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Type-II intermittency in a periodically driven nonlinear oscillator 
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We report on the first numerical observation of type-II Pomeau-Manneville intermittency in a periodically 
driven third-order nonlinear oscillator. A discussion of such a transition to chaos in terms of the interac
tion of a local instability (subcritical Hopf bifurcation) and a global instability (homoclinic bifurcation) of a 
periodic motion is provided. We investigate the distribution of the laminar lengths and compare our nu
merical results with the theory. Emphasis is given to the 1//8 divergence (8-0.67 ±0.10) observed in the 
small-frequency limit of power spectra. 

Among the well established routes to deterministic cha
os, 1-3 the so-called Pomeau-Manneville scenario4 has re
ceived considerable interest, both in an experimental as well 
as in a theoretical context. This fascinating scenario is 
characterized by short irregular or turbulent bursts inter
rupting, seemingly at random, a nearly regular (periodic) 
signal. Such an intermittent transition to weak turbulence 
arises in the process of destabilization of a limit cycle. 
Three different types of intermittencies have been original
ly4 distinguished according to the nature of the local bifurca
tion:5-7 Type-I intermittency is associated with a saddle
node bifurcation (a real Floquet multiplier crosses the unit 
circle at + 1), type-II intermittency comes with a subcritical 
Hopf bifurcation (two complex conjugate multipliers cross 
the unit circle) , and type-III intermittency involves a sub
critical period-doubling bifurcation (a real multiplier crosses 
the unit circle at -1). However, such a local instability is 
not the only ingredient required for intermittency to occur. 
The conjecture which accounts for intermittency is that 
simultaneously8 to the local linear instability, there is a glob
al nonlinear mechanism (strange attractorlike behavior) 
which ensures the dynamics to be reinjected in the neigh
borhood of the limit cycle. In (Ref. 4) this property was ob
tained in periodizing the phase space. In most of the 
theoretical studies9 the reinjection process has been 
phenomenologically modeled by random reentries with 
white probability distribution. In numerical as well as real 
experiments one can reasonably expect to observe devia
tions from such a theoretical hypothesis. 

Since the pioneering work of Manneville and Pomeau,4 
type-I intermittency has been frequently encountered in nu
merical studies of ordinary differential equations (ODE) and 
discrete dynamical systems.9-11 Detailed measurements of 
type-I intermittency have been carried out with different ex
perimental devices.12-15 More recently, type-III intermitten
cy was observed in Rayleigh-Benard convection in confined 
geometry.16 But so far, there have been no examples identi
fying type-II intermittency in either real experiments or in 
simulation studies. The main purpose of this paper is not 
only to report about the discovery of type-II intermittency in 
a periodically driven nonlinear oscillator but also to discuss 
the strategy we have adopted to give evidence of such a 
scenario to chaos. 

Consider the following ODE system:17 

x+.,,i +vi +p.X +k1X2 +k2
X2 

+k3XX +k�X +k5X2X-Fcos(wt) (1) 

In the limit of vanishing amplitude of the periodic forcing 
(F -0), this system reduces to a third-order autonomous 
ODE, which has been shown to arise naturally as the trun
cated normal form of a triply degenerate problem18 (the 
dispersion relation has a triple zero eigenvalue at the triple 
point Tl -v - p. - 0). Special interest was dedicated to the 
study of this amplitude equation which exhibits period dou
blings and strange attractorlike behavior as close as we want 
to the onset of the triple instability. The main step in our 
approach to type-II intermittency consists of showing that 
this truncated amplitude equation also accounts for the in
teraction of a subcritical Hopf bifurcation and a global 
homoclinic bifurcation. s-7 

For F- 0, Eq. (1) possesses two equilibria X'* -0 and 
- p./k1. Both these equilibria display a Hopf bifurcation 
when p.-Tjv and p.--.,,v, respectively (Tj,v>O). From 
now on let us focus on the origin, keeping in mind that our 
argument extends to the nontrivial steady state. In the 
neighborhood of the critical surface p.-.,,v, the use of both 
the center manifold theorem and the normal form tech
niquesS-7 allows us to reduce Eq. (1) to a two-dimensional 
system which can be conveniently written in polar coordi
nates as 

p - Ap +a p3 +higher-order terms , 

9- n +bp2+higher-order terms . 
(2) 

where A- (p.-.,,v) measures the distance to the critical 
surface and n -� + 0 ( X). The coefficients a and b are 
computed on this surface. The detailed expressions of these 
coefficients in terms of the parameters k, of the nonlinear 
terms in Eq. (1) are very complicated. Let us simply men
tion here that the arbitrariness in the choice of the k/s re
covers both the situations a > 0 and a < 0, which corre
spond to subcritical and supercritical Hopf bifurcations, 
respectively. 

As discussed in Ref. 18, the strange attractorlike behavior 
displayed by Eq. (1), for F -0, can be interpreted in terms 
of chaotic orbits which occur in nearly homoclinic condi
tions as ensured by a theorem of Shil'nikov.19 We did not 
ascertain analytical conditions for the · existence of such 
homoclinic orbits, but we have located these conditions us
ing a numerical technique elaborated on in Ref. 20. Thanks 
to a simple trial and error method we traced the homoclinic 
bifurcation up to a close neighborhood of the previously 
described subcritical Hopf bifurcation. In such research, the 
saturating highest-order term k5X2 i added in Eq. (1) has 
been of great help. Such a "concomitant" situation favors 
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the application of the Shil'nikov theorem: The homoclinic 
orbit is biasymptotic to a saddle focus, the origin, which sa
tisfies the requirement18• 19 that the negative real root of the 
corresponding dispersion relation has larger magnitude than 
the real part [>. � 0, in Eq. (2)] of the complex-cortjugate 
roots. Hence, as already experienced in Ref. 20, there is 
hope that asymptotically stable chaotic motions will be ob
served within the conditions where the homoclinic orbit has 
been (numerically) shown to exist. Moreover, if anything, 
this chaotic behavior will ensure a reirtjection of the dynam
ics in the neighborhood of the origin. We actually per
formed a numerical investigation of Eq. (1) without forcing, 
and for different values of the control parameter µ,. As 
suspected theoretically, when varyingµ, through the subcrit
ical Hopf bifurcation value, we do witness a direct transition 
from rest to a turbulent regime. This transition manifests 
itself as chaotic bursts, which from time to time emerge 
from a nearly stationary signal. 

When turning on the periodic driving (F¢0), such a 
scenario to chaos generalizes to type-II intermittency. Fig
ure 1 illustrates the results of a numerical investigation of 
Eq. (1) for the parameter values F-0.5, w-= 15, "IJ-1, 
v-1.2, ki--100, k2-120, k3-o, k4=-20, ks-100. 
Three time series are represented corresponding to three 
different values of µ.: (a) µ. -1.14: below the subcritical 
Hopf bifurcation we observe a periodic signal with a fre
quency equal to the driving frequency; (b) µ.-1.16: just 
above the subcritical Hopf bifurcation very exceptional short 
bursts of chaos interrupt very long laminar episodes; (c) 
µ.-1.25: far above criticality the chaotic episodes become 
more frequent; their average length increases with µ, at the 
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FIG. 1. Time plot of X (unit scale-10-2) as computed with Eq. 
(l) for (a) p.-1.14, (b) 1.16, and (c) 1.25. The model parameter 
values are given in the main text. 
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FIG. 2. Enlargements of the time series for p. - 1.25. (a) and (b) 
differ in the dilatation rate of the time scale. 

expense of the laminar phase duration. Enlargements of 
the time series in Fig. 1 (c) are shown in Fig. 2. It is clear in 
these pictures that the occurrence of chaotic bursts comes 
with a modulation of the original periodic oscillation at the 
frequency n - .JV - -ft. in w-units; the amplitude of this 
modulation increases slowly initially, but when it reaches a 
high value the increase becomes very rapid. Then the signal 
loses its regularity and a turbulent episode is initiated. Im
mediately after the chaotic intermission there is a reappear
ance of the regular behavior, corresponding to a return to 
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FIG. 3. A stroboscopic Poincare map corresponding to the time 
series shown in Fig. l(c). This picture represents an enlargement of 
this map in the neij,l�borhood of the underlying saddle focus as 
projected onto the (XX) plane. 
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FIG. 4. (a) Reinjection distribution inside the two-dimensional unstable manifold of the fixed point p- 0 and (b) probability distribution 
P(n) for the laminar lengths; same model parameters as in Fig. l(c). 

the preceding periodic behavior. The position of the reentry 
point determines the length of the following laminar period. 

When dealing with systems like Eq. (1), where an exter
nal periodic forcing occurs, the usual way to define a Poin
care first return map consists of sampling the orbits in phase 
space at the frequency of the forcing. Figure 3 represents 
such a defined three-dimensional Poincare map as computed 
from the time series in Fig. 1 (c) . Only a few points have 
been retained in this figure in order to distinguish both the 
one-dimensional homoclinic reinjection process in the 
neighborhood of the fixed point and the very mild spiraling 
behavior away from this point which corresponds to a lam
inar phase. 

Taking advantage of the rotational invariance of the Hopf 
normal form for mappings,5-7 

Pn +1- (1 + E)pn + ap; +higher-order terms , 
(3) 

Bn +I= Bn + n + b p,; +higher-order terms ( n irrational) ' 

the theoreticians have assumed uniform reinjection distribu
tion in a disk (p < const) contained in the two-dimensional 
unstable manifold of the fixed point. Within such a work
ing hypothesis, the probability distribution P(n) of the lam
inar lengths is predicted to behave like P(n)-n-2 at small 
laminar period n, and to decay exponentially P(n) 
- exp( - 2En ) at large n.4 In addition, the average length 
of the laminar episodes is expected to scale like ( n ) 
- In (l!E) , where E -µ, - µ,1 is characteristic of the distance 

from the intermittency threshold µ.1- 1.149 . .. . 
The reinjection distribution corresponding to the time 

series in Fig. 1 (c) is shown as the histogram in Fig. 4(a) . 
The whole set of reentry points falls into a narrow range in 
the 8 variable, clearly indicating that the homoclinic reinjec
tion process not only breaks the rotational invariance of Eq. 
(3),

21 but that it is, in fact, intrinsically one dimensional. 
Therefore, one can expect to observe severe deviations 
from the theoretical predictions. The corresponding proba
bility distribution of laminar length P ( n) is illustrated in 

Fig. 4(b) . P(n) appears to be peaked not only at low n 
values but also at high n values ( n - 250) , which at first 
sight is rather puzzling with respect to the predicted ex
ponential decay. Indeed, such a peak simply reflects the 
particular shape of the reinjection distribution which [as 
seen in Fig. 4 (a) ] is peaked toward the small p values: All 
the reentry points fall almost on a curve, but with a high 
density in the neighborhood of the fixed point, which runs 
counter to the observation of an exponential tail in P ( n). 
The computation of ( n ) for values of µ, ranging from 
1.15-1.30 yields (n)-E-112, which contradicts the expect
ed ln(l/E) behavior, but which is in fair agreement with the 
theoretical scaling relation derived when assuming a one
dimensional reinjection process.4 

As emphasized in Refs. 22 and 23, the arbitrarily long 
laminar regions observed on an intermittent time series 
manifest as 1//8 divergencies in the small-frequency limit of 
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FIG. 5. Power spectrum as computed with Eq. (1) for µ-1.15. 
In the inset, the power spectrum is plotted vs Inf. 



RAPID C0'\1\fll�fCATIO:-.;s 

TYPE-II INTERMITTENCY IN A PERIODICALLY DRIVEN ... 729 

power spectra. Figure 5 illustrates the power spectrum com
puted from the Poincare map obtained at the value µ = 1.15 
immediately above the intermittency threshold. A low
frequency 1/ /3 behavior is detected with 8 - 0.67 ± 0.10. In 
the frequency range reported in Fig. 5, this numerical esti
mate of the exponent a is quite compatible with the loga-
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site de Nice, Pare Valrose, 06034 Nice Cedex, France. 
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