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Abstract—In a highly competitive and unstable environment,
manufacturers must constantly improve their products to
remain competitive and satisfy their customers while minimizing
incurred costs and risk taking. At the early stages of (re-)
engineering, performances forecasting of new product is
complicated. Indeed, the impacts of any characteristic change
on the product performance are not precisely known. Decision-
makers must thus identify the performances to be improved
while limiting the engineering efforts spent on innovative
upgrades. Although some theoretical worth indexes have been
proposed in the multiple criteria literature to estimate the
expectable gains when improving changes are planned, they
generally rely on non-realistic assumptions on the achievability
of the expected improvements. Based on multi-criteria decision
analysis techniques and uncertainty theory, this paper proposes
an extension of the worth index concept when the likelihood of
the expected improvements is not precisely known as it is the
case at the preliminary stages of design activities.

Keywords: Performance Evaluation; Imprecise Assessment;
Multiple criteria Decision Analysis; Possibility Theory

I. INTRODUCTION

The question addressed in this paper is: how to identify the
characteristics of a product which are the most likely profitable
ones to be improved when improvements’s consequences
are only imprecisely known and assessment of products is
multidimensional? This problem is posed to manufacturers
who must, in a highly competitive and unstable environment,
constantly improve their products to remain competitive and
satisfy their customers while minimizing incurred costs and
risk taking. Many constraints must be taken into account when
designing or when improving a product [1][2]. The number
of components, functions, and interactions within complex
products is becoming so substantial that responding to the
multiple needs of customers, and moreover at lower cost is
anything but obvious [3][4]. Such a challenge requires large
forecasting capacities in order engineers to be able to produce
challenging but achievable goals. The problem to be solved
for the industrial manufacturer is how to design new products
or improve products according to customers’s requirements
at the limit of what is technically feasible as he is aware
of his available enterprise-level skills. At the early stages of
design activities, performance forecasting of new products is

complicated by the only qualitative characteristic of available
knowledge. Indeed, at these stages, engineers cannot precisely
estimate the impacts of design decisions; generally, they can
only estimate them in a purely qualitative manner. Defining
achievable targets is thus a risky and not deterministic process.

That is why, decisional strategies have to be set out to define,
compare and select potential improvement actions with respect
to stakeholder’s needs. The relationships existing between the
multiple performances of the product significantly complicate
the choice. Hence, adequate mathematical models are required
to deal with multiple assessment criteria in uncertain environ-
ment [5] [6].

It is the purpose of multi-criteria decision analysis (MCDA),
to compare solutions according to the Decision-maker’s (DM)
preferences. An aggregation operator may be identified to
assess all the alternatives w.r.t the criteria and the DM’s
preferences. Aggregation operators are often limited to simple
linear operators such as weighted arithmetic means. How-
ever, such aggregation operators require independence between
criteria, which is a rather drastic hypothesis [7]. Indeed, in
practice, preferential interactions may make counter-intuitive
the overall result of elementary improvements w.r.t to specific
criteria. The family of fuzzy integrals like the Choquet integral
(quantitative framework) and the Sugeno integral (qualitative
framework) allows modelling both the preferential interactions
between performances and their relative importance in the
decisional strategy of the DM through a fuzzy measure[8].
Recently, some works exploit the preference model of the
multiple criteria decision framework, in particular the Choquet
integral, to estimate the expected improvements of an alterna-
tive. The authors in [9] [10] [11] associate to any coalition
of criteria an index named worth index that measures for any
alternative, the mean of all the possible expected improve-
ments w.r.t a subset of criteria. These models assume that all
the improvements are equiprobable whatever their magnitude.
This assumption can clearly be challenged in practice. In [12]
an extension of the worth index in a probability framework
is proposed. Improvements magnitude obeys probability laws
that are learned from data. However, such a framework relies
upon the data availability which is not often the case in the
context of this paper i.e. the preliminary stages of a product re-



engineering. For example, a mobile robot manufacturer may
know that tracked robot products are well adapted to loose
grounds but their speed, reliability or energy consumption
performances depend on many other technical choices, making
their assessment both imprecise and uncertain until the robot
is built. To represent performance in such a context subject
to imprecision and uncertainty, possibility theory is an ade-
quate framework. Therefore, an extension of the concept of
worth index into a possibilistic framework is proposed here.
For instance, in the robot example, this paper answers the
following question: which performance features of an existing
mobile robot product should be improved in order to satisfy
new customer’s needs without spending too much time and
money? The paper will be divided as follows: Section 2 briefly
reminds some essential MAUT notions to define the worth
index. Section 3 gives possibility distribution definitions and
some necessary reminders to understand our proposal. Section
4 introduces and discusses two possibilistic representations for
the worth index. Finally, section 5 presents a case study of our
approach to the re-engineering problem of a mobile robot.

II. ASSESSMENT AND IMPROVEMENT IN A MULTI
CRITERIA FRAMEWORK: REMINDING AND NOTATIONS

Defining an improvement within the multi-criteria perfor-
mance context poses a number of problems. First of all, it must
be possible to compare any two of the situations described by
their performances on all characteristics. Without this partial
order, no sense can be assigned to the concept of improvement.
Multi-criteria decision analysis can thus consist of reducing
dimensionality in order to facilitate analysis. It is generally
recognized that humans lose their ability to make rational
decisions once more than 3 to 5 criteria are involved.

A. Multi Attribute Utility Theory (MAUT)

Let us denote by N = {1, 2, . . . , n} a set of attributes where
the ith attribute takes its values in a set denoted Xi.
The aim of MAUT is to model the preferences of the DM,
represented as a binary relation � on X =

∏
i∈N

Xi by

means of an overall utility function U : X → R such
that x � y ⇔ U(x) ≤ U(y),∀x, y ∈ X . This global
utility can be seen as a numerical representation of the
preference relation � on X and captures a model of the
expertise of the DM. As far as the overall utility function
is considered, the most frequently encountered model is the
additive value model. The transitive decomposable model of
Krantz et al. [13] generalizes this representation as U(x) =
H(u1(x1), u2(x2), . . . , un(xn)),∀x = (x1, x2, . . . , xn) ∈ X ,
where ∀i ∈ N , the function ui : Xi → R+ is the utility
function, it can be interpreted as a measure of the satisfaction
of the value xi for the DM and H : Rn+ → R+, non-decreasing
in its arguments, is the aggregation function [14].

Although the additive form is the most widespread because
of its simplicity and its intuitive interpretation, it relies on
strong assumptions such as the independence and the weakly
separability of the criteria [15]. In practice attributes may

interact with each other and preferential interactions are to
be considered.

To overcome this problem, the Choquet integral is an
interesting candidate for operator H . Indeed, it generalizes
several classical operators, such as the weighted sum of the
additive model or the ordered weighted sum (OWA) [7]. In
addition, it allows modelling interactions between attributes.
In the following, we propose a brief reminder about fuzzy
measures and the Choquet integral.

B. The Choquet Integral
Definition II.1. A fuzzy measure µ on N is a set function:
µ : 2N → [0, 1] that satisfies the following conditions:
• µ(∅) = 0;µ(N) = 1;
• µ is monotonic non decreasing for inclusion, i.e., for any
A,B ⊆ N,A ⊆ B ⇒ µ(A) ≤ µ(B)

In the context of multi-criteria decision analysis, µ(I)
represents the importance coefficient of the coalition of criteria
I ⊆ N . Note that the monotonicity requirement of a fuzzy
measure is weaker than the additivity requirement in usual
cases.

Definition II.2. In the context of multi-criteria decision anal-
ysis, the evaluation of the Choquet integral of an alternative
x = (x1, x2, ..., xn) ∈ Rn+ with respect to µ denoted by Cµ(x)
is defined by:

Cµ(x) =

n∑
i=1

(xσ(i) − xσ(i−1))µ(Aσ(i)) (1)

where xσ(0) = 0 ≤ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n);Aσ(i) =
{σ(i), σ(i+ 1), . . . σ(n)} where σ is a permutation on N .

To identify the fuzzy measure µ associated to the Choquet
integral, some methods have been proposed in the literature
but are out the scope of this paper. We especially use the
MACBETH extension to Choquet integral proposed in [8].
We adopt the following notation in this paper: for I ⊆ N ,
(yI , z−I) is the vector x ∈ X such that xi = yi if i ∈ I and
xi = zi if i ∈ N \ I .

C. Worth Index
In [9] it is proposed an index for determining the subset

of criteria on which an alternative should be first improved in
order to raise its overall score to the greatest extent possible.
In [10] the author introduces the worth index denoted by
wH(x0, I), for the aggregation function H and initial perfor-
mances x0 ∈ Rn+ that assesses the possible gain the coalition
of criteria I ⊂ N could bring to the overall performance
as it is modelled by the H-aggregation of the elementary
performances. For any I ⊆ N , wH(x0, I) is the worth for
alternative x0 to be improved on the subset of criteria I ,
subject to the evaluation function H . In this paper, only the
case H = Cµ will be considered. More precisely, the worth
index wCµ(x0, I) is defined by:
wCµ(x0, I) =∫ 1

0

[Cµ((1− λ)x0I + λ1I , x
0
−I)− Cµ(x0)]dλ (2)



The choice to integrate in formula (2) along the hyper bisector
ensures a homogeneous improvement of all the criteria in I .
The main drawback there is in the two approaches proposed
in [9][10] is that all the performance profiles are supposed
to be equally probable which is evidently not the case in
practice (large improvements are less probable than tiny ones).
In [12] the authors propose an extension of the worth index in a
probabilistic framework where, a probability value is assigned
to each improvement x ∈ X starting from x0:
wCµ(x0, I) =∫

[x0↑]
pI(xI , x

0
−I)[Cµ(xI , x

0
−I)− Cµ(x0)]dxI (3)

where [x0 ↑] is the set of alternatives that improves x0 over
I , pI(x) expresses the probability to obtain the alternative x
and Cµ is the Choquet integral w.r.t the fuzzy measure µ.

In practical cases, identifying the probability distributions
pI(xI , x

0
−I) depends on the availability of a learning data base

[12]. However, in preliminary design stages, experts are mostly
able to provide qualitative estimations of these distributions. In
this case, estimating the distributions is no more based on a
statistic learning stage. In order to integrate this qualitative
expert knowledge in the computation of the worth index,
this paper proposes a new model for the worth index in a
possibilistic framework.

III. POSSIBILITY THEORY

Possibility theory is an appropriate framework to represent
imprecise and uncertain information [16]. It is based on a
possibility distribution which is a membership function to
which two fuzzy measures are associated named possibility
and necessity measures.

Definition III.1. A possibility distribution π assigns to each
element ω in a set Ω of alternatives a degree of possibility
π(ω) ∈ [0, 1] of being the correct description of a state of the
world.
• π(ω) = 0 means that ω is impossible.
• π(ω) = 1 means that ω is totally possible.
• [b, c] = {ω/π(ω) = 1} is the kernel of π.
• ]a, d[= {ω/π(ω) > 0} is the support of π.
• to π are associated two fuzzy measures Π and N .
• ∀A ⊆ Ω, Π(A) = max

ω∈A
π(ω).

• ∀A ⊆ Ω, N(A) = inf
ω/∈A

(1− π(ω)).

• ∀A ⊆ Ω, N(A) = 1−Π(Ac).

By analogy with the mathematical expectation of a random
variable, the expectation associated to a possibility distribution
is also defined in [17].

Definition III.2. Given a possibility distribution π, two cu-
mulative distributions can be associated to it through Π and
N and are respectively named upper distribution F∗ and
lower distribution F ∗ defined by: F ∗(a) = Π((−∞, a]) =
sup{π(ω), ω ≤ a} and F∗(a) = N((−∞, a]) = inf{1 −
π(ω), ω > a}.

The mathematical expectation associated to π is imprecise
and is then defined in [17] by the mean interval:

E(π) = [E∗(π), E∗(π)],

where E∗(π) =
∫ +∞
−∞ xdF ∗(x) and E∗(π) =

∫ +∞
−∞ xdF∗(x).

Roughly speaking and to make the analogy with probabili-
ties, the ’saverage’s value of π would be the mean interval
[E∗(π), E∗(π)]. A ’smeasure of dispersion’s can also be
introduced: ∆(π) = E∗(π)−E∗(π). It may be useful to define
a location indicator which allows synthesising the possibility
distribution into a unique precise representative value in order
to facilitate comparing possibility distributions [18].

The intuitive idea beyond this work is that a possibility
distribution can be a priori attached by experts to the expected
values of each xi. Then, the expected performances w.r.t
criterion i are modelled by a possibility distribution πi over
the value range of the xi’s. As a consequence, the aggregation
step that computes the aggregated performance from the
elementary ones must be extended to the case of imprecise
and uncertain inputs. In other words, the aggregation process
must be extended when inputs are possibility distributions [18]
[19].

A. Aggregating Possibility Distributions with a Choquet Inte-
gral

Let us consider n elementary possibility distributions
(π1, π2, . . . , πn) where πi is the possibility distribution related
to the ith attribute. The aggregated possibility distribution with
respect to the Choquet integral πCµ = Cµ(π1, π2, . . . , πn) can
be computed using the extension principle of Zadeh [20] which
states that: ∀z ∈ [0, 1]

πCµ(z) = sup
y=(y1,...,yn)∈[0,1]n\

z=Cµ(y)

min(π1(y1), . . . , πn(yn)) (4)

The direct computation of the aggregated possibility dis-
tribution by this formula may be extremely time consuming,
but in the case of the Choquet integral, it is proposed in [21]
a more practical way to compute the aggregated distribution
πCµ based on the hyperplan-linearity of the Choquet integral
(the Choquet integral in (eq. (1)) behaves as a weighted
mean in each hyperplan Hσ\yσ(1) ≤ yσ(2) ≤ . . . yσ(n)). The
computation only needs to be processed on a finite set of
particular points.

IV. POSSIBILISTIC EXTENSION OF THE WORTH
INDEX

For sake of simplicity, we will denote a vector of perfor-
mances associated to an alternative x as (x1, . . . , xn) ∈ [0, 1]n

instead of (u(x1), . . . , un(xn)). Let x0 ∈ [0, 1]n the actual
performances from which the improvement is envisaged. For
each i ∈ N , a possibility distribution πi describes which per-
formances are plausible and less plausible on the ith attribute.
We assume that experts are able to provide the possibility
distributions πi over the value range of each xi’s. From their



experience they know the minimal and maximal performance
they have already met providing the kernel limits of each πi.
The value range of the support with a degree of possibility
lower than 1 corresponds to possible values from the expert
points of view although he has never met them before. For the
sake of simplicity, only trapezoidal distributions are considered
in this paper.

The issue is to identify on which attributes the initial state of
performances should be improved in order to raise its overall
performance to the greatest extent. The fewer these attributes
are, the lower the cost of the increase. The worth index allows
assessing the average expected gain of each coalition of im-
proved performance attributes, and therefore allows selecting
the coalition that provides the most relevant ratio cost/benefit.
Possibility distributions will enlighten the DM on what is
plausible and less plausible beyond x0. Improving criteria in
the coalition I means that only performances related to criteria
I are improved whereas performances in N\I remain equal
to xi0. For i ∈ I , only performances higher or equal to x0i are
possible. In other words the initial distributions πi are revised
such as:
• for i ∈ I, πi/x0

i
(xi) = 0 for any xi ≤ x0i , else

πi/x0
i
(xi) = πi(xi) (i.e., πi/x0

i
= πi ∧ 1[x0,1]);

• for i ∈ N\I, πi/x0
i
(xi) = 1 if xi = x0i , 0 elsewhere.

Two different approaches based on a possibilistic model of
the worth index are now introduced to formalize the problem.
The main advantage of the first one is that it relies solely on
the descriptors of the possibility distributions (namely E∗ and
E∗) and is thus easy-of-use but there is a loss of information
content w.r.t the genuine knowledge the experts provide with
the πi’s. The second one deals with the possibility distributions
themselves: there is no loss of information but the calculations
are heavier.

A. Worth index based on the moments of the possibility
distributions

In this first approach a possibility distribution π is syn-
thesized by its lower and upper expected values E∗(π) and
E∗(π). As consequence the worth index will be seen as an
imprecise quantity and modeled by the interval:

wCµ(x0, I) = [w∗Cµ(x0, I), w∗Cµ(x0, I)]

For I ⊆ N , the worth index wCµ(x0, I) for a given fuzzy
measure µ is defined with:

w∗Cµ(x0, I) = Cµ(E∗(πI/x0
I
), x0−I)− Cµ(x0) (5)

w∗Cµ(x0, I) = Cµ(E∗(πI/x0
I
), x0−I)− Cµ(x0) (6)

where E∗(πI/x0
I
) (resp. E∗(πI/x0

I
)) denotes the vector of

the E∗(πi/x0
i
)’s (resp.E∗(πi/x0

i
)’s) for i in I .

Considering that experts can only provide simple distribu-
tions such as trapezoidal ones, we can compute for each i in
I:
• E∗(πi/x0

i
) =

∫ +∞
−∞ xidF

∗
i/x0

i
(xi), with dF ∗

i/x0
i
(xi) =

δ(xi−x0i ) the Dirac distribution at x0i , i.e., δ(xi−x0i ) = 0

if xi 6= x0i and δ(0) = +∞. Because
∫ +∞
−∞ δ(xi −

x0i )dxi = 1 and f : x 7→ x is a continuous function,∫ +∞
−∞ xiδ(xi − x0i )dxi = x0i . Therefore E∗(πi/x0

i
) = x0i

• E∗(πi/x0
i
) =

∫ +∞
−∞ xidF∗

i/x0
i

(xi) =
∫ +∞
−∞ xidF∗i(xi).

In case of trapezoidal distributions
∫ +∞
−∞ xidF∗i(xi) =

di+ci
2 since dF ∗i is a uniform probability law over [ci, di],

where [ai, di] and [bi, ci] are respectively the support and
the kernel of the distribution πi/x0

i
for i in I .

The interval [E∗(πi/x0
i
);E∗(πi/x0

i
)] provides the expected

mean value of xi when improvements on criterion i in I are
performed. Thus, the expected mean gain for each criterion i
in I is the interval [0, di+ci2 − x0i ]. Finally, the worth index is
achieved with formulas (5) and (6). Note that other moments
synthesizing possibility distributions can be found in [22].

B. Worth index based on uncertainty propagation

In this second approach, we propose to deal with the full
information content of the possibility distribution. Let us now
consider the information conveyed by the choice: starting from
x0 and improving only performances of attributes in I . The
value range of the xi’s when improvements of the criteria in
I are envisaged, is described by the possibility distributions
πi/x0

i
as proposed in the preceding subsection. The idea

in this second approach is to propagate uncertainty about
attributes performances through the Choquet integral to the
aggregated distribution in order to compute the worth index.
The computation is achieved using the Zadeh’s extension
principle and it gives: ∀z ∈ [0; 1],
πCµ/x0,I(z)= sup

yI∈[x0
I ,1I ],y−I=x

0
−I :

z=Cµ(y)

min(πI/x0
I
(yI))

We can now compute E∗(πCµ/x0,I) and E∗(πCµ/x0,I) and
define the possibilistic worth index as the imprecise quantity:
wCµ(x0, I) = [w∗Cµ(x0, I), w∗Cµ(x0, I)]

where:

w∗Cµ(x0, I) = E∗(πCµ/x0,I)− Cµ(x0) = 0 (7)

(by construction of the πi/x0
i

distributions)

w∗Cµ(x0, I) = E∗(πCµ/x0,I)− Cµ(x0) (8)

This worth index formulation should not be confused with
the proposal in subsection A. Indeed, in the general case,
Cµ(E∗(π1), . . . E∗(πn)) 6= E∗(Cµ(π1, . . . , πn)) (see[18] for
more details). The main advantage of the proposal in subsec-
tion A is its computational ease. Nevertheless, the worth index
computation of this section may singularly be simplified if the
computational propositions in [21] are used instead of applying
Zadeh’s extension principle. Indeed, as we are dealing with
piecewise linear distributions, and with a piecewise linear
aggregation operator, the aggregated possibility distribution is
also piecewise linear. Moreover, the Choquet integral needs
only to be calculated at the intersection points of the ascending
and descending parts of the input possibility distributions [21].



C. The cost/benefit assessment

The decision maker can now choose the criteria to be
improved starting from x0: in the two approaches, he can only
compare w∗Cµ(x0, I) for all I ⊆ N . For sake of simplicity,
the direct costs of improvements has not been introduced
directly in the model (see [10] and [11]). As previously
mentioned, we merely consider that the fewer criteria to be
improved, the lower the direct cost of the increase. Because,
w∗Cµ(x0, N) = max

I⊆N
{w∗Cµ(x0, I)} when direct cost is not

explicitly taken into account in the worth index model, the
decision maker can choose I∗ such that for two small real
numbers ε and η, |w∗Cµ(x0, N) − w∗Cµ(x0, I)| < ε whereas
|I∗|
|N | < η: improving criteria in I∗ has the potential to produce
a benefit close to the maximal expectation whereas there are
much fewer criteria to be improved in I∗.

V. APPLICATION

A. Scope and Available Data of the Application

The robotic challenge Robafis is organized annually by
the French association of Systems Engineering AFIS to pro-
mote Systems Engineering practice in engineers’s schools.
The scope of the challenge is for instance in Robafis 2013
(www.afis.fr) to build an autonomous mobile robot able to
compete with other robots and using some provided and
imposed materials. Each robot is limited 30 cm3 and has to
achieve the following mission as quickly as possible: to grasp
and transport some various coloured spheres between several
stock devices spread over a plan playground. Some dark lines
are drawn on the ground to guide the robot between stock
devices.

Given an already built robot prototype, the question is then:
on which criteria the designer team has to focus in order to
improve as much as possible the prototype and to win the
challenge. Four criteria are considered to evaluate any robot
configuration: the material cost of the robot (CR1), the robot
speed capacity (CR2), the reliability of the robot (CR3), and its
maintainability (CR4). We have chosen the Choquet integral
as the aggregation operator to merge theses four criteria. An
interactive and iterative procedure has been carried out to
capture the DM preferences using the extension of the indirect
identification method MACBETH proposed in [8] [14]. The
result is the fuzzy measure associated to the Choquet integral
given in Table 1.

I µ(I) I µ(I)
∅ 0 {2} 0

{1} 0 {2, 4} 0.57
{1, 4} 0 {1, 2} 0.14
{3} 0 {1, 2, 4} 0.71
{4} 0 {2, 3} 0.71

{1, 3} 0.28 {2, 3, 4} 0.71
{3, 4} 0 {1, 2, 3} 0.86

{1, 3, 4} 0.43 {1, 2, 3, 4} 1

TABLE I: The obtained fuzzy measure

We assume that experts are able to provide the possibility
distributions over the value range of performance according

to the criteria. The possibility distributions associated to the
four criteria are given in Figure 1. The performance of the
prototype to be improved has been measured equal to x0 =
(0.5, 0.1, 0.2, 0.5).

Fig. 1: Possibility distributions of attributes performances

B. Computing the possibilistic worth index
We seek which subsets of criteria I ⊂ N are the most

promising to improve as much as possible the overall per-
formance of the prototype. For that, let us apply the two
proposed approaches to compute the worth index associated to
any nonempty subset of criteria I . For the sake of comparison,
the values of the worth index proposed in [10] where all
the improvements are considered as equiprobable are also
computed. All the results are given in Table II. IV-A (resp. IV-
B) is the values of the worth index obtained using the approach
presented in subsection IV-A (resp. subsection IV-B), while
(ref. [10]) is the one obtained using the formula (2).

I
wCµ (x

0, I)
IV-A IV-B ref. [10]

{1} 0 0 0
{2} [0;0.2700] [0;0.2168] 0.2077

{1, 2} [0;0.2700] [0;0.2273] 0.2271
{3} [0;0.1290] [0; 0.0215] 0.1048

{1, 3} [0;0.1290] [0; 0.1215] 0.1486
{2, 3} [0; 0.3570] [0;0.3213] 0.3808

{1, 2, 3} [0; 0.3570] [0;0.3320] 0.4065
{4} 0 0 0

{1, 4} 0 0 0
{2, 4} [0;0.2700] [0;0.2595] 0.2868

{1, 2, 4} [0;0.2700] [0;0.2700] 0.3063
{3, 4} [0;0.1290] [0;0.1075] 0.1048

{1, 3, 4} [0;0.1290] [0;0.1290] 0.1720
{2, 3, 4} [0;0.3570] [0;0.3498] 0.3808

TABLE II: The three different worth index values

C. Results Analysis
According to Table II we can note that:
• The upper bound of the worth index wCµ(x0, .) is

monotonous non decreasing for the partial inclusion with
respect to I . So, the best expected improvement is natu-
rally obtained for I = {1, 2, 3, 4}.

• The worth of improving the robot on criteria : {2, 3},
{2, 3, 4} is almost the same but the direct cost of improv-
ing {2, 3} is lower than the one of {2, 3, 4} (see the direct
cost assumption in subsection IV-C). Thus {2, 3} (speed
capacity and reliability) are the criteria to be improved to
expect the most satisfying performance at the least direct
cost.



• For any I ⊂ N , the worth index based on the moments
of the possibility distributions (IV-A) includes the worth
index based on uncertainty propagation (IV-B).

In this illustrative case study, discrepancies between worth
indexes in Table II are not so demonstrative because of the
simplicity of the example. The values of the worth index
based on the moments of the possibility distributions (IV-A)
are necessarily more optimistic that the ones based on uncer-
tainty propagation (IV-B) since Cµ(E∗(π1), . . . , E∗(πn)) ≥
E∗(Cµ(π1, . . . πn) always holds (see [18] for more details). In
the case of intersections E∗(Cµ(π1, . . . πn) can significantly
differ from Cµ(E∗(π1), . . . , E∗(πn)) which provides less con-
strained expectations. In our illustrative example, it happens
for example for subsets {2}, {1, 2},...etc. (see Table II). The
discrepancy is more significant when comparing our worth
index with the one in [10] where all the improvements are
assumed to be equiprobable whatever their magnitude. It is
easily understandable because the expert knowledge tends to
claim that the greater the improvement, the less it is possible.

Finally note that the worth indexes have been computed
for all the criteria I ⊂ N for a single starting point x0

that represents the initial configuration (or prototype in our
example) from which the improvement is envisaged. In our
future works, a set of potential candidate initial configurations
will be considered in the preliminary design stage. For all
of them, the worth indexes will be computed and compared:
the selected initial configuration will be the one that has the
greatest potential for improving the overall performance.

VI. CONCLUSION

Improving product properties in today’s competitive market
is mandatory but presents important costs and risks. Sup-
porting DM’s in their decision making is thus a strategic
challenge. However, because of insufficient knowledge about
the performances that can be expected from improvement
decisions, the only available information are often incomplete
and imprecise, making early engineering decisions risky. Thus,
identifying the criteria to be profitably improved while not
exceeding the scope of one’s own skills and competence ap-
pears to be very important for helping decision makers to focus
efficiently on pertinent targets. That’s why we propose here
two different extensions of the worth index (the purpose of
which is to identify the most promising criteria) in a possibility
theory framework. The case study of the reengineering of
an autonomous robot illustrates the proposed approach. In
further works we are going to extend these research results for
prognostic purposes where the possibility distributions related
to the expected improvements may be affected by disturbances
or faults.
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