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Abstract—This paper derives a simple strong data processing
inequality (DPI) for Poisson processes: after a Poisson process is
passed through p-thinning—in which every arrival remains in the
process with probability p and is erased otherwise, independently
of the other points—the mutual information between the Poisson
process and any other random variable is reduced to no more
than p times its original value. This strong DPI is applied to
prove tight converse bounds in several problems: a hypothesis
test with communication constraints, a mutual information game,
and a CEO problem.

I. INTRODUCTION

A data processing inequality (DPI) states that, if the random
variables U(−−X(−−Y form a Markov chain in that order,
then I(U ;Y ) ≤ I(U ;X). For some channels (i.e., stochastic
kernels) from X to Y , a stronger inequality holds: for any joint
distributions on (U,X, Y ) under which the Markov condition
is satisfied and PY |X is the given channel law, I(U ;Y ) ≤
αI(U ;X), where α < 1 does not depend on the choice of
the joint distribution. The latter inequality is usually called a
“strong DPI.” A simple example of strong DPI is the following
[1, Exercise 3.19].

Example 1: If the channel W (·|·) is such that, for some
y0, W (y0|x) ≥ c for all x, then, for any joint distribution on
(U,X, Y ) satisfying the Markov condition U(−−X(−−Y and
with PY |X given by W (·|·),

I(U ;Y ) ≤ (1− c)I(U ;X). (1)

Various strong DPIs have been derived for various channels.
Some of them, like the one that is proven in the current work,
are “input dependent,” meaning that they hold for a specific
distribution for X but not necessarily for all distributions.

Like normal DPIs, strong DPIs are useful tools in proving
converse results in information theory and other areas. We
refer to [2] for a survey of some known results.

The channel considered in this paper is thinning on point, in
particular, Poisson, processes. Here, “p-thinning,” p ∈ (0, 1),
refers to the operation of independently erasing each arrival in
a point process with probability (1 − p). Thinning occurs in
many practical scenarios. For example, if the point process is
a beam of photons, then p-thinning can describe passing the
beam through a beamsplitter of transmissivity p, or detecting
the photons with a photodetector of efficiency p.

Instead of a point process, thinning can also be defined
on a nonnegative-integer-valued random variable: Y is the p-
thinning of X if, conditional on X = x ∈ Z+

0 , Y has the

binomial distribution of parameters x and p; see [3]–[5] and
references therein. Clearly, if the point process Y T0 is the p-
thinning of XT

0 , then the total number of arrivals in Y T0 is the
p-thinning of the total number of arrivals in XT

0 . In this work,
we are only concerned with thinning of point processes.

The strong DPI we derive is the following: if Y T0 is the
p-thinning of a Poisson process XT

0 , then1

I(U ;Y T0 ) ≤ pI(U ;XT
0 ) (2)

for all U(−−XT
0 (−−Y T0 . This inequality is related to (1):

heuristically, one can think of thinning as replacing every
infinitesimal interval in XT

0 by an interval of the same length
that contains no arrivals (corresponding to y0 in Example 1)
with probability (1 − p). Hence one can say, in a sense, that
(2) follows from (1) and the memorylessness of the Poisson
process. A formal derivation of (2) is given in Section II.

Inequality (2) is reminescent of [5, Lemma 1], which is
a strong DPI concerning thinned Poisson random variables.
The difference between the inequalities is that one concerns
continuous-time random processes, while the other concerns
random variables. Neither (2) nor [5, Lemma 1] appears to be
a direct consequence of the other.

Simple as it is, (2) can be used to prove tight converse
bounds in various problems. We discuss three examples: a
hypothesis test against independence, a mutual information
game, and a CEO problem.

Inequality (2) is closely related to a problem of “covering
point patterns” [6], [7]. The latter is a rate-distortion problem
for point processes, where the reconstruction signal is a set
that must contain all the arrivals, and the distortion is defined
as the Lebesgue measure of the reconstruction set. Roughly
speaking, equality in (2) can be approached by choosing U
as an optimal reconstruction set for XT

0 . This relation is
exploited in all three applications of (2) that we discuss. Our
CEO problem is a multiple-user extension of the original rate-
distortion problem of [6]. As for the other two problems, their
formulation does not involve the concept of covering, but their
optimal achievability schemes do.

The rest of this paper is arranged as follows: Section II
derives the strong DPI; Section III demonstrates how to
approach equality in it; Section IV studies some applications;
and Section V concludes the paper with a few remarks.

1Here, mutual information can be defined via the Kullback-Leibler diver-
gence between general probability measures.



II. THE INEQUALITY

A. Background

We provide some background on point processes. For more
details, see [8], [9].

We describe point processes by their counting functions,
thus a point process XT

0 , {Xt : t ∈ [0, T ]} on the
interval [0, T ] is, with probability one, an integer-valued,
non-decreasing, right-continuous random process satisfying
X0 = 0. The number of arrivals (i.e., points) in an interval
(t1, t2] ⊆ [0, T ] contained in XT

0 is given by Xt2 − Xt1 .
A point process is called simple if no two arrivals occur
simultaneously, i.e., if with probability one all jumps in XT

0

are unit jumps. For a simple point process XT
0 one can define

the conditional intensity function

αt(x
t
0) , lim

∆↓0

Pr(Xt+∆ −Xt ≥ 1|Xt
0 = xt0)

∆
, t ∈ [0, T ].

(3)
The integrated conditional intensity function is the compen-
sator of the point process.

Let P and Q be two probability distributions corresponding
to simple point processes on [0, T ], with conditional intensity
functions α and β, respectively. The Radon-Nikodym deriva-
tive between P and Q can be written as [8, (19.125)]

dP
dQ

(xT0 ) =

exp

{∫ T

0

log
αt(x

t
0)

βt(xt0)
dxt0 −

∫ T

0

(
αt(x

t
0)− βt(xt0)

)
dt

}
.

(4)

It then follows that their Kullback-Leibler divergence is

D(P‖Q) =

EP

[∫ T

0

(
αt(X

t
0) log

αt(X
t
0)

βt(Xt
0)
− αt(Xt

0) + βt(X
t
0)

)
dt

]
.

(5)

A Poisson process is a point process whose conditional
intensity function does not depend on the past realization of
the process, and is hence a function of time alone, henceforth
simply called the intensity. A Poisson process is called homo-
geneous if its intensity is constant over t ∈ [0, T ].

Given a point process XT
0 on the interval [0, T ] and a

constant p ∈ (0, 1), the point process Y T0 is called the p-
thinning of X if

1) every arrival that occurs in Y T0 also occurs in XT
0 with

probability one; and
2) every arrival that occurs in XT

0 occurs in Y T0 with
probability p, independently both of XT

0 and of whether
other arrivals in XT

0 occur in Y T0 or not.
If Y T0 is the p-thinning of XT

0 , then (see [9, Corollary 6.2.6])

lim
∆↓0

Pr({Yt+∆ − Yt ≥ 1}|Xt
0 = xt0, Y

t
0 = yt0)

∆
= pαt(x

t
0).

(6)

Hence, if β is the conditional intensity function for Y T0 , then

β(yt0) = p · EXt0|Y t0 =yt0

[
αt(X

t
0)
]
. (7)

B. Proof of the Inequality

We formally state the strong DPI in terms of both mutual
information and Kullback-Leibler divergence.

Theorem 1 (Mutual Information): Let XT
0 be a Poisson

process on [0, T ], and let Y T0 be the p-thinning of XT
0 for

some p ∈ (0, 1). Let U be any random variable such that
U(−−XT

0 (−−Y T0 form a Markov chain. Then

I(U ;Y T0 ) ≤ pI(U ;XT
0 ). (8)

Theorem 2 (Kullback-Leibler Divergence): Let Q denote
the distribution of a Poisson process on [0, T ]. Let P be
another distribution that is absolutely continuous with respect
to Q. Further, let P ′ and Q′ be the distributions resulting from
the p-thinning of P and Q, respectively, for some p ∈ (0, 1).
Then

D(P ′‖Q′) ≤ pD(P‖Q). (9)

The two versions of the strong DPI are equivalent; see [2,
Theorem 4]. We provide a proof for Theorem 2.

Proof of Theorem 2: For notational convenience, we use
XT

0 and Y T0 to denote point processes before and after p-
thinning, respectively. Let α and β be the conditional intensity
functions corresponding to P and P ′, respectively. Further, let
λt, t ∈ [0, T ], be the intensity corresponding to Q, then the
intensity corresponding to Q′ is pλt, t ∈ [0, T ]. It then follows
from (5) that

D(P‖Q)

= EP

[∫ T

0

(
α(Xt

0) log
α(Xt

0)

λt
− α(Xt

0) + λt

)
dt

]
(10)

D(P ′‖Q′)

= EP ′

[∫ T

0

(
β(Y t0 ) log

β(Y t0 )

pλt
− β(Y t0 ) + pλt

)
dt

]
. (11)

The claim follows immediately by recalling (7), convexity of
the function a 7→ a log a, and Jensen’s inequality.

Note that (8) need not hold if XT
0 is not Poisson; similarly,

(9) need not hold if Q does not represent a Poisson process.
The following simple example demonstrates the former. Let
U be uniform on {0, 1}. Conditional on U = u, XT

0 is a
homogeneous Poisson process of intensity λu. Hence XT

0 is a
doubly-stochastic Poisson process (Cox process). One can see
that, if pλT is large, then with high probability U = 1 will
result in at least one arrival in Y T0 , whereas with probability
one U = 0 will result in no arrival in Y T0 , hence I(U ;Y T0 ) is
close to one bit. Similarly, I(U ;XT

0 ) is also close to one bit.

III. APPROACHING EQUALITY IN (8) BY COVERING THE
ARRIVALS

Both (8) and (9) are tight. For (9) one can easily verify
that equality is achieved when P is also Poisson. To see how
to approach equality in (8), we first briefly review a related
problem that is studied in [6], [7].



Let xT0 be the realization of a point process on [0, T ]. A
covering function x̂T0 is a {0, 1}-valued Lebesgue-measurable
function on [0, T ]. Define

d(xT0 , x̂
T
0 )

,


µL(x̂−1(1))

T
, if all arrivals in xT0 are in x̂−1(1),

∞, otherwise,
(12)

where µL(·) denotes the Lebesgue measure. We call x̂−1(1)
the covering set. A rate-distortion pair (R,D) is said to be
achievable on a point process if, for every large enough T ,
there exists an encoder mapping a point pattern to a covering
function taken from a codebook of size beTRc such that the
expected distortion between the point pattern and the covering
function does not exceed D. The rate-distortion function R(D)
is the infimum over R such that (R,D) is achievable.

For a homogeneous Poisson process of intensity λ, [6]
shows

R(D) = −λ logD, D ∈ (0, 1). (13)

The following lemma is a slight variation of (13): instead of
the size of the codebook, it concerns the mutual information
between the source and the reconstruction. The proof of this
lemma is similar to that of (13), and is omitted due to space
limitations.

Lemma 1: Let XT
0 be the homogeneous Poisson process of

intensity λ on [0, T ]. For all D ∈ (0, 1),

lim
T→∞

inf
E[d(XT0 ,X̂

T
0 )]≤D

I(XT
0 ; X̂T

0 )

T
= −λ logD. (14)

We can now use Lemma 1 to demonstrate how equality
in (8) can be approached. Fix any ε > 0 and D ∈ (0, 1).
Let XT

0 be homogeneous Poisson of intensity λ,2 and let
Y T0 be the p-thinning of XT

0 , which is homogeneous Poisson
of intensity pλ. By Lemma 1, for large enough T , one can
choose a covering function X̂T

0 such that X̂T
0 (−−XT

0 (−−Y T0 ,
E
[
d(XT

0 , X̂
T
0 )
]
≤ D, and I(XT

0 ; X̂T
0 ) ≤ −λT logD + Tε.

Since Y T0 is obtained by thinning XT
0 , we know that any

X̂T
0 that covers XT

0 must also cover Y T0 . This implies that
E
[
d(Y T0 , X̂

T
0 )
]

= E
[
d(XT

0 , X̂
T
0 )
]
≤ D. Again by Lemma 1 it

follows that I(Y T0 ; X̂T
0 ) ≥ −pλT logD−Tε. Hence choosing

U = X̂T
0 as above for arbitrarily small ε will asymptotically

achieve equality in (8) when T tends to infinity.
Below we recall two more relevant results from [6], [7] that

will be used in Section IV.
Lemma 2 (General Processes [6]): On any point process

{Xt, t ∈ R+
0 } satisfying

lim
t→∞

Pr(Xt > (λ+ δ)t) = 0 for all δ > 0, (15)

the rate-distortion pair (R(D) + ε,D), with R(D) given in
(13), is achievable for all ε > 0.

2A similar construction also works for inhomogeneous Poisson processes.

Lemma 3 (Arbitrary Point Patterns [7]): Fix any ε > 0
and let R(D) be given in (13). For every large enough T , there
exists a codebook containing eT (R(D)+ε) covering sets each
having Lebesgue measure not exceeding DT , such that every
subset of [0, T ] of cardinality not exceeding λT is contained
in at least one of the covering sets in this codebook.

IV. APPLICATIONS

A. Test Against Independence

Hypothesis testing with communication constraints is a
classic problem in which physically separated observers make
decisions based on their own observations together with the
messages sent to them by other observers [10], [11]. Here
we consider a Poisson version of this problem. Let XT

0 be a
homogeneous Poisson process of intensity λ on [0, T ], and fix
p ∈ (0, 1). Given H = 0, Y T0 is the p-thinning of XT

0 ; given
H = 1, Y T0 is a homogeneous Poisson process of intensity
pλ that is independent of XT

0 . The transmitter observes XT
0

and describes it to the receiver using TR nats, where R > 0
is the available communication rate (in nats per second). The
receiver observes Y T0 and guesses the value of H based on
Y T0 and the message from the transmitter. Let Pε(T,R), ε > 0,
denote the smallest achievable error probability of the receiver
guessing H = 0 when H = 1, provided that the error
probability of it guessing H = 1 when H = 0 is not more
than ε. Further let

θ(R) , − lim
ε↓0

lim
T→∞

logPε(T,R)

T
. (16)

Theorem 3: For all R > 0,

θ(R) = pR. (17)

Proof: Converse. Following standard arguments [10] we
have,

θ(R) ≤ (1 + δT )
I(M ;Y T0 )

T
, (18)

where M denotes the message sent by the transmitter to
the receiver, δT tends to zero as T tends to infinity, and
the mutual information is computed under H = 0. Clearly,
M(−−XT

0 (−−Y T0 form a Markov chain, hence Theorem 1
implies

I(M ;Y T0 ) ≤ pI(M ;XT
0 ) ≤ p · TR. (19)

Combining (18) and (19) and letting T go to infinity yields
θ(R) ≤ pR.

Achievability. By Lemma 3, the transmitter can construct
a codebook containing (eRT − 1) covering sets, each having
Lebesgue measure DT , such that every point pattern contain-
ing no more than (1+δ)λT arrivals is covered by at least one
covering set, where

D = (1 + ε)e−
R

(1+δ)λ . (20)

Here δ and ε are arbitrarily small positive numbers. Label the
covering sets by 1 to (eRT − 1). The transmitter’s strategy is
the following: if XT ≤ (1+δ)λT , it looks for a covering set in
the codebook to cover all arrivals in XT

0 , and sends its index to



the receiver; if XT > (1+δ)λT , it sends zero. Upon receiving
a nonzero index, the receiver reconstructs the corresponding
covering set and compares it with Y T0 . If the covering set
covers all arrivals in Y T0 , and if YT ≥ (1 − δ)pλT , then it
guesses H = 0; otherwise it guesses H = 1. If the receiver
receives index zero, then it also guesses H = 1.

Next we analyze the error probabilities. When H = 0,
if XT ≤ (1 + δ)λT , then the covering set chosen by the
transmitter will cover Y T0 with probability one. Hence the
receiver will guess H = 1 only if either XT > (1 + δ)λT
or YT < (1 − δ)pλT . The probabilities of both cases tend to
zero as T tends to infinity, by the Law of Large Numbers.

When H = 1, Y T0 is a Poisson process of intensity pλ gen-
erated independently of XT

0 and, hence, also of the covering
set chosen by the transmitter. The receiver will guess H = 0
if, and only if, Y T0 contains more than (1 − δ)pλT arrivals,
and all these arrivals lie in the chosen covering set. Note that,
given that the realization of a homogeneous Poisson process
contains k arrivals on [0, T ], these arrivals, when randomly
labeled, are independent and identically distributed, uniformly
on [0, T ] [12, Theorem 2.4.6]. Thus the probability of any of
the arrivals lying within a certain subset of [0, T ] of Lebesgue
measure DT is D. We then have

Pr(error|H = 1) =

∞∑
k=(1−δ)pλT

Pr(YT = k) ·Dk

≤
∞∑

k=(1−δ)pλT

Pr(YT = k) ·D(1−δ)pλT

≤ D(1−δ)pλT

= (1 + ε)(1−δ) · e−
(1−δ)pRT

(1+δ) . (21)

Since both δ and ε can be arbitrarily small, the exponent on
the right-hand side of (21) can be arbitrarily close to pR.

B. A Poisson Mutual Information Game

Various types of games have been studied in the literature
where the quantity that the players wish to maximize or
minimize is a mutual information. For example, [4] studies a
mutual information game on a single Poisson random variable,
and [13] studies a game on Gaussian vectors. In the following
we study a mutual information game on a Poisson process.

Let XT
0 be a homogeneous Poisson process on [0, T ] with

intensity λ. Player 1 chooses a stochastic kernel PY T0 |XT0 that
(randomly) adds at most µ arrivals per second to XT

0 to form
the point process Y T0 . Precisely, PY T0 |XT0 must satisfy

Pr (YT −XT > (µ+ δT )T ) ≤ εT (22)

for some εT and δT that tend to zero as T tends to infinity.
Player 1 is not allowed to remove any points from XT

0 .
Player 2 then chooses a stochastic kernel PU |Y T0 , where U
may take value in an arbitrary measurable set, such that

I(U ;Y T0 ) ≥ αT (23)

for a given positive constant α. The quantity that Player 1
wishes to maximize and that Player 2 wishes to minimize is

1

T

{
I(U ;Y T0 )− I(U ;XT

0 )
}
. (24)

Theorem 4: The asymptotic value of the above game is

lim
T→∞

sup
P
Y T0 |XT0

inf
P
U|Y T0

1

T

{
I(U ;Y T0 )− I(U ;XT

0 )
}

=
µ

λ+ µ
α.

(25)
Proof: We first propose a strategy for Player 1 to guar-

antee that, for all T > 0 and for all choices by Player 2,

I(U ;Y T0 )− I(U ;XT
0 ) ≥ µ

λ+ µ
αT. (26)

This strategy is simply to add to XT
0 a homogeneous Poisson

process of intensity µ that is independent of XT
0 . Then Y T0

is homogeneous Poisson of intensity (λ+ µ), and XT
0 is the

λ/(λ+ µ)-thinning of Y T0 . It follows from Theorem 1 that

I(U ;XT
0 ) ≤ λ

λ+ µ
I(U ;Y T0 ), (27)

which, combined with (23), yields (26).
Next, for any strategy chosen by Player 1, we propose a

corresponding strategy for Player 2. By Player 1’s constraint
(22), Y T0 satisfies

lim
T→∞

Pr (YT > (λ+ µ+ δ)T ) = 0 (28)

for all positive δ. By Lemma 2, the rate-distortion pair
(α, e−α/(λ+µ)) is achievable on {Yt, t ∈ R+

0 }, i.e., for any
ε > 0, for large enough T , there exists a codebook consisting
of e(α+ε)T covering functions ŷT0 using which one can achieve
expected distortion

E
[
d(Y T0 , Ŷ

T
0 )
]
≤ e−α/(λ+µ). (29)

The size of the codebook guarantees

I(Y T0 ; Ŷ T0 ) ≤ H(Ŷ T0 ) ≤ (α+ ε)T. (30)

If I(Y T0 ; Ŷ T0 ) ≥ αT , then Player 2 chooses U = Ŷ T0 ;
otherwise it chooses U = (Ŷ T0 ,K), where K is an arbitrary bit
string containing further information about Y T0 (for example,
K may be chosen as part of the bit string describing the exact
position of the first arrival in Y T0 ) such that

αT ≤ I(U ;Y T0 ) ≤ (α+ ε)T. (31)

Now note that

E
[
d(XT

0 , Ŷ
T
0 )
]

= E
[
d(Y T0 , Ŷ

T
0 )
]
≤ e−α/(λ+µ). (32)

By Lemma 1, (32) implies that, for large enough T ,

I(U ;XT
0 ) ≥ I(Ŷ T0 ;XT

0 ) ≥
(

λ

λ+ µ
− ε
)
αT. (33)

Combining this with (31), we obtain

I(U ;Y T0 )− I(U ;XT
0 ) ≤

(
µ

λ+ µ
+ 2ε

)
αT. (34)

where ε can be arbitrarily close to zero.



C. A Poisson CEO Problem

The “CEO (Chief Executive Officer) problem” in informa-
tion theory usually refers to distributed source coding where
the objective is to reconstruct a source from coded noisy
observations of the source. Optimal solution to the CEO
problem in the general setting is still unknown, but several
special cases have been solved [14]–[16]. Here we consider a
CEO problem where the source is a Poisson process.

Let XT
0 , WT

0 , and V T0 be three mutually independent
homogeneous Poisson processes on [0, T ] of intensities λ, µ,
and ν, respectively. The source is XT

0 . Encoder 1 observes
Y T0 , which is the union of XT

0 and WT
0 : with probability

one Yt = Xt + Wt for all t ∈ [0, T ]. Encoder 2 observes
ZT0 , which is the union of XT

0 and V T0 . Encoder 1 maps
Y T0 to a message M1 containing TR1 nats, and Encoder 2
maps ZT0 to M2 containing TR2 nats. The CEO then maps
the pair (M1,M2) to a covering function X̂T

0 , which, as in
Section III, is a {0, 1}-valued Lebesgue-measurable function
on [0, T ]. Define the distortion function d(·, ·) as in (12). A
triple (R1, R2, D) is said to be achievable if, for large enough
T , there exists a triple of Encoder 1, Encoder 2, and CEO as
above that achieves E

[
d(XT

0 , X̂
T
0 )
]
≤ D. The closure of the

set of all achievable triples is called the rate-distortion region
of the CEO problem.

First consider some simple cases. When R2 = 0, Encoder 1
can use a codebook of covering sets for its own observation
Y T0 . By producing the covering set chosen by Encoder 1, the
CEO is guaranteed to cover XT

0 , all arrivals in which are
also in Y T0 . Hence we can achieve all rate-distortion triples
(R1, R2, D) satisfying

R1 > −(λ+ µ) logD (35a)
R2 = 0. (35b)

Similarly, we can also achieve all triples such that

R1 = 0 (36a)
R2 > −(λ+ ν) logD. (36b)

By time-sharing between the two strategies above we know
that the rate-distortion region contains all triples (R1, R2, D)
satisfying

R1

λ+ µ
+

R2

λ+ ν
≥ − logD. (37)

As we next show, this simple time-sharing strategy is optimal.
Theorem 5: The rate-distortion region for the above CEO

problem is characterized by (37).
Proof: It remains only to prove the converse part. To this

end, recall Lemma 1: to achieve d(XT
0 , X̂

T
0 ) ≤ D, one needs

I(XT
0 ; X̂T

0 ) ≥ T (R(D)− ε) (38)

with R(D) given by (13) and ε tending to zero as T tends to
infinity. Since XT

0 (−−(M1,M2)(−−X̂T
0 form a Markov chain,

we further need

I(XT
0 ;M1,M2) ≥ T (R(D)− ε). (39)

Further, M1(−−XT
0 (−−M2 also form a Markov chain, so

I(XT
0 ;M1,M2) ≤ I(XT

0 ;M1) + I(XT
0 ;M2). (40)

Next note XT
0 (−−Y T0 (−−M1 and the fact that XT

0 is the
λ/(λ+ µ)-thinning of Y T0 . Theorem 1 implies

I(XT
0 ;M1) ≤ λ

λ+ µ
I(Y T0 ;M1) ≤ λ

λ+ µ
TR1. (41)

Similarly,

I(XT
0 ;M2) ≤ λ

λ+ ν
TR2. (42)

Combining (13) and (39)–(42) proves the converse.

V. CONCLUDING REMARKS

We have derived a simple strong DPI concerning the thin-
ning operation on Poisson processes. Its application should not
be limited to the few examples discussed in this paper.

Additionally, this work shows that the rate-distortion prob-
lem of covering Poisson processes studied in [6] can be a
useful mathematical tool in various scenarios, where “cover-
ing” need not have an operational meaning in itself. Indeed,
generating such a covering set not only approaches equality in
the above strong DPI, but also constitutes the optimal solution
to the hypothesis testing problem and the mutual information
game that we considered.
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[3] P. Harremoës, O. Johnson, and I. Kontoyiannis, “Thinning, entropy, and
the law of thin numbers,” IEEE Trans. Inform. Theory, vol. 56, no. 9,
pp. 4228–4244, Sept. 2010.

[4] ——, “Thinning and the law of small numbers,” in Proc. IEEE Int.
Symp. Inform. Theory, Nice, France, June 24–29, 2007.

[5] Y. Yu, “Monotonic convergence in an information-theoretic law of small
numbers,” IEEE Trans. Inform. Theory, vol. 55, no. 12, pp. 5412–5422,
Dec. 2009.

[6] A. Lapidoth, A. Malär, and L. Wang, “Covering point patterns,” IEEE
Trans. Inform. Theory, vol. 61, no. 9, pp. 4521–4533, Sept. 2015.

[7] A. Mazumdar and L. Wang, “Covering arbitrary point patterns,” in Proc.
50th Allerton Conf. Comm., Contr. and Comp., Monticello, IL, October
1–5, 2012.

[8] R. S. Lipster and A. N. Shiryaev, Statistics of Random Processes II:
Applications, 2nd ed. Springer Verlag, 2001.

[9] G. Last and A. Brandt, Marked Point Processes on the Real Line: The
Dynamic Approach, ser. Probability and Its Applications. Springer
Verlag, 1995.

[10] R. Ahlswede and I. Csiszár, “Hypothesis testing with communication
constraints,” IEEE Trans. Inform. Theory, vol. 32, no. 4, pp. 533–542,
July 1986.

[11] T. S. Han, “Hypothesis testing with multiterminal data compression,”
IEEE Trans. Inform. Theory, vol. 33, no. 6, pp. 759–772, Nov. 1987.

[12] J. R. Norris, Markov Chains. Cambridge University Press, 1997.
[13] A. S. Cohen and A. Lapidoth, “The Gaussian watermarking game,” IEEE

Trans. Inform. Theory, vol. 48, no. 6, pp. 1639–1667, June 2002.
[14] T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem,” IEEE

Trans. Inform. Theory, vol. 42, no. 3, pp. 887–902, May 1996.
[15] H. Viswanathan and T. Berger, “The quadratic Gaussian CEO problem,”

IEEE Trans. Inform. Theory, vol. 43, no. 5, pp. 1549–1559, Sept. 1997.
[16] T. A. Courtade and T. Weissman, “Multiterminal source coding under

logarithmic loss,” IEEE Trans. Inform. Theory, vol. 60, no. 1, pp. 740–
761, Jan. 2014.


