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In this article, we exclusively focus on the low-tempera-
ture behaviors of 2d square lattices composed of (2N+1)2 

classical spins with isotropic couplings between first-
nearest neighbors (Heisenberg couplings), in the thermo-
dynamic limit (N→+∞). After briefly recalling the theo-
retical closed-form expressions derived for (i) the zero-
field partition function ZN(0), (ii) the spin-spin correla-
tion between any two lattice sites, (iii) the correlation 
length and (iv) the static susceptibility, we build up a di-
agram characterized by three low-temperature magnetic 

phases. Moreover we show that the behaviors of these 
physical quantities as well as the diagram are in perfect 
agreement with the corresponding ones derived using a 
renormalization method. Finally we give criterions allow-
ing to directly determine the magnetic phases characteriz-
ing 2d magnetic compounds described by our micro-
scopic model. An experimental test is given for illustrat-
ing this theoretical study. It allows one to obtain a perfect 
fit of the susceptibility of [{Mn(DENA)2(N3)2}n] (DENA 
is the ligand diethylnicotinamide). 

1 Introduction Thin magnetic layers play an important 
role in many areas of technology because they may show a 
great variety of very different physical properties. Namely, 
in the field of spintronics, these layers can appear at the 
interface between different semiconductors showing or not 
magnetic order. Two-dimensional (2d) antiferromagnets 
such as La2CuO4 turn out to be high-temperature supercon-
ductors when properly doped [1]. Magnetic layers also 
constitute an intermediate step for building up 3d artificial 
magnets whose structure may be imposed (like for mag-
netic grains used in nanotechnologies) and are character-
ized by local spins of high quantum number. 

As a result the theoretical modelling is of the highest 
interest, notably the 2d Heisenberg model [1]. The starting 
point of this model consists in considering an exchange 
Hamiltonian in which the spins are isotropically coupled. 
Thus the magnetic properties of La2CuO4 may be described 
by this model. The lattice composed of spins ½ showing 
isotropic couplings between first-nearest neighbors is char-
acterized by a square unit cell. Chakravarty et al. [1] have 
shown that the long-wave length excitations and low-

energy properties are well-described by a mapping to a 2d-
classical Heisenberg magnet because all the effects of 
quantum fluctuations can be resorbed by means of adapted 
renormalizations of the coupling constants. In other words 
the spins ½ may be replaced by classical spins i.e., spins 
characterized by a spin quantum number S≥5/2. 

In previous papers [2] one of us gave a first treatment 
for the 2d square lattice composed of classical spins show-
ing Heisenberg couplings (isotropic couplings between 
first-nearest neighbors). More recently, one of us published 
a couple of papers [3] in which we rigorously established, 
for the first time, the closed-form expressions of the zero-
field partition function and the spin-spin correlation, re-
spectively. In this article, after recalling these important re-
sults we describe low-temperature behaviors of the correla-
tion length and the static susceptibility derived from the 
spin-spin correlations for infinite lattices. This leads to the 
determination of a diagram including three magnetic phas-
es. Moreover we show that all the behaviors are in perfect 
agreement with the corresponding ones derived by using 
the renormalization method. An experimental test is given 
for illustrating this theoretical study. 
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2 Theoretical background 
2.1 Generalities The starting point of the 2d classical 

Heisenberg model consists in expressing the general Ham-
iltonian describing a lattice characterized by a square unit 
cell and wrapped on a torus so that it contains (2N+1)2 sites, 
each one being the carrier of a classical spin Si,j: 

( ), ,

N N
ex mag
i j i j

i N j N
H H H

=- =-

= +Â Â , (1)

with 
, 1 , 1 2 1, ,( )ex

i j i j i j i jH J J+ += +S S S , (2)

, , ,
mag z
i j i j i jH G S B= -  , (3)  

where  
Gi,j = G    if i+j is even or zero, 
Gi,j = G'    if i+j is odd. (4) 
 

In (2) J1 and J2 refer to the exchange interaction between 
nearest neighbors belonging to the horizontal lines and ver-
tical rows of the lattice, respectively. In addition Ji>0 (re-
spectively, Ji<0), with i=1,2, denotes an antiferromagnetic 
(respectively, ferromagnetic) coupling. Gi,j is the Landé 
factor characterizing each spin Si,j and expressed in μB/  
unit, where μB is Bohr's magneton and =h/2π, h being 
Planck's constant. Now one may wonder why we consider 
a lattice wrapped on a torus. At first sight, one can guess 
that it is due to the fact that a torus possesses more sym-
metry elements than a plane lattice. But, in the infinite lim-

it (N→+∞), we previously showed [3] that these two types 
of lattices are characterized by the same partition function 
ZN. As a result, all the thermodynamic functions derived 
from ZN are similar. 

In the present article we exclusively focus on physical 
quantities expressed in the zero-magnetic field limit. In 
that case the zero-field partition function ZN(0) is given by 
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(5) 
where β=1/kBT. The magnetic susceptibility χi,j per lattice 
site and the correlation length ξ are defined as 
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where Γk,k' is the correlation function: 

, ' , , ' , , '.k k i j i k j k i j i k j kΓ + + + +=< > - < >< >S S S S .    (8) 

In the previous equation, the bracket notation <…> means 
that we deal with a thermodynamic average. As a result we 
may define the spin-spin correlation between any two spins 
as: 

, , ' , , , , ' , ' , ,
1. ... ... ... exp
(0)
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ex
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The spin correlation u< >S , with u=(i,j) or (i+k,j+k'), can 
be simply derived from (9) by replacing Si,j or Si+k,j+k' by 
unity.  

2.2 Theoretical results We shall not give here all 
the details allowing to determine closed-form expressions 
for the zero-field partition function, the spin-spin correla-
tions, the static susceptibility as well as the correlation 
length. The reader may report himself to previous papers 
published by one of us [2, 3]. However we just give below 
the results obtained. In the thermodynamic limit (N→+∞) 
the zero-field partition function can be written as:  

( ) ( )[ ]
22 48

, 1 2
0

(0) (4 ) NN
NZ F J Jπ λ λ

+•

=

= - -Â β β ,    (10) 

where the factor F ,  is (the factor 1/4π being omitted): 

2
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0
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2 1

L

L
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L=

= + È ˘Î ˚+Â , 0,0 1F = .  (11) 

In (11) the current L-coefficient is a Clebsch-Gordan (CG) 
one. The temperature-dependent function λ (− βj) appear-
ing in (10) is given by: 

( ) ( )
1/2

1/2I
2

j j
j

πλ β β
β +

Ê ˆ- = -Á ˜Ë ¯
,  j = J1 or J2 ,       (12) 

where I +1/2(−βj) is a modified Bessel function of the first 
kind. 

As we are dealing with isotropic (Heisenberg) couplings, 
we have the following properties (with v = x, y or z): 

, , ' , , '
1. .
3

v v
i j i k j k i j i k j kS S + + + +< > = < >S S ,   

, ,
1
3

v
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1
3

v
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,
1( )
3

v
i jS< >= , 

,
, 3

i jv
i j =

χ
χ , v =ξ ξ . (13) 

In addition we have found that ,
z
i jS< > =0, , '

z
i k j kS + +< >  =0, 

for T>0 K, so that the correlation function , 'Γz
k k reduces to 

the spin-spin correlation , , '.z z
i j i k j kS S + +< > . 
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Of course, when T = 0 K exactly, we have | ,
z
i jS< > | = 1/3 

(or equivalently | ,i j< >S | = 1). This result rigorously 
proves  that  the  critical temperature  is  absolute zero, i.e.,   

TC = 0 K [3]. 

The spin-spin correlation in the thermodynamic limit 
(N→+∞) is given by [3]: 

( ) ( )[ ] [ ]
24
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=

< >= - - + -Â β β ,  k > 0, k' > 0, as N→+∞.              (14) 

ZN(0) is the zero-field partition function given by (10), δ ,0 is the Dirac function and we have set: 
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, ε = ±1, i = 1, 2. (15) 

F ,  is given by (11) and F , +ε can be expressed as the following CG-series (the factor 1/4π being omitted): 
min(2 ,2 2 )
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The correlation length may be derived from (7) and (14)-(16): 
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with: 
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where C +ε, ui, +ε , F , +ε and F ,  are given by (15), (16) 
and (11), respectively.   

The static susceptibility per unit cell and averaged per 
site may be written as: 

( )0,0 0,1 1,0 1,1
1
4

z z z zχ χ χ χ χ= + + +     (19) 

where the susceptibility per site is given by 
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with k = 0 or 1 and k' = 0 or 1 so that owing to (19): 
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2 2
1, 1, 2, 1, 2,[1 ( ) ][1 ( ) ] 4W u u u uε ε ε ε ε+ + + + += + + + ,  2 2
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2 2

3, 1, 2,[1 ( ) ][1 ( ) ]W u uε ε ε+ + += - - , (22) 

where C +ε, ui, +ε,F , +ε and F ,  are given by (15), (16) and 
(11), respectively, as noted after (18).   

3 Study of the low-temperature behaviors We 
have seen that the quantity ui, ±1 given by (15) is of funda- 
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mental importance because it appears in the closed-form 
expression of the spin-spin correlation. The latter is in-
volved in the respective definitions of the susceptibility 
and the correlation length ((6), (7)). Due to the fact that the 
critical temperature is absolute zero all the λ (− βj) given 
by (12) (in fact the eigenvalues of the problem) become 
equivalent including that one characterized by infinite- . 
We have previously shown that the ratio F , +ε/F ,  (ε=±1) 
tends to unity when  →+∞ [4]. As a result the low-
temperature study of the ratio ui, ±1 is reduced to that of 
λ ±1(− βJi)/λ (− βJi) or equivalently I ±1+1/2(−βJi)/ 
I +1/2(−βJi) as →+∞ and β|Ji|→+∞ (i=1,2). The behavior 
of Bessel function I +1/2(−β|Ji|)∼I (−β|Ji|) for →+∞ and 
β|Ji|→+∞ has been established by Olver [5]. We have ex-
tended this work for a large-order  (but not necessarily 
infinite) and for any real argument zi varying from a finite 
value to infinity [4]. We have shown that it is necessary to 
introduce the dimensionless auxiliary variables: 

2

2
1 ln

1 1
i i

i i
i i

J zz
J z

ζ
È Ê ˆ ˘

= - + +Í ˙Á ˜
Ë ¯Í ˙+ +Î ˚

, i
i

Jz β= . (23) 

The numerical study of |ζ| is reported in Fig. 1. As 
expected we observe that there are two branches. |ζ| 
vanishes for a numerical value of |z|−1= kBT/|J| very close to 
π/2 so that there are 3 domains which will be physically 
interpreted below. Let T0 be the corresponding 
temperature; we set: 

0

2
B

i

k T
J

π= , i = 1, 2. (24) 

In the formalism of renormalization group T0 is called 
a fixed point. In the present 2d case we have →+∞. As a 
result we derive that T0→TC=0 K as →+∞ so that the 
critical temperature may be seen as a fixed point. This will 
allow one to expand all the thermodynamic functions as 
Taylor series of current term |T−T0| near T0≈TC=0 K.  

At this step we must recall that the square of the spin 
modulus S(S+1)∼S2, as S→+∞, is absorbed in the exchange 
energy Chakravarty et al. [1] as well as Chubukov et al. [1] 
have written the action S/  (which allows one to calculate 
the partition function) as proportional to J/2. In addition 
these authors have considered the spin density S/a where a 
is the lattice spacing. In our case the lattice spacing be-
tween two similar Landé factors G or G' is 2a. As a result, 
the left member of (24) can be written as 
kBT0/(|J|/2)(S/2a)2 so that the right-hand side becomes 

4π instead of π/2. We must keep in mind this remark be-
cause it will be very useful later.  

Under these conditions and after a tedious calculus the 
key ratio ui, ±1 may be written as: 
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V

Figure 1 Variations of |ζ| for various values of kBT/|J|. 

The previous general low-temperature expansion may 
be finally expanded as Taylor series near TC=0 K if ex-
pressing the dimensionless auxiliary variables |ζ| and |z| in 
this limit.  

Noting that  

0
1 i

i
Xz z
T

- = , 0

0

i
i

B

J T TX
k T

-= , 0

0

,
,

i
i

i

T T
X

T T
ρ
Δ

<Ï= Ì >Ó
, (26) 

the Taylor series giving |ζi| becomes   

ln 1
2

i
i

X
T

πζ Ê ˆ= +Ë ¯ , i = 1, 2, (27) 

so that:   

( )
2

exp 2 1
2

i
i

X
T

πζ
-

Ê ˆ- = +Ë ¯ , i = 1, 2.  (28) 

Noting that (1±u/ ) =exp(±u), as  large (or infinite), we fi-
nally derive:   

( )exp 2 exp i
i

X
T

ζ πÊ ˆ- = -Á ˜Ë ¯
, i = 1, 2, as →+∞.    (29) 

The physical meaning of ρi and Δi will be given below. 

At this step we define the coupling constants at tempera-
ture T and at the fixed point T0: 

Bk Tg
J

= , 0
0

Bk Tg
J

= , 
0

Tg
T

= .  (30) 

These ratios measure the strength  of the quantum fluctua-
tions  because, if  we recall that |J|  must  be read as |J|S2, 
fluctuations are inversely proportional to  S2. If expanding 
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Figure 2 Diagram of magnetic phases near T0 = TC = 0 K. 
 

|ζ| near T0 we have the following equations:  

( )1
2F gπζ < = - , (T < T0), ( )1

2F gπζ > = - , (T > T0), (31) 

so that the thermal study of |ζ| is reduced to two domains 
1g <  i.e., g< g0 (T<T0) and 1g >  i.e., g> g0 (T>T0). Each 

of these domains may be itself divided in two subdomains 
according to as |ζ|>|ζF| or |ζ|<|ζF| . This is the reason for 
which we are led to introduce the |ζF|-variables  

1 /i
Fx T <= ζ and 2 /i

Fx T >= ζ . Then using the variables ρi 
and Δi defined in (26) we set 

1
2i

i

Tx =
πρ

, 2
2i

i

Tx
Δ

=
π

. (32) 

Thus, as noted by Chubukov et al. [1], the parameters 1
ix  

and 2
ix control the scaling properties of the magnetic sys-

tem. ρi represents the spin stiffness of the ordered ground 
state (Néel state for an antiferromagnet) and Δi is a spin 
gap between the ground state and a spin liquid phase. ρi 
and Δi (cf (26)) vanish at the fixed point T0. If we report to 
the definition of |ζ| (cf. (23)) |ζ| is dimensionless and 
homogeneous to T0/T i.e., 1/ g . If g <1 (T<T0) we have 
two possibilities 1

ix >1 i.e., T>|ζF|< and 1
ix <1 i.e., T<|ζF|<. 

When T=T0, 1
ix  and 2

ix become infinite due to the fact that 
ρi and Δi vanish. Finally, if g >1 (T>T0) we have two 
possibilities 2

ix >1 i.e., T>|ζF|> and 2
ix <1 i.e., T< |ζF|>. As 

there is an analytical continuity between 1
ix  and 2

ix  while 
passing through T0, see (26), we derive that there are 3 
domains: (i) if T<|ζF|< ( 1

ix <1) we deal with the Renormal-
ized Classical Regime (RCR), (ii) if T<|ζF|> ( 2

ix <1) we deal 
with the Quantum Disordered Regime (QDR) and (iii) if 
T>|ζF|< ( 1

ix >1) or T>|ζF|> ( 2
ix >1) we have the Quantum 

Critical Regime (QCR). Along the line T=T0 in this domain 
we directly reach the fixed point without a phase change. 
The magnetic diagram has been reported in Fig. 2. It is 
strictly similar to the one obtained by Chakravarty et al. 
and Chubukov et al. [1], separately. Finally, if T tends 
towards absolute zero when coming from the 
Renormalized Classical Regime (RCR) or from the Quan-
tum Disordered Regime (QDR), or directly tends to the 

fixed point T0 when coming from the Quantum Critical 
Regime (QCR), we directly reach the Néel line. 

As noted before (25) we use the conventional notation of 
Chakravarty et al. and Chubukov et al. [1] for it allows one 
to make a reasoning with the simplest lattice unit cell of 
spacing a (instead of 2a in the more general case). Thus we 
reduce the physical discussion to the particular case G=G'. 
Consequently, instead of k

ix , we now use k
ix = k

ix /4. As 

0 1z z- >> we deal with very low-temperature phases: 
the Renormalized Classical Regime (RCR, 1

ix <<1) and the 
Quantum Disordered Regime (QDR, 2

ix <<1). Using the 
relation between 1

ix and ρi on the one hand, and between 

2
ix and Δi on the other hand, we have ρi>>T and Δi>>T, re-

spectively. Expanding ui, ±1 in the variable k
ix  we obtain af-

ter complicated calculations: 

( ) {, 1
1 1 1 2

2 k
ii i

i i
i i i i

J Ju z x
J z z J

Ê ˆ+ = - - +ÈÎÁ ˜Ë ¯
∓±

( ) ( ) }8 1 .exp 1/ 2 ...k k
i ix x

e
˘+ - - +˙̊

π , k
ix < 1, k = 1, 2. (33) 

For both regimes 1
ix <<1 and 2

ix <<1 a short numerical 
study shows that the exponentiel term is dominating over 
the term 2 k

ix  so that: 

( ) {, 1
1 1 1

2
i i

i i
i i i i

J Ju z
J z z J

Ê ˆ+ = -Á ˜Ë ¯
∓±  

( ) ( ) }8 1 .exp 1/ 2 ...i i
k kx x

e
- - - +π , i = 1, 2, k = 1, 2.  (34) 

In the Quantum Critical Regime (QCR, 1
ix >1 and 2

ix >1), 
we now have 0 1z z- << . As a result, due to (26) and 
(32), the expansion must be in 1/(4π k

ix ). We have 

( ) {, 1
1 1 1

2 2
i i

i i
i i i i

J Ju z
J z z J

Ê ˆ+ = -Á ˜Ë ¯
∓±

π  
22 1 12 ...

4 4i i
k kx x

¸Ê ˆ Ê ˆ Ô+ - + ˝Á ˜ Á ˜Ë ¯ Ë ¯ Ǫ̂π π π
i = 1, 2, k = 1, 2. (35) 

Using again the relation between 1
ix and ρi on the one hand, 

2
ix and Δi on the other hand, we now have ρi<<T and Δi<<1, 

respectively.  
Reporting these various expressions in the definitions 

of the correlation length and the susceptibility respectively 
given by (7) and (6) we can write:  

2
J

a
ξ ª β , Néel line 1x << 1, (QCR)  1x  > 1,       (36a) 

Ch

Ch
2 21 exp

2 8 2 4
e T

a T
Ê ˆÊ ˆª +Á ˜ Á ˜Ë ¯ Ë ¯

ξ πρ
π πρ

 ,  

(RCR) 1x  < 1. (36b) 
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where ρCh represents the spin stiffness of the model pro-
posed by Chakravarty et al. and Chubukov et al. [1]. The 
correspondence with our model is ρ=2ρCh (i.e., J=2JCh). It is 
well-know that, near TC=0 K, the product χT behaves as 
ξxξyM2 where M is the magnetic moment per unit cell. In 
our case, as we restrict our study to J=J1=J2, we have 
ξ=ξx=ξy where the correlation length is given by (36). Thus, 
for 2d non-compensated moments i.e., for ferromagnetic 
(F) or antiferromagnetic (AF) couplings, χT diverges as ξ2: 

( )2T Jχ ª β , Néel line 1x << 1, (QCR)  1x  > 1, M(T) ≠ 0, 
 J > 0 (AF couplings), J < 0 (F couplings), (37a) 

Ch4expT
T

χ Ê ˆª Á ˜Ë ¯
πρ  , (RCR)  1x  < 1, M(T) ≠ 0,

J > 0 (AF couplings), J < 0 (F couplings). (37b) 

In the compensated case the product χT may be written as:  
22

3 2
BG k TT
J

χ Ê ˆª Ë ¯ , M(T) → 0, as T → 0 K

J > 0 (AF couplings).   (38) 

These results are in perfect agreement with the correspond-
ing ones obtained by the renormalization group method [1]. 

In order to give an illustration of the theoretical model 
developed in this paper we have fitted the experimental 
susceptibility measured for a powder sample concerning 
the compound [{Mn(DENA)2(N3)2}n] because the corre-
sponding Néel temperature TN=2.0 K is very low (the lig-
and DENA stands for the group diethylnicotinamide). This 
compound is characterized by 2d square lattices of classi-
cal spins (the manganese ions) isotropically coupled (i.e., 
showing Heisenberg couplings). That means that the 2d 
magnetic behavior occurs in the low-temperature region. 
The corresponding fit of the product χT is reported Fig. 3. 
[{Mn(DENA)2(N3)2}n] is characterized by antiferromag-
netic couplings (i.e., compensated magnetic moments). 
The experimental Landé factor G=1.98 μB/  is very close 
to the theoretical value 2. Similarly, the exchange energy 
J/kB=4.15 K is in agreement with tabulated experimental 
values previously obtained. 

0.0

1.0

2.0

3.0

4.0

0 50 100 150 200 250 300
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T (K)

(c
m

3 m
ol

-1
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G = 1.98 μB/

[{Mn(DENA)2(N3)2}n]

TN = 2.0 K

Figure 3 Theoretical fit of the experimental susceptibility 
for [{Mn(DENA)2(N3)2}n] (the ligand DENA stands for the group 
diethylnicotinamide).  
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