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Abstract—The aim of this study is to assess the potential of satellite
image time series with high spatial and high temporal resolutions for the
prediction of grasslands plant biodiversity. The grasslands are modeled
at the object scale to be consistent with ecological measurements (one
biodiversity index per grassland). A kernel regression is used to predict
the biodiversity index of a grassland from its spectro-temporal reflectance.
The method is applied using two intra-annual multispectral or NDVI time
series of SPOT5 Take5 (18 dates) and Sentinel-2 (7 dates) to predict the
Shannon and the Simpson indices of about 200 grasslands in south-west
France. The best coefficient of determination for the prediction of the
Shannon index is 0.13 and it is 0.17 for the Simpson index prediction. The
unsatisfactory results suggest that a high temporal resolution combined
with a high spatial resolution and multispectral bands are not sufficient
to estimate grassland biodiversity at the grassland scale.

Index Terms—Kernel regression, high resolution time series, SPOT5
(Take5), Sentinel-2, biodiversity, grasslands.

I. INTRODUCTION

Grasslands are one of the most largest land covers on Earth. They
represent a significant source of biodiversity in farmed landscapes,
because of their plant and animal composition [1], [2]. Thanks to
this diversity, they provide many ecosystem services such as carbon
and erosion regulation, pest control, crop pollination [3]. However,
global grassland surface area is decreasing and grassland diversity is
declining because of agriculture intensification and urbanization [3].
To understand these effects, it is of utmost matter to determine and
monitor grassland diversity and composition at a large extent.

In ecology, grasslands are usually monitored through ground
surveys. But they are limited in time and space, since they are time-
consuming and require important human and materials resources [4].
Remote sensing is a tool which has already proven its ability
for habitat mapping [5], [6]. However, the study of grasslands in
fragmented landscapes, such as found in Europe, has been limited
because of sensors resolutions. Indeed, grasslands are rather small
elements in the landscape which require a high spatial resolution
to be detectable [7]. Moreover, for biodiversity related applications,
very high spatial resolution (less than 1 meter) is more relevant to
discriminate the species communities [7]–[9].

For biodiversity application, most of the remote sensing research
is based on the Spectral Variation Hypothesis [9]–[11]. It supposes
that the spatio-spectral variability in the image is related to the
spatial heterogeneity in the environment, and therefore it can be
used as a proxy for species diversity. Hence, the study of grasslands
biodiversity is usually performed with hyperspectral data issued from
a field spectroradiometer or an airborne sensor (around 1-m spatial
resolution) [11]–[14]. Although these works showed good results,
they were limited to a very local scale, because of the costs involved
by such a mission. When this type of data is not accessible and when a
larger extent is required, a tradeoff can be considered by using time
series with high temporal resolution. Indeed, species communities

differ in their temporal behavior, i.e., their phenology. In addition,
new satellite missions for continuous vegetation monitoring, such as
Sentinel-2, provide freely multispectral time series with high spatial
and high temporal resolutions.

In this context, this study aims at evaluating the potential of
multispectral satellite image time series (SITS) to determine grassland
plant biodiversity at the grassland scale. Two intra-annual SITS with
high spatial and high temporal resolutions are compared.

In this experiment, grasslands are modeled at the object scale
to be consistent with ecological studies which usually characterize
grasslands at the parcel scale. A non-parametric regression method
to predict grasslands biodiversity index is used. The method is
experimented to predict the Shannon index and the Simpson index
of grasslands in south-west France using a SPOT5 (Take5) and a
Sentinel-2 time series. Results are analyzed in terms of prediction
accuracy and stability.

II. DATA

A. Study site

The study site is part of a Long-Term Ecological Research
site located in Gascony ("Coteaux et Vallées de Gascogne",
LTER_EU_FR_003), in south-west France near the city of Toulouse
(43◦17′N, 0◦54′E). This hilly area of around 900km2 is characterized
by a mosaic of crops, small woods and grasslands. It is dominated
by mixed crop-livestock farming. Grasslands provide food for cattle
by grazing and/or producing hay or silage. They are mainly located
on steep slopes whereas annual crops are in the valleys on the most
productive lands. The climate is sub-Atlantic with sub-Mediterranean
and mountain influences (mean annual temperature, 12.5◦C; mean
annual precipitation, 750 mm) [15].

B. Dataset

The dataset is composed of more than 200 grasslands. A botanical
survey was conducted in the Springs 2015 (on 171 grasslands)
and 2016 (on 45 grasslands), after the flowering and before the
mowing (April-May), to record the botanical composition of all these
grasslands. From this floristic record, several biodiversity indices can
be computed. They represent the biodiversity in the grassland at the
grassland scale, and not at the plot scale. The Shannon index (H) and
the Simpson index (D) were chosen because of their wide-spread
utilization in ecology: H = −

∑R
i=1 pi ln pi and D =

∑R
i=1 p

2
i

where pi is the proportion of the ith species and R is the total
number of species in the grassland (species richness). H values are
usually between 0 and 4, and D always ranges between 0 and 1. H
increases and D decreases as the diversity increases. The statistics of
the dataset for each variable are presented in Table I. Three examples
of grasslands temporal profiles along the H and D axis, from very
poor to very rich in biodiversity, are shown in Fig. 1.



The grasslands were digitalized in a GIS from aerial photographs
(BD Ortho database, IGN). For this study, a negative buffer of 10m
was applied to all the grassland polygons to avoid edge effects due to
mixed pixels at the edges. Only the grasslands composed of at least
10 pixels of 10-m resolution, i.e. having an area higher than 1000m2,
were kept, to ensure a minimum number of pixels in a grassland. In
the end, there were 192 grasslands.

TABLE I
SUMMARY OF BIODIVERSITY INDICES OF THE DATASET. H = SHANNON

INDEX, D = SIMPSON INDEX, G = NUMBER OF GRASSLANDS, SD =
STANDARD DEVIATION, CV = COEFFICIENT OF VARIATION.

Variable G Min Max Mean SD CV

H 192 0.096 3.512 2.274 0.491 0.216
D 192 0.049 0.973 0.168 0.126 0.752

C. Satellite images

The SPOT5 (Take5) time series was used in this experiment
(www.spot-take5.org). 18 images were available over the present
study site from April to September 2015 (Fig. 2). SPOT5 has a
spatial resolution of 10 meters in four spectral channels (visible to
near infrared (NIR)).

The Sentinel-2 [16] time series acquired over the year of 2016 was
also used for comparison in this experiment. We used the available
images from April to September 2016 (Fig. 3). The four 10-m spectral
bands were used as well as the four 20-m spectral bands correspond-
ing to the red edge and NIR bands. The 20-m bands were resampled
at 10 meters with a bilinear resampling algorithm, using the gdalwarp
function of GDAL (http://www.gdal.org/gdalwarp.html). It resulted in
a time series of seven dates with eight spectral bands. Therefore, this
time series is characterized by less dates than SPOT5 series but with
a higher number of spectral bands.

III. METHODOLOGY

A. Grassland modeling

In this work, each grassland gi is composed of a given number ni

of pixels represented by a spectro-temporal vector xik ∈ Rd, where
k is the pixel index such as k ∈ {1, ..., ni}, i ∈ {1, . . . , G}, G is
the total number of grasslands, d = nBnT is the number of spectro-
temporal variables, nB is the number of spectral bands and nT is
the number of temporal acquisitions (here, nB = 4 and nT = 18 for
SPOT5, nB = 8 and nT = 7 for Sentinel-2, but nB = 1 if using a
single vegetation index). Two grassland representations are proposed,
at the pixel and at the object scales.

At the pixel scale, with each grassland gi are associated a matrix
Xi = [xi1, . . . ,xini ]

> of size (ni × d) and a response variable
yi ∈ R (its biodiversity index).

At the object scale, the mean spectro-temporal vector µi of
the pixels belonging to gi is used to represent gi. It is estimated
empirically by µ̂i = 1

ni

∑ni
k=1 xik. In this case, a vector µ̂i ∈ Rd

and a response variable yi ∈ R are associated with each grassland.

B. Kernel least mean square regression

In order to predict the response variable (H or D) for each grassland
represented by its reflectance, a kernel least mean square (KLMS)
regression was used. The KLMS regression [17] consists in solving:

min
f

G∑
i=1

(
yi − f(gi)

)2
+ θ‖f‖2 (1)

with yi is the response variable associated with grassland gi, f is the
regression function such as f(gi) = ŷi, ŷi is the predicted variable of
gi, f(gi) =

∑G
j=1 βjK(gi, gj) + b, K is the kernel function, βj’s

are the parameters of f , b is the intercept and θ is the regularization
hyperparameter.

The solution to this problem is given by:

β̂ = (K + θI)−1y, b̂ = ȳ (2)

where β is the vector of linear coefficients βj , K is the kernel matrix
issued from the kernel function K applied between each pair of
grasslands gi, I is the identity matrix, y is the response vector made
of yi and ȳ is the mean value of yi.

In this experiment, two kernels were tested. For the representation
at the object scale, the conventional RBF kernel was used between
two grasslands gi and gj modeled by their mean vectors µi and µj :

KRBF(gi, gj) = exp(−σ‖µi − µj‖
2) (3)

with σ > 0. This method is denoted by "µ-KLMS" in the following.
The second kernel tested is the empirical mean kernel between

two distributions pi and pj [18] for the grassland representation at
the pixel scale. It corresponds to the average of all pairwise RBF
kernel evaluations over the realizations of the two distributions (i.e.,
pixels that belong to grasslands gi or gj):

KEMK(gi, gj) =
1

ninj

ni,nj∑
k,l=1

KRBF(xik,xjl), (4)

where ni and nj are the number of pixels associated with gi and gj
respectively and xik is the kth realization (pixel) of gi. This method
is denoted by "EMK-KLMS" in the following.

In these two cases, two hyperparameters must be tuned during
the regression process: the kernel parameter σ and the regression
regularization parameter θ.

C. Regression protocol

The regression was investigated for two reflectance configurations:
the Normalized Difference Vegetation Index (NDVI) and the four
(SPOT5) or eight (Sentinel-2) concatenated multispectral bands (MS).

For each configuration, the regression process was repeated 10
times through a Monte Carlo procedure. For each repetition, the
dataset was split randomly into two subsets: 80% for training and
20% for testing. The optimal hyperparameters (σ and θ) were
tuned during a 5-fold cross-validation based on the highest co-
efficient of determination (r2) to minimize the prediction error:

r2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
.

The efficiency of each configuration (i.e., kernel, spectral informa-
tion and sensor) to predict the responses variables was compared in
terms of regression accuracy, stability and processing time.

The kernels and the regression were implemented in Python
through the Scikit library (http://scikit-learn.org).

IV. EXPERIMENTAL RESULTS

The mean coefficient of determination and its standard deviation
over the 10 repetitions during training and testing phases of the
regression model for each method to predict the Shannon index and
the Simpson index, respectively, are synthesized in Tables II and III.

With SPOT5, results were improved when using the MS data (four
bands) instead of the NDVI, regardless of the method. It increased the
r̄2 of about up to 0.04. For H prediction, the EMK-KLMS method
was better than µ-KLMS in all configurations. The best results were
obtained with the EMK-KLMS method with MS data (r̄2 = 0.13).



120 140 160 180 200 220 2400.0

0.2

0.4

0.6

0.8

1.0

120 140 160 180 200 220 2400.0

0.2

0.4

0.6

0.8

1.0

120 140 160 180 200 220 2400.0

0.2

0.4

0.6

0.8

1.0

(a) H = 0.10, D = 0.97 (b) H = 1.66, D = 0.29 (c) H = 2.89, D = 0.09

Fig. 1. NDVI temporal profiles from SPOT5 time series of all the pixels belonging to three grasslands along the H and D gradients: (a) grassland poor in
biodiversity, (b) grassland quite rich and (c) grassland very rich. The x-axis corresponds to the day of year of 2015 and the y-axis corresponds to the NDVI.
Grasslands have been voluntarily chosen on their high number of pixels for better visualization.
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Fig. 2. Dates of SPOT5 (Take5) images used in this study (2015).
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Fig. 3. Dates of Sentinel-2 images used in this study (2016).

For D prediction, µ-KLMS was always better than EMK-KLMS. The
best result was achieved with µ-KLMS on MS data (r̄2 = 0.17).

With Sentinel-2, the results were worse than with SPOT5 for H
prediction (best score is r̄2 = 0.07, µ-KLMS with NDVI). However,
the regression was better for D prediction using Sentinel-2 NDVI
(best r̄2 = 0.15, µ-KLMS) than SPOT5 NDVI (r̄2 = 0.13). Sentinel-
2 showed opposite results to SPOT5: results are worse using MS data
than using NDVI, regardless of the method and the variable. It seems
that accuracies are decreased when using the 20-m bands. Indeed,
results were better when using only the four Sentinel-2 10-m bands
with µ-KLMS. It could explain why the MS data did not perform
better than NDVI.

No conclusion can be drawn about the performance of the µ-KLMS
method against EMK-KLMS. However, EMK-KLMS did not provide
the most stable results (high standard deviation compared to mean
value). It is also more time consuming than the mean modeling.

Globally, the Simpson index D was more accurately predicted than
the Shannon index H. Nevertheless, the prediction results for both
indices are not satisfying.

V. DISCUSSION AND CONCLUSION

A scatter plot of observed vs. predicted D value for the best run
of the µ-KLMS method using SPOT5 MS data is plotted in Fig. 4.
There is a lack of variance in the predicted dataset, either for H or
D. The model predicts always the same range of values. Extreme,
and especially higher D values/lower H values (they correspond to
grasslands very poor in biodiversity, almost monospecific) are less
represented in the dataset (only three grasslands with D > 0.8), and
are less represented in the training dataset. Thus, they are badly
learned during the training phase, compared to richer grasslands. The
regression quality could be improved if having more grasslands with
high D values (low H values), making the dataset more balanced
along the biodiversity indices gradients.

TABLE II
MEAN (STANDARD DEVIATION) r2 FOR H PREDICTION OVER THE 10

REPETITIONS.

Method µ-KLMS EMK-KLMS
Data train test train test

SITS SPOT5
NDVI 0.10 (0.06) 0.08 (0.08) 0.12 (0.06) 0.10 (0.09)

MS 0.11 (0.08) 0.12 (0.10) 0.12 (0.09) 0.13 (0.13)

SITS Sentinel-2
NDVI 0.06 (0.06) 0.07 (0.05) 0.04 (0.06) 0.04 (0.07)

MS -0.02 (0.03) 0.01 (0.05) -0.01 (0.03) 0.04 (0.06)

TABLE III
MEAN (STANDARD DEVIATION) r2 FOR D PREDICTION OVER THE 10

REPETITIONS.

Method µ-KLMS EMK-KLMS
Data train test train test

SITS SPOT5
NDVI 0.11 (0.09) 0.13 (0.08) 0.13 (0.09) 0.12 (0.11)

MS 0.14 (0.11) 0.17 (0.13) 0.15 (0.10) 0.14 (0.14)

SITS Sentinel-2
NDVI 0.05 (0.06) 0.15 (0.10) 0.04 (0.07) 0.14 (0.12)

MS -0.05 (0.04) 0.01 (0.04) -0.01 (0.05) 0.05 (0.06)

There might also be more variability inter-grasslands than along
the H or D gradients. Grasslands can be managed differently (one or
two mowings, grazing, mowing and grazing, or no utilization) with a
different use intensity. These disturbances might have a higher impact
on the signal than the species composition. This was confirmed
by Feilhauer et al. [19] who assessed the floristic composition
with simulated Sentinel-2 data from field hyperspectral data. They
showed that multiseasonal data decreased the model fit compared to
monotemporal data. Therefore, it would be of interest to separate
grasslands depending on their management.

Accuracies of prediction were much lower than those found using
hyperspectral imagery at the plot scale (r2 of 0.4 and 0.45 for
inverse Simpson’s diversity in [20], and up to 0.62 for Shannon index
in [11] with spectral variability measure). However, these studies were
conducted at the plot scale for the floristic record and the associated
spectral information. They used the pixels corresponding only to the
sampling unit. Our protocol was different, since the botanical survey
was conducted at the grassland scale by a random walk strategy
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Fig. 4. Observed vs. predicted D for the best run (r2test = 0.43), µ-KLMS
using SPOT5 MS data. Red dots corresponds to elements of the training phase.
Blue dots corresponds to predicted elements of the testing phase.

and only one biodiversity index was computed from it. In this case,
there is no direct correspondence between a given pixel and the
floristic record. Indeed, even if one grassland is a homogeneous unit
from an agronomic viewpoint (one field, same practices), because
of topography, soil depth, presence of a stream, it can present very
different ecological sub-units with different plant compositions.

Despite the unsatisfactory results, the Simpson index (D) was
always better predicted than the Shannon index (H). D is a measure
of the dominance in a community, while H is more sensible to
rare species [21]. Thus, one can suppose that dominance in a plant
community is more predictable by satellite remote sensing than the
presence of rare species, and dominance-based indices should be
favored.

The lack of a balanced dataset along the biodiversity gradients does
not allow a formal conclusion on the actual potential of multispectral
SITS with a high temporal and a high spatial resolutions to predict the
biodiversity indices of grasslands. However, current results suggest
that this type of data is not suitable to predict such indices measured
at the scale of the grassland. Indeed, the species composition of
grasslands does typically fall in the hyperspectral domain. As future
prospects, the use of spectral heterogeneity [4] as a proxy for species
diversity should be considered [11]. It could be adapted to temporal
data.
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