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ON THE NUMERICAL IMPLEMENTATION 

OF ELASTO-PLASTIC CONSTITUTIVE EQUATIONS 

FOR METAL FORMING 

TUDOR B LAN*

Abstract. This paper is devoted to the time integration of elasto-plastic constitutive 

models, in view of their implementation in finite element software for the simulation 

of metal forming processes. Both implicit and explicit time integration schemes are 

reviewed and presented in algorithmic form. The incremental kinematics are also 

treated, so that the proposed algorithms can be used stand-alone, outside a finite 

element code, or they can serve to implement non-classical incremental kinematics. 

Full algorithms are provided, along with examples of application to non-monotonic 

loading for a mild steel and a dual phase steel. 
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1. INTRODUCTION

The finite element implementation of constitutive laws has observed 

considerable progress during the last two decades – partly due to the accelerated 

apparition of industrially-applied advanced materials, and of correspondingly 

complex constitutive models. Even a decade ago, three-year studies were typically 

dedicated to the finite element implementation of a particular, advanced model, 

which was fully exploited only several years after. Nowadays, there is a strong 

need for general constitutive algorithms allowing for rapid and modular imple-

mentation of material models which are under almost continuous improvement. 

Accordingly, various families of time integration schemes for material models have 

been recently proposed in the literature. In the framework of corotational 

algorithms established e.g. by [1] and others in the eighties, general and modular 

implicit algorithms were proposed [2,  3], which include an automatic procedure 

for the calculation of the algorithmic consistent tangent modulus. Explicit schemes 

[4,  5] have the advantage of robustness and simplicity of implementation, while 

requiring smaller time steps – which is suitable, for example, for dynamic explicit 



simulations. Recent explicit schemes [6] claim improved accuracy. Both 

approaches have been illustrated on simple, isotropic damage models. Thermo-

mechanical coupling in the FE simulation framework has also been tackled, mainly 

in the framework of bulk metal forming [7]; most time integration algorithms 

proposed in the literature are explicit [8,9]. 

The current paper aims to review both the implicit and explicit time integration 

of elasto-plastic constitutive models, in view of their finite element implementation 

for forming process simulation, as well as material point simulations of selected 

strain paths for parameter identification. The paper is organized as follows. Section 

2 recalls the equations of the constitutive model and further develops its discrete 

form over a loading increment and its numerical resolution. Section 3 describes the 

Runge-Kutta explicit time integration schemes as an effective means for the rapid 

implementation of advanced constitutive models. Algorithms are used to summarize 

the numerical methods through-out the paper. In Section 4, the proposed algorithms are 

applied to the simulation of a few non-monotonic strain-paths for two materials, for 

the sake of illustration. 

2. CLASSICAL RATE-INDEPENDENT ELASTO-PLASTICITY

Rate-independent elasto-plasticity is considered in this paper as the reference 

material model. In this section, the equations of the constitutive model are recalled, 

along with their discrete counterparts, numerical resolution and corresponding 

algorithm. The constitutive equations are kept in generic form, so that any analytical 

yield function or hardening model can be incorporated easily. Further details on the 

time integration of hardening equations are given in Section 2.4. 

2.1. ROTATION-COMPENSATED VARIABLES AND EQUATIONS 

During forming, metals undergo large transformations and their behavior is 

described by rate constitutive equations. In order to respect the principle of 

objectivity, so-called objective derivatives must be used. In view of the numerical 

implementation of the models, a very attractive approach consists in writing these 

equations in an appropriate orthogonal rotating frame. The resulting equations are 

formally identical to their simpler, small-strain formulation, while verifying the 

objectivity principle at arbitrary strains. More explicitly, let A be a second order 

tensor, and let  be an orthogonal rotation matrix. A and its objective derivative

(designated by a superposed circle) can be written in a rotating frame generated by 

in the form

T Tˆ ˆ ; 
o

A A A A , (1) 



where the superposed hat designates quantities written in the rotating frame. In this 

particular frame, the objective derivative of any tensor A becomes its simple time 

derivative. The orthogonal rotation matrix  can be generated by a skew-

symmetric spin tensor  using T , where the superposed dot on 

indicates the time derivative, while T( )  designates the transpose of a tensor. On

the other side, matrix  must satisfy the objectivity condition under superimposed

rigid-body motions. For example, Jaumann’s derivative is obtained by setting 

W , while the Green-Naghdi derivative is obtained with R . Here, W

denotes the total spin, while R is the orthogonal tensor in the polar decomposition 

of the deformation gradient. 

In the following, all tensor variables are assumed to turn with the spin W 

(corresponding to the use of Jaumann rate), unless specified otherwise. 

Consequently, simple time derivatives are involved in the constitutive equations, 

making them form-identical to a small-strain formulation. For simplicity, the 

superposed hat (^) is omitted. 

2.2. CONSTITUTIVE EQUATIONS 

Classical rate-independent elasto-plastic models are described by the 

following set of equations: 

A hypo-elastic law (2) linearly relating the Cauchy stress rate  and the

elastic strain rate e p
D D D ;

A yield function f  and the corresponding plasticity criterion (3) bounding

the elastic domain, and playing also the role of potential in stress space; 

A flow rule (4), defining the direction of the plastic strain rate p
D  as the 

gradient of the yield function; 

A set of evolution laws (5) for the internal variables defining the

hardening: 

:e p
C D D , (2) 

( , , ) ( ) 0f X T , (3) 

 ;    p f
D V V

T
, (4) 

( , )H h H , (5) 

where: 



e
C  is the elasticity constants fourth order tensor; in the case of linear 

isotropic elasticity 42e sG KC I I I , with K and G being the bulk

and shear elastic moduli, respectively, I is the second order unit tensor 

and 4
s

I  the unit tensor in the space of fourth order symmetric deviatoric

tensors, with components  4 (1 2)( ) (1 3)s
ijkl ik jl il jk ij klI ;

 is a scalar stress-type measure of the size of the yield surface, used to

model isotropic hardening; 

X designates the backstress pointing to the centre of the yield surface,

and thus describing the kinematic hardening; 

 is the equivalent stress defining the shape of the yield surface;

T X  designates the so-called offset stress, whose deviator T

enters the equivalent stress expression; 

 is the plastic multiplier, usually determined by enforcing the

consistency condition 0f ;

( , ,...)H X  designates the complete set of internal variables of the

considered hardening model. 

2.3. DISCRETE EQUATIONS AND NUMERICAL RESOLUTION 

The finite element implementation of such a constitutive model requires a 

time integration algorithm of the rate equations over the time interval 1n nt t t ,

when a total strain increment  is imposed. The backward Euler time integration

scheme is the most commonly used, and it consists in using the time derivatives at 

the end of the increment. In addition to a very good accuracy, this scheme was 

shown to be unconditionally stable with respect to the size of the strain increment, 

even with strongly non-linear material behaviors [10,11]. The application of this 

scheme to the model above, in the case of plastic loading, leads to the following 

system of equations: 

Elasticity :   : p
C 0 , (6) 

1Normality :    p
nV 0 , (7) 

1Hardening :    nH h 0 , (8) 

1Yield function :    0nf , (9) 



with unknowns 1 11,  ,  
p

n nn H  and 1n . These equations can be solved directly

by a Newton-Raphson method, as shown by Keavey [2,3]. The main limitation of 

such a direct resolution is related to the large size of the non-linear system to solve, 

leading to an increase in computing time and potentially to convergence issues. 

The size of the system can be reduced by applying substitutions and, in particular 

cases, by assuming that some of the internal variables can be treated in an 

uncoupled way. Most commonly, this leads to a nonlinear system of two equations, 

with unknowns  and 1nT  [12]:

1 1 1

1 1

: ( , ) :

0,

e e
n n n n

n n

T C V T X T T C 0

T T
. (10) 

The size of this system is independent of the number of internal variables, 

thus representing a beneficial compromise between accuracy, robustness and 

computing cost. At each time increment, this nonlinear equation system is solved 

using a classical numerical method, for example the well known Newton-Raphson 

algorithm. It is noteworthy that the size of the system can be further reduced to two 

scalar equations in the case of Hill’s quadratic yield function, and to a single scalar 

equation (with unknown ) for von Mises. Here, the form (10) is kept for

generality, so that arbitrary anisotropic yield function can be incorporated. 

In view of the implementation in an implicit finite element code, an 

algorithmic tangent modulus must also be calculated, consistently with the adopted 

time integration scheme. For the time integration scheme adopted here, the tangent 

modulus can be written in the form [13] 

1
alg 2 1

42 4 :sD
K G G

D
C I I I V V Q

T
(11) 

where =1 in the elasto-plastic case, and =0 in the elastic case; Q represents the

second order derivative of the equivalent stress, and 

1 1

4 2s G
X X

I V V Q V
T T T

. 

2.4. ON THE TIME INTEGRATION OF HARDENING EQUATIONS 

The algorithms discussed in this paper are generic and may be applied to 

various particular cases of yield function and hardening equations. Concerning the 

yield function, one needs to calculate its first and second derivatives to feed the 

algorithm. For the hardening equations (5), one needs to calculate their incremental 



form (8) where the backward Euler scheme is consistently used. However, 

analytical or semi-analytical [14] time integrations are often possible and offer an 

accurate alternative. For example, the saturating laws of Voce (for isotropic 

hardening) and Armstrong-Fredericks (for kinematic hardening) can be integrated 

as follows: 

sat 1 sat sat     R RC
R n nR C R R R R R e , (12) 

sat 1 sat 1 sat 1      XC
X n n n nC X X X eX N X X N N X , (13) 

where N designates the direction of the plastic strain rate tensor. Note that the 

condition 1nN N  was needed to allow for the analytical integration of the

backstress X. This is not an additional approximation, but is a consequence of the 

usage of the backward Euler integration of the plastic strain (7) over the increment. 

With this statement in mind, numerous particular hardening equations accept such 

closed-form semi-analytical alternative forms. As an illustration, Fig. 1 compares 

the analytical and the backward Euler time integrations for Eq. (12). 
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Fig. 1 – Influence of the increment size on the accuracy of the time integration of Voce’s isotropic 

hardening equation. Parameters Rsat=CR=1 were used. 



2.5. TIME INTEGRATION ALGORITHM 

To close this section, the time integration scheme along with the numerical 

resolution of the resulting equations are summarized in algorithmic form in 

Algorithm 1. 

Algorithm 1 – Implicit time integration of the elasto-plastic constitutive model. 

Input: , n  and nH

Elastic trial stress: 
try

1 :nn C

Calculate try try
1 11 n+1 n nnf X H

If try
1 0nf , elastic increment:

State update: try
1 1n n  ;  1n nH H

Else, elastic-plastic increment: 

Initialization: try
1 1n nnT X  ;  0

Compute 1nT  and : solve (10) by the Newton-Raphson method

State update:   1 1,n nH H T according to hardening model

1 1 1n n nT X

Compute algorithmic tangent modulus Algo
C  with Eq. (11) 

End of algorithm; output: 1n , Algo
C , updated internal variables 

3. EXTENSIONS TO MORE COMPLEX BEHAVIOR LAWS

In the context of the constitutive model adopted in Section 2, one can adopt 

specific forms of the yield function or hardening model, in order to describe 

particular types of metallic materials. From the numerical viewpoint, first and 

second order derivatives must be calculated for these models in order to allow for 

the numerical resolution with the implicit time integration scheme. The proposed 

modeling framework also allows for further extensions to cover wider ranges of 

metallic materials, for example during forming. In many cases, the strain-rate 

sensitivity of the metallic materials cannot be neglected – for example if strain 

localization needs to be modeled accurately. Additional terms and equations are 

included in the material model, modifying the numerical algorithm. The additional 

numerical developments required for such extensions are one of the bottlenecks for 

advanced material models to be adopted in industrial applications. An alternative 

solution to this problem is offered by explicit time integration schemes. The main 



drawback of explicit time integration is related to its conditional stability, requiring 

smaller time steps that for implicit integration. This drawback is significantly 

reduced for problems involving contact and plasticity, where relatively small 

loading increments are required anyway. In turn, the numerical development is 

much faster, does not require additional derivative calculations, and does not need 

convergence loops. In this section, a formal algorithm is proposed for the explicit 

time integration of elasto-plastic material models. Then, this algorithm is used to 

solve an example of more complex constitutive model for multiphase materials.  

3.1. EXPLICIT TIME INTEGRATION 

The explicit time integration of equations (2)-(5) makes use of the values of 

the state variables at time tn when deriving the discrete equations (6)-(9). 

Consequently, the resulting equations are explicit and the state at tn+1 can be 

determined without any iteration. The accuracy of the method can be improved by 

adopting higher order Runge-Kutta integration schemes. The corresponding 

algorithm reduces to a loop of order N =1, 2 or 4 (for Euler explicit, Runge-Kutta 

order 2 or Runge-Kutta order 4) with the same contents. Moreover, the algorithmic 

tangent modulus is recovered by a simple summation of the N tangent moduli [13]. 

In contrast to the implicit time integration, the loading-unloading condition 

cannot be based on the value of the yield function alone, since a plastic state at the 

beginning of the increment may still be followed by elastic unloading. Robust 

loading-unloading conditions are obtained by checking the orientation of the total 

strain increment with respect to the normal to the current yield surface, as shown in 

Fig. 2. Algorithm 2 summarizes the Runge-Kutta explicit time integration of 

elasto-plastic models. 

yield locus

V V

a) elastic b) elastic c) plastic

Fig. 2 – Schematic illustration of loading–unloading conditions in the framework of an explicit time 

integration algorithm, given a stress state  and a loading increment .



Algorithm 2 – Runge-Kutta explicit time integration of the elasto-plastic constitutive model. 

Input: , n  and nH

Initialization: 0 0 ;  0H 0

Calculate, for i = 1 to N: 

Compute 1i n i ia ;  1i n i iaH H H

Compute ,i i i i i if H X H

Compute :i iV

If 0if  or 0i , elastic increment:

Compute :i C ;   iH 0 ;   Algo
iC C

Else, elasto-plastic increment: 

Compute i
i

f
V ; 

: :

: : :

i
i

i i i Xi ih

V C

V C V V h

Compute 
p
i i iV

Compute :
p

i iC ; ,i i i iH h H

Compute Algo : :

: : :

i i
i

i i i Xi ih

C V V C
C C

V C V V h

Update state variables: 1 1

N

n n i ii
b ;    1 1

N

n n i ii
bH H H

Compute consistent tangent modulus:  Algo Algo

1

N

i ii
bC C

End of algorithm; output: 1n , Algo
C , updated internal variables 

3.2. EXAMPLE OF APPLICATION TO MULTIPHASE STEELS 

Multiphase steels are used here as an example of constitutive model of 

increased complexity, while remaining in the framework of macroscopic modeling. 

In Dual-Phase or Complex-Phase steels, each of the N  constitutive phases 

(martensite, ferrite, etc.) can be described by a specific model of the type described 

in Section 2.2. A possible approach to describe the overall constitutive behavior 

consists in adopting a homogenization method to build the global response based 

on the response of each constituent and the corresponding volume fractions 

,  1,f N  as 



1 1
 ;  

N N
f fD D . (14) 

Given the total strain rate tensor D, the corresponding strain rate tensors in 

each phase are determined by means of a so-called localization rule  

D A D , (15) 

where the fourth order tensors A are function of the state variables and their 

expressions differ from one homogenization method to another (see, e.g, [15]). For 

each phase , the relationship between  and D  is governed by equations (2)-

(5) with a specific set of material parameters each.  

Specific implicit time integration schemes can be developed for such 

complex models. However, the framework of explicit time integration algorithms 

allows for a straightforward and modular implementation that directly incorporates 

Algorithm 2 as a module – see Algorithm 3. Usually, the number of predictor-

corrector loops can be bounded to a fixed maximum value. Similar explicit time 

integration schemes have also been applied when enhancing the constitutive model 

with strain-rate sensitivity [16], microstructure-related internal variables [17], or 

damage [18]. 

4. SIMULATION OF HOMOGENEOUS RHEOLOGICAL TESTS

Algorithms 1-3 can be implemented in a non-linear finite element code, in 

order to predict the non-linear behavior of metallic structures during plastic 

deformation. Homogeneous rheological tests, used to emphasize the model 

predictions under typical loading histories, can be simulated with single element 

models. Alternatively, a time marching algorithm can be developed to impose 

selected kinematics to a material point. In this section, such a time-marching 

algorithm is described which proved very efficient, for example, in view of the 

parameter identification of material models. 



Algorithm 3 – Time integration of the elasto-plastic model for multiphase materials. 

Input: , n , nH ,  1, N ; material parameters 

Initialization: 1 nn , 1 nnH H

Beginning of convergence loop 

For each phase 1, N :

Calculate A  based on current state variables 

Calculate A

Update 1 1 algo, ,n nH C – use Algorithm 2

Calculate 1 11

N

n nf

Repeat loop until 
1

N
f , within a selected tolerance

Calculate algo algo1

N
fC C

End of algorithm; output: 1n , algoC , 1n , updated internal variables per phase

The kinematics of a material point is completely defined by the deformation 

gradient F as a function of time, or alternatively its rate F . This loading history 

needs to be split in time increments, and some kinematical assumption must be 

adopted over an increment. Hughes [1] proposed to assume that the displacement 

of material points varies linearly over the time increment. Thus, at a time 

nt t t  during the loading increment 1(1 ) n nx x x , with 0,1 .

Consequently, a displacement gradient 1( ) /n nG x x x  can be calculated

in terms of nF  and 1nF . The strain and spin increments  and W  are

calculated as the symmetric and skew-symmetric parts of G , respectively. The 

most accurate results are obtained for =1/2; the corresponding displacement

gradient is calculated using the mid-point deformation gradient 

1/2 1
1
2 n nF F F . 

Another approximation has to be made when the strain increment is 

computed, since the material frame rotates during the time increment. Reference 

[1] suggests to provide the time integration algorithm with the strain increment 

rotated in a mid-point orientation as T
1/2 1/2ˆ . If the rotation is calculated

by polar decomposition (Green-Naghdi objective derivative), 1/ 2 1/ 2R is 

calculated based on the min-point deformation gradient. In the case of Jaumann’s 



derivative, 1/2
1/2 n  where the incremental rotation  over the time

increment is determined as 

1
1

2
I I W W . (16) 

In Fig. 3, this choice of incremental kinematics is validated against the 

analytical solution for the case of simple shear, which combines large strains and 

large rotations. The non-zero components of the rotated strain increment are 

plotted, as calculated via single-increment simulations with increasing shear 

loading increments. The accuracy of the incremental kinematics is excellent up to 

very large increment values ( =100%).
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Fig. 3 – Influence of the increment size on the accuracy of the co-rotational strain increment. 

The complete algorithm that implements this approach for the simulation of 

homogeneous (material point) loading modes is given in Algorithm 4. This 

algorithm may serve for the stand-alone simulation of mechanical tests, or it can be 

implemented in a finite element software in order to provide user control over the 

incremental kinematics. The algorithm is detailed for Jaumann’s derivative, but the 

implementation for Green-Naghi is similar. Following Mandel’s pioneering work 

on the average plastic spin of polycrystals [19], phenomenological models have 

been proposed to describe the evolution of the plastic spin (see, e.g., [20–22]), as 

well as the corresponding computer implementation algorithms [23,  24]; this 



extension can also be implemented in Algorithm 4 with minor modifications. If a 

finite element implementation is performed, the algorithmic tangent algorithm 

needs also to be rotated in the global frame at the end of the algorithm (see, e.g., 

[25]). 

Figure 4 illustrates the application of this algorithm to the prediction of 

sequential homogeneous rheological tests using the constitutive model of Teodosiu 

and Hu [26,  27]. This model makes use of four internal variables, including two 

second-order and one fourth-order tensors, to describe complex strain-path change 

phenomena as observed in the figure. The simulation of such sequential two-step 

strain paths with stand-alone algorithms independent of a finite element software is 

required for the efficient parameter identification of such model [28,  29]. 

Algorithm 4 – Time integration of elasto-plastic constitutive models in the fixed frame, including 

the incremental kinematics. 

Input: 0 0 0 0,  (constant),  ,  ,  ,  ,  , material parametersendt tF F H

0n

Calculate, for  t = 0 to tend, step t :

Kinematics:

Compute tF F ;   1n nF F F ; 1/2 1
1
2 n nF F F

Compute 1
1/ 2 1/ 2G F F ; sym

1/2G ; skew
1/2W G

Compute 
1

1
2

I I W W ;
1/2

1/2

Compute 1n i ; 1/2 1/2 i

Rotation to material frame: 

Compute Tˆ n n n n  (apply to all tensorial internal variables)

Compute T
1/2 1/2ˆ

State update: 

Compute 1 1
ˆˆ ,n nH , tangent modulus (use Algorithms 1, 2 or 3)

Rotation back to fixed frame: 

Compute T
1 1 1 1ˆn n n n (+ all tensorial internal variables)

Initialize next increment: 
1n n

1 1 1 1, , , , , ,n n n n n n n nH F H F

End of loop 

End of algorithm 
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Fig. 4 – Rheological simulation of monotonic shear, reverse shear (Bauschinger) and tension followed 

by shear in the same direction (Orthogonal). Material parameters from [30] corresponding to two 

classical forming steel grades. 
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