiting random functions by studying the support of their singularity spectra. We
shown mathematically and checked numerically on various computer synthetized signals, th
different statistical quantities such as the statistical spectrum, the self-similarity kernel an
correlation functions can be extracted directly from the fractal function using its wavelet de
position ~orthogonal, continuous or its associated modulus maxima! with an arbitrary analyzing
wavelet. This mathematical study actually provides algorithms that are readily applicable
perimental situations. Recent applications of our methodology in the context of fully-deve
turbulence69,70,73have revealed the existence of a~nonscale invariant!log-normal cascading pro
cess underlying the turbulent velocity fluctuations. More surprising are the results of a s
investigation of financial time series.90 Underlying the fluctuations of the volatility~standard
deviation!of the price variations, there exists a causal information cascade from large to
time scales that can be visualized with the wavelet representation. Let us emphasize that
that variations of prices over a one month scale influence in the future the daily price varia
is likely to be extraordinarily rich in consequences and this, not only for the fundamental u
standing of the nature of financial markets, but also~and maybe more important! for practical
applications. Indeed, the nature of the correlations across scales that are implied by this
cascade has profound implications on the market risk, a problem of utmost concern for all
cial institutions as well as individuals. These preliminary results are very promising as f
further experimental investigations of multiplicative cascade processes are concerned. The
doubt in our minds that similar wavelet-based statistical analysis will lead to significant pro
in fields other than hydrodynamic turbulence and finance.
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APPENDIX A: PROOF OF LEMMA 1

We want to prove the following lemma~Sec. III A!
Lemma 1: Let us consider the wavelet coefficients$cf ,$cj ,k% j ,k% of a givenW -cascade asso-

ciated to the random variable W [Eq. (6)]. Let mj5maxkucj,ku (m051) and Qj
a the subset of the

probability spaceV

Qj
a5$vPV,mj.22 j a%.

FIG. 6. Numerical computation of the wavelet coefficient correlation functions of a log-normalW -cascade with variance
s250.03.~a! ‘‘One-scale’’ correlation functionsC(Dx,a) for a54 (h), 16 (d) and 64 (n). ~b! ‘‘Two-scale’’ correla-
tion functionsC(Dx,a,a8) for a5a8516 (d), a54, a8516 (h) anda516, a8564 (n). The data in~a! and~b! are in
perfect agreement with the theoretical logarithm dependence~solid lines!given by Eqs.~37! and ~38! (L52048).
19



f
ality
Let us set qj
a5Prob$Qj

a% and

pj
a5Prob$uW1 . . . Wj u.22 j a%,

where the Wi are i.i.d random variables with the same law as W. Then

qj
a<2 j pj

a .
Proof: By decomposing the binary tree into two binary subtrees, we obtain

qj
a5Prob$mj.22 j a%,

512Prob$mj<22 j a%,

512Prob$mj 21
~ l ! uW~ l !u<22 j a, and mj 21

~r ! uW~r !u<22 j a%,

whereW( l ) andW(r ) are i.i.d. random variables with the same law asW and wheremj 21
( l ) andmj 21

(r )

are i.i.d. random variables~independent fromW( l ) andW(r )) with the same law asmj 21. Since all
the involved variables are independent, we get

qj
a512Prob$uW1umj 21<22 j a%2,

where W1 is a random variable~independent frommj 21) with the same law asW. By again
decomposing each subtree into two subtrees, we get

qj
a512Prob$uW1umj 22

~ l ! uW~ l !u<22 j a and uW1umj 22
~r ! uW~r !u<22 j a%2,

with the same notations as before. This time, since the same variableW1 appears on both sides o
the ‘‘and,’’ we cannot just split the two terms on each side of the ‘‘and’’ and keep the equ
with qj

a . Actually one can easily prove that for any independent random variablesX0, X1, andY,
if X0 andX1 have the same law then

Prob$X0Y<a and X1Y<a%>Prob$XY<a%2.

By using this result, one easily gets from the last expression ofqj
a

qj
a<12Prob$uW1uuW2umj 22<22 j a%4,

whereW2 is a random variable~independent frommj 22 and W1) with the same law asW. By
decomposing recursively each subtree into two subtrees and by using the fact thatm051, one
finally obtains

qj
a<12Prob$uW1W2 . . . Wj u<22 j a%2 j

.

Sincepj
a512Prob$uW1W2 . . . Wj u<22 j a%, one gets

qj
a<12~12pj

a!2 j
.

Moreover, sincepj
a<1 and j >0, we have (12pj

a)2 j
>122 j pj

a and therefore

qj
a<2 j pj

a . h

APPENDIX B: PROOF OF LEMMA 2

We want to prove the following lemma~Sec. III A!
Lemma 2: (Same notations as in Lemma 1) IfE(log2uWu),1` then for all

a,2E(log2uWu), for all e.0, there exists J.0 such that for all j.J

pj
a,ej e2 j ~F~a!21!,

where F(a) is defined as the Legendre transform of the functiont(q)
20



F~a!5 inf
q

~qa2t~q!!,

and wheret(q) is defined as

t~q!52 log2 E~ uWuq!21.

Moreover, F(a) is a concave function, such that F(2E(log2uWu))51 and which is increasing on
] 2`,2E(log2uWu)] and decreasing on@2E(log2uWu),1`@.

Proof: Sincea,2E(log2uWu)Þ2`, one has the following large deviation property:76

lim sup
j→`

1

j
ln pj

a<2F~2a!, ~B1!

whereF is the Crame´r transform of log2uWu, i.e.,

F~a!5sup
q

~qa2L~q!!,

with

L~q!5 ln E~eq log2W!5 ln E~ uWuq/ ln 2!.

Equation~B1! is equivalent to

;e.0, 'J, ; j .J,
1

j
ln pj

a,2F~2a!1e,

which can be rewritten as

pj
a,ej ee2 j F~2a!. ~B2!

SinceL(q)52(t(q/ ln 2)11)ln 2, we get

2F~2a!52sup
q

~2qa2L~q!!,

52sup
q

~2qa1~t~q/ ln 2!11!ln 2!,

5~ inf
q

~qa2t~q!!21!ln 2,

5~F~a!21!ln 2.

By replacing this expression in~B2!, we get

pj
a,ej e2 j ~F~a!21!.

Moreover, the Crame´r transformF(a) is a convex function such thatF(E(log2uWu))50 and
which is decreasing on ]2`,E(log2uWu)] and increasing on@E(log2uWu),1`@. Thus, sinceF(a)
512F(2a)/ ln 2, F(a) is a concave function such thatF(2E(log2uWu))51 and which is in-
creasing on ]2`,2E(log2uWu)] and decreasing on@2E(log2uWu),1`@. h
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