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We use the wavelet transform to explore the complexity of DNA sequences. Long-range 
correlations are clearly identified and shown to be related to the sequence GC content. 
The significance of this observation to gene evolution is discussed.
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1. Introduction

The possible relevance of scale invariance and fractal concepts to the structural
complexity of genomic sequences is the subject of considerable increasing interest [1].
During the past few years, there has been intense discussion about the existence, the
nature and the origin of long-range correlations in DNA sequences. Di�erent techniques
including mutual information functions [2], autocorrelation functions [3,4], power spec-
tra [5,6], “DNA walk” representation [1,7], Zipf analysis [8] were used for statistical
analysis of DNA sequences. But despite the e�ort spent, there is still some continuing
debate on rather struggling questions. In that respect, it is of fundamental importance to
corroborate the fact that the reported long-range correlations are not just an artefact of
the compositional heterogeneity of the genome organization [3,4, 9–12]. Furthermore,
it is still an open question whether the long-range correlation properties are di�erent
for protein-coding (exonic) and noncoding (intronic, intergenetic) sequences [ 1–8,13].
One of the main obstacles to long-range correlation analysis is the mosaic structure of
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DNA sequences which are well known to be formed of “patches” (“strand bias”) of
di�erent underlying compositions [ 14–16]. These patches appear as trends in the DNA
walk landscapes and are likely to introduce some breaking of scale invariance [ 9–12].
Most of the technique used so far for characterizing the presence of long-range corre-
lations are not well adapted to study patchy sequences. In a preliminary work [17,18],
we have emphasized the wavelet transform (WT) as a very powerful technique for
fractal analysis of DNA sequences. By considering analyzing wavelets that make the
WT microscope blind to low-frequency trends, one can reveal and quantify the scal-
ing properties of DNA walks. Here we report on recent results obtained by applying
the so-called wavelet transform modulus maxima (WTMM) method [19,20] to various
genomic sequences mainly selected in the human genome.

2. A wavelet-based multifractal formalism

In order to characterize the singular behavior of a distribution f at a point xo,
one can use the H�older (or roughness) exponent h(xo) which basically corresponds to
the highest exponent h which satis�es: |f(x) − P(x)|∼|x − xo|h (x→xo), where the
polynomial P(x) is of order smaller than h. The so-de�ned exponent h(xo) “quanti�es”
the singularity strengh of f at xo: the higher h(xo), the less singular f around xo.
The singularity spectrum D(h) is then de�ned as the Hausdor� dimension of the set of
points x where the H�older exponent of f is h. It thus gives a statistical characterization
of the di�erent singular behavior involved in f. In order to estimate locally the H�older
exponent, one needs a tool which must be blind to local smooth behavior, i.e., to the
polynomial term P(x). The WT [19,20] is perfectly adapted to such requirements. It is
a space-scale analysis which consists in expanding distributions in terms of wavelets
which are constructed from a single function, the analyzing wavelet  , by means of
dilatations and translations. The WT is de�ned as

T [f](xo; a) =
1
a

+∞∫
−∞

f(x) 
(
x − xo

a

)
dx ; (1)

where xo is the space parameter and a (¿ 0) the scale parameter. By choosing  so that
its �rst N moments are zero, one can easily prove [19,20] that provided N ¿ h(xo),
h(xo) can be obtained locally from the power-law behavior of the WT, T (xo; a) ∼
ah(xo), in the limit a→0+ (we discard here the possible existence of oscillating singu-
larities). In this work, we will mainly use the derivatives of the Gaussian function as
analyzing wavelets:  (N ) = (dN =dxN )(e−x2=2).
A natural way of performing a multifractal analysis of fractal functions consists in

generalizing classical box-counting techniques by using wavelets instead of boxes. The
WTMM method [19,20] amounts to investigate the scaling behavior of some partition
functions de�ned in terms of wavelet coe�cients:

Z(q; a) =
∑

xi∈S(a)
|T (xi; a)|q ∼ a�(q) ; (2)
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where q ∈ R. The sum is taken over the WT skeleton S(a) de�ned, at each scale a,
by the set of all the points xi that correspond to local maxima of |T (x; a)| considered
as a function of x. The main result of the WTMM method is that the D(h) singular-
ity spectrum can be determined from the Legendre transform of the scaling exponent
�(q): D(h) = minq(qh−�(q)). Homogeneous fractal functions that involve singularities
of unique H�older exponent h(x) = h, are characterized by a linear �(q) spectrum
(h = @�=@q). On the contrary, a nonlinear �(q) curve is the signature of nonhomoge-
neous functions that display multifractal properties (i.e., h(x) is a 
uctuating quantity
that depends upon x). For its ability to resolve multifractal scaling via the estimate
of the entire �(q) spectrum, the WTMM method [17,18] is a de�nite step beyond the
technique used so far in the literature [ 1–7] which were restricted to the estimate
of the second-order exponent �(2) only. The reliability of the WTMM method has
been tested on various mathematical examples including fractional Brownian motions
(fBm’s). The fBm’s BH (x) are Gaussian stochastic processes of zero mean with sta-
tionary increments. They are indexed by a parameter H (0¡H¡1) that accounts for
the presence (H 6= 1

2) or the absence (H =
1
2) of correlations between increments. The

fBm’s are statistically homogeneous fractals characterized by a single H�older expo-
nent h=H and thus by a linear �(q) spectrum: �(q) = qH − 1. The WTMM method
has already been successfully applied to numerical and experimental data from various
domains such as fully developed turbulence and fractal growth phenomena [19,20].

3. Wavelet analysis of DNA sequences

3.1. How to make the WT microscope blind to compositional patchiness

We concentrate our study on the statistical analysis of 121 DNA sequences se-
lected in the human genome, with the requirement that their overall lengh L¿2000
nucleotides, so that the range of scales available to fractal scaling be large enough to
make the analysis meaningful with respect to �nite size e�ects. We took the sequences
from EMBL data bank and processed seperately 47 coding (individual exons,CDS’s)
and 74 noncoding (individual introns) regions. To graphically portray these sequences
we follow the so-called “DNA walk” analysis [7] which requires �rst to convert the
four letter (A,C,G,T) text into a binary sequence. This can be done, for example,
on the basis of purine (A,G) vs. pyrimidine (C,T) distinction, by de�ning the incre-
mental variable that associates to position i the value �(i) = 1 or −1, depending on
whether the ith nucleotide of the sequence is a purine or a pyrimidine. (We refer the
reader to Refs. [17,18,21] for similar analysis with the two complementary pair-base
identi�cations). The wavelet analysis of the human desmoplaskin I CDS is shown in
Fig. 1 [17,18]. The patchiness of this sequence is patent on the corresponding DNA
walk (f(x) =

∑x
i=1 �(i)) in Fig. 1a: one clearly recognizes three regions of di�erent

strand bias. Fig. 1b shows the WT space–scale representation of this DNA signal when
using the order 1 analyzing wavelet  (1). In Fig. 1c and Fig. 1d, two horizontal cuts
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Fig. 1. WT analysis of the human desmoplakin I CDS (L = 8499). (a) DNA walk displacement f(x) (excess
of purines over pyrimidines) vs. nucleotide distance x. (b) WT of f(x) computed with the analyzing wavelet
 (1); T (1) (x; a) is coded, independently at each scale a, using 32 grey levels from white (minx T (1) (x; a)) to
black (maxx T (1) (x; a)); small scales are at the top. (c) T (1) (x; a = a1) vs. x for a1 = 23 (∼32 nucleotides).
(d) T (1) (x; a = a2) vs. x for a2 = 27 (∼512 nucleotides). (e) Same analysis as in (d) but with the analyzing
wavelet  (2).

T (1) (x; a) are shown at two di�erent scales a = a1 = 23 and a2 = 27 which correspond
(when taking into account the characteristic size of  (1)) to looking at the 
uctuations
of the DNA walk over a characteristic lengh of the order of 32 and 512 nucleotides
respectively. When progressively increasing the WT magni�cation, one realizes that
the 
uctuations detected at small scales actually occur around three successive linear
trends.  (1) not being blind to linear behavior, the WT coe�cients 
uctuate about �nite
constant values that correspond to the slopes of those linear trends. This phenomenon
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Fig. 2. Comparative WTMM analysis of the DNA walk graphs of the largest intron (L = 71718) of
the human retinoblastoma susceptibility gene (•) and of the dystrophin CDS (L = 11050) (©). (a)
log2(aZ(q; a)) vs. log2 a for q = 1; the straight lines represent the corresponding least-square �t estimates of
1 + �(1) = H = 0:50± 0:02 (solid line) and 0:57± 0:02 (dashed line). (b) �(q) vs. q; the solid and dashed
lines correspond to the theoritical spectrum �(q) = qH − 1 for classical Brownian motion (H = 0:50± 0:01)
and fractional Brownian motion (H = 0:58± 0:02), respectively. The analyzing wavelet is  (2).

is indeed present at all scales and drastically a�ects the fractal branching of the WT.
In Fig. 1e, the 
uctuations of the WT coe�cients are shown at the same coarse-scale
a = a2 but as computed with the order-2 analyzing wavelet  (2). The WT microscope
now being orthogonal also to linear behavior, the WT 
uctuates about zero and one
does not see the in
uence of the strand bias anymore. Furthermore, by considering
successively  (3),  (4); : : : ; one can hope not only to restore the stationarity of the
increments of the DNA signal but also to eliminate more complicated nonlinear trends.

3.2. Application of the WTMM method to the study of DNA sequences

In Fig. 2 are reported typical data coming out from the application of the WTMM
method to the DNA walk corresponding to the dystrophin CDS when using the ana-
lyzing wavelet  (2). Fig. 2a shows plots of the partition functions Z(q; a) computed
from the WT skeleton according to Eq. (2) vs. the scale parameter a in a log–log rep-
resentation. Only plots obtained for q = 1 are shown on this �gure since they are quite
representative of the typical features of the data for di�erent values of q (−26q64).
For convenience, aZ(1; a) is plotted in Fig. 2a, since from Eq. (2), it is expected to
scale like a�(1)+1; this will allow us to compare our results for DNA walks directly
to the prediction for homogeneous fBms: aZ(1; a) ∼ aH where H is the Hurst expo-
nent [17,18]. From a linear regression �t over a reasonable range of scales (more than
a decade), one gets �(1) + 1=0:50 ± 0:02, i.e., a value which is, up to the experi-
mental uncertainty, quite consistent with the value H = 1

2 for uncorrelated Brownian
random walks. This partial result is con�rmed when repeating this measurement for
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di�erent values of q; as shown in Fig. 2b, the data for the overall �(q) spectrum re-
markably fall on a straight line (the hallmark of homogeneous fractal signals) of slope
h = @�=@q = 0:50 ± 0:01. In Fig. 2 are also reported the results of a similar WTMM
analysis of the largest intron (L = 71718) of the human retinoblastoma susceptibility
gene. In Fig. 2b the data points for �(q) again fall on a straight line but with a slope
H = 0:58 ± 0:02 which is now signi�cantly larger than 1

2 . Note that again the value
obtained in Fig. 2a for �(1)+1 = H = 0:57 is quite compatible with the slope of �(q).
The dashed line in Fig. 2b corresponds to the theoretical spectrum for fBm’s with a
Hurst exponent H = 0:58; the remarkable agreement observed with the WTMM data
con�rms the presence of long-range correlations in the considered intronic DNA walk.
The results reported in Fig. 2 are actually quite representative of the results obtained

for our statistical sample of 47 coding and 74 noncoding sequences [17,18]. When
averaging the partition functions over these two statistical samples, we get �ZC(q; a)
and �ZNC(q; a) which both scale with the exponent predicted for homogeneous fBm’s,
i.e., �(q) = qH −1, with a main di�erence which allows us to distinguish coding from
noncoding sequences namely the presence of long range correlation in the latter: �HNC =
0:59± 0:02, while the former look like uncorrelated random walks: �HC = 0:51± 0:02.
These results are illustrated in Fig. 4a where a1=2Z(1; a) ∼ aH−1=2 is plotted vs. log2 a
to enlighten some possible departure of H from 1

2 .

3.3. About the Gaussian character of the 
uctuations in DNA walk landscapes

One of the most striking result of our WTMM analysis is the fact that the �(q) spectra
extracted for all the exons and introns we have considered in the human genome,
are suprisingly in remarkable agreement with the theoretical prediction for Gaussian
processes. Within that prospect, we have studied the probability distribution function
of wavelet coe�cient values P(T (2) (:; a)), as computed at a �xed scale a in the fractal
scaling range [17,18]. The distribution obtained for both the coding DNA sequences of
Fig. 1a and the largest intron contained in the human retinoblastoma susceptibility gene
are shown in Fig. 3a and Fig. 3b, respectively. When increasing the scale parameter
a, the distributions become wider, but when plotting ln P vs. T =�(a), where �(a) is
the r.m.s value at scale a, all the data computed at di�erent scales fall on the same
parabola independently of the nature of the sequence. Thus, as explored through the WT
microscope, the basic 
uctuations in DNA walks are likely to have Gaussian statistics.
The presence of long-range correlations in the human introns is, in fact, contained
in the scale dependence of �(a) ∼ aH where H = 0:60 ± 0:02 as compared to the
uncorrelated random-walk value H = 0:50± 0:02 obtained for the coding sequences.

3.4. Uncovering long-range correlations in coding DNA sequences

Because of the “period three” codon structure of coding DNA, it is natural to in-
vestigate separately the three subsequences relative to the position (1, 2 or 3) of
the bases within their codons [22]. We have build up these subsequences from our
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Fig. 3. Probability distribution function of wavelet coe�cient values at �xed scale a = 22 (•), a = 23 (N),
a = 24 (�) corresponding approximatively to 32, 64 and 128 nucleotides; the analyzing wavelet is  (2).
ln P is plotted vs. T=�(a), where �(a) = �aH is the r.m.s. value. (a) Human desmoplakin I CDS sequence:
H = 0:50. (b) Largest intron in the human retinoblastoma susceptibility gene: H = 0:60. The dashed lines
are parabolas characteristic of Gaussian statistics.

Fig. 4. a1=2Z(q = 1; a) vs. a in logarithmic scales, when averaged over 42 coding and 74 noncoding
human DNA sequences. (a) introns (—), CDSs (—), coding subsequences relative to position 1 (4),
2 ( ) and 3 (©) of the bases whithin the codons. (b) Introns: (· · · · · ·) GC% = 31:6 ± 0:4, L = 15210;
(- - -) GC% = 48:6 ± 1:0, L = 17137; (—) GC% = 63:3 ± 0:9, L = 10449; (•) �rst intron of the human
factor XIIIb subunit gene with GC% = 31:2, L = 2874. (c) Coding subsequences relative to position 3 of
the bases within the codons: (· · · · · ·) GC% = 38:1± 2:9, L = 4759; (- - -) GC% = 50:8± 2:8, L = 28521;
(—) GC% = 62:5± 2:1, L = 16558; (©) exon of the human apoB-100 gene with GC% = 41:0, L = 7571.
The analyzing wavelet is  (2).

35 largest CDS sequences and we have repeated the WTMM analysis. As shown in
Fig. 4a, the data for a1=2Z(1; a) ∼ aH−1=2 when plotted vs. a in a log–log representa-
tion, display a rather 
at behavior for both the subsequences relative to positions 1 and
2 which indicates that the corresponding roughness exponents HC1 = 0:53 ± 0:02 and
HC2 = 0:51 ± 0:02 are undistinguishable from HC and therefore from 1

2 . Surprisingly,
the data for the subsequence relative to position 3 exhibit a clear linear increase with
slope �HC3 = 0:07± 0:02 which re
ects the fact that HC3 = 0:57± 0:02, i.e., a value
which is very close to the exponent estimated for introns. This observation suggests
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Fig. 5. WTMM estimate of the roughness exponent H vs. the GC content of the DNA sequence. (a) Introns:
(•) L ' 50000, (�) L ' 15000; CDSs: (©) L ' 50000. (b) coding subsequences relative to position
1 (4), 2 ( ) and 3 (©) of the bases within the codons: L ' 20000.

that this third coding subsequence is likely to display the same degree of long-range
correlations as noncoding sequences.

3.5. Nucleotide composition e�ects on the long-range correlation properties of
human genes

In Fig. 4b, Fig. 4c and Fig. 5 are reported the results of a similar statistical ana-
lysis when classifying these DNA sequences into categories that correspond to a
given GC content [21]. The idea of looking for a link between the long-range cor-
relation properties and the GC content of the sequences results from the remark that
the WTMM method indeed fails to distinguish a few introns from actual exons
[17,18]. These introns with an exponent H close to 1

2 , actually correspond to DNA se-
quences with a low GC content (from 31% to 36%). As shown in Fig. 4b, when
investigating the scaling behavior of a1=2Z(1; a) ∼ aH−1=2 for our set of introns,
one notices some signi�cant tendancy of the curves to become steeper when con-
tinuously increasing the GC content. The corresponding values of the roughness ex-
ponent H are reported in Fig. 5a. H clearly increases from value close to 1

2 at low
GC content (∼30%) up to values signi�cantly larger than 0.6 at high GC content
(¿60%). In Fig. 5a are also shown the estimates of the roughness exponent for
the coding sequences. Whether the CDS be poor or rich in GC, it does not seem
to possess strong long-range correlations as indicated by an exponent H close to 1

2 .
Fig. 5b is devoted to the results of similar analysis of the 3 coding subsequences
relative to the position (1, 2 or 3) of the bases within the codons. For the �rst and
the second subsequences, one gets results quite consistent with the estimates obtained
with the overall CDS sequences: whatever the GC content, the exponent H does not
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signi�cantly depart from the value 1
2 . Note that the data do not exclude a possible

slow increase of HC2. For the third subsequence, H is found to increase up to values
close to 0.60 at high GC content, which brings the clue that this subsequence exhibits
GC-dependent long-range correlations very much like those observed in Fig. 5a for
introns (see also Fig. 4c). In order to investigate the possibility that these observations
might result from the exon concatenation in the CDSs, we have analyzed individual
human exons (for statistical reason, only the largest ones). These exons exhibit the
same features than the CDSs, as it is exempli�ed in Fig. 4c by the apoB-100 largest
exon.

4. Discussion

The results reported in this work clearly show that the GC content is likely to be
relevant to the long-range correlation properties observed in both intronic and exonic
DNA sequences. The evolution of DNA sequences in terms of GC content has attracted
a lot of interest during the past few years [ 14–16, 22–27]. Several mechanisms can be
proposed to account for the observed long-range correlations in the GC rich intronic
sequences [21].
(i) Besides punctual mutations, genomic sequences are subject to a number of inser-

tion–deletion events of DNA fragments of widely variable sizes. These events are
much less frequent in exonic regions due to the strong constraints imposed by
their coding properties. The insertion–deletion mechanisms could be responsible
for the observed long-range correlations [2]. However, insertions–deletions occur
in low GC intronic sequences which we just showed to present no long-range
correlations. Furthermore, the correlations observed between the third bases of the
codons, but not between adjacent nucleotides, are unlikely to result from (rare)
insertion–deletion events which generally involve several adjacent nucleotides in
order to maintain the coding phase.

(ii) The human genome is well known to be compartimentalized into wide speci�c
domains with uniform GC content, called isochores [23]; appreciable scatter of the
average GC content is actually observed when comparing di�erent domains. An-
other hypothesis is to consider that the processes operating to create the GC-rich
isochores lead to the appearence of long-range correlations. Thanks to the func-
tional constraints acting on the coding sequences embedded in these GC-rich re-
gions, these processes should be less active on the exons, with a concomittant lack
of long-range correlations as compared to the surrounding introns. Since these con-
straints are less stringent on the third base of the codons, this would explain the
correlations observed between these nucleotides in high GC containing exons. In
human genes the frequencies of the third base of codons are highly correlated
with neighboring intronic GC content [28]. This property favors the hypothesis
that the exonic correlations are produced by the same mechanisms which lead to
intronic correlations.
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It is likely that the observations reported here also extend to genomes of mammals and
warmblooded vertebrates. The exploration of genomes of various organisms including
unicellular eukaryotes and prokaryotes is currently under progress.
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