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A B S T R A C T

Low-speed wet avalanches exert hydrostatic forces on structures that are flow-depth dependent. However,
the pressure amplification experienced by smaller structures has not been quantified previously. In partic-
ular, recent wet avalanche pressure measurements, performed with small cells at the “Vallée de la Sionne”
test site, indicate significantly higher pressures than those considered by engineering guidelines and com-
mon practice rules based only on the contribution of inertial forces. In order to gain a deeper understanding
and investigate the relevance of these measurements for structural design, we analyzed data measured on
obstacles of different shapes and dimensions. The pressure measured on a 1m2 pressure plate was, on aver-
age, 1.8 times smaller than the pressure measured on a 0.008m2 piezoelectric cell installed on a 0.60 m
wide pylon and 2.9 times smaller than the pressure measured on a 0.0125m2 cantilever sensor extend-
ing freely into the avalanche flow. Further, avalanches characterized by a gravitational flow regime exerted
pressures that increased linearly with avalanche depth. For Froude numbers larger than 1, an additional
square-velocity dependent contribution could not be neglected. The pressure variations encountered by the
different obstacles could be explained quantitatively with a granular force model, that assumes the for-
mation of a mobilized volume of snow granules extending from the obstacle upstream whose dimensions
depend on the incoming flow depth and the obstacle width. This mobilized volume is associated with the
formation of a network of gravity-loaded grain-grain contacts, also called granular force chains, which densi-
fies in front of the obstacle, producing force amplification. Our results underscore the fundamental influence
of the dimensions of both the sensor and the obstacle on pressures in the gravitational flow regime and may
help to improve rules for structural design.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The calculation of pressure exerted by gravitational mass flows on
structures of different dimensions and shapes is a long-standing issue
that is not yet resolved (Ancey and Bain, 2015; Gauer et al., 2008).

In literature, the pressure exerted on obstacles is calculated by
considering a contribution from a fast impact, that is proportional
to the square of velocity (inertial term) and a contribution from a
slow thrust of material around the obstacles that is proportional
to the flow depth, similar to a hydrostatic contribution (gravita-
tional term) (Salm, 1966; Savage and Hutter, 1991; Voellmy, 1955).
The flow regimes associated with these contributions are frequently

* Corresponding author at: WSL Institute for Snow and Avalanche Research SLF,
Flüelastrasse 11, 7260, Davos Dorf, Switzerland.

defined as inertial and gravitational, respectively (Ancey and Bain,
2015; Faug, 2015).

Normally, the Froude number is used as a criterion to distin-
guish between the two contributions, with Fr � 1 associated with
the inertial regime and Fr � 1 with the gravitational regime. For
intermediate Froude numbers, the avalanche pressure can not be
expressed as a simple function of either avalanche velocity or flow
depth, and the flow regime is defined as transitional. For granular
flows, Faug (2015) found that the transitional regime covers a wide
range of Froude numbers, from 0.1 to 10. Dense granular avalanches
typically have Froude numbers within this range, which suggests
that they may belong to the transitional regime.

This result indicates that the transitional regime is not simply
defined by Fr = 1, the value that traditionally emerges from dimen-
sional analysis of inviscid flows in conventional fluid mechanics.
For frictional granular flows, such as snow avalanches, other
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dimensionless numbers are needed. Fr = 1 is not a relevant critical
value for at least two reasons. First, it is quite well established that the
Coulomb number (Ancey and Evesque, 2000) or the inertial number
(Forterre and Pouliquen, 2008) that is the square root of the Coulomb
number, are more suitable dimensionless numbers for a certain range
of granular flow conditions. When shear is concentrated at the base of
the flow, as in many snow avalanches (Kern et al., 2009), the macro-
scopic inertial number may be proportional to the Froude number
(Ancey and Bain, 2015) but is not equal to the Froude number. Second,
considering the finite width of the avalanche flow leads to another
expression of the Froude number (a function of flow rate, flow cross
section and width of the free surface), and thus to another transitional
value of the Froude number. These problems regarding the dimen-
sionless numbers, fully relevant to snow avalanches, are currently
unresolved. However, the knowledge of both the thickness and the
velocity of the avalanche flow are sufficient to determine the value of
the infinite-wetted-section Froude number, which provides a rough
yet quick indication of the range of the flow regime (gravitational,
transitional, or inertial).

In snow avalanche engineering, the pressure contribution from
the gravitational term is normally not considered (Rudolf-Miklau
et al., 2015; Jóhannesson et al., 2009), although recommendations
to include it in pressure calculations do exist (see Chapter 4 in
Ancey (2006) and references therein). In snow avalanche science,
the pressure contribution from the gravitational term is usually con-
sidered small or even negligible in comparison to the contribution
from the inertial term. However, recent full-scale measurements on
wet avalanches performed at the “Vallée de la Sionne” (VdlS) test
site (Sovilla et al., 2010), and back analysis of avalanche damag-
ing infrastructures (Ancey and Bain, 2015) have shown clearly that
avalanches moving in a gravitational flow regime can also exert very
large impact pressures, thus potentially becoming relevant for the
design of infrastructures. Further, no clear definition of the transi-
tion regime exists in snow avalanche science, and thus there is no
relationship with which to calculate impact pressure for avalanches
characterized by Froude numbers in the range 0.1–10, where inertial
and gravity-driven forces have the same order of magnitude.

At the VdlS, impact pressures are measured on sensors mounted
on finite-size obstacles, which resemble ski or chairlift pylons
(Sovilla et al., 2008a). Sensors have various dimensions, with areas
varying between 0.008 and 1m2 (Schaer and Issler, 2001; Sovilla et
al., 2008b). Finite-sized obstacles, also known as narrow obstacles,
are normally defined as structures with a width on the same scale
or smaller than the flow depth (Jóhannesson et al., 2009). For such
obstacles, the flow is not laterally confined and diverted around the
obstacle rather than passing over the obstacle.

Sovilla et al. (2010) reported impact pressures exerted by wet
avalanches, in the gravitational flow regime (Froude numbers typi-
cally smaller than 1, even if such a critical value still spurs debate,
as discussed previously), that were measured with piezoelectric load
cells 0.10 m in diameter, the smallest sensors at the site (Fig. 1). As
a follow-up study to that preliminary analysis, Baroudi et al. (2011)
compared these data to measurements performed, at the same loca-
tion, using rectangular cantilever sensing devices of a slightly larger
area of 0.0125m2. These studies demonstrated a strong dependency
of pressure measurements on sensor geometry and flow regimes,
specifically for wet avalanches.

In particular, the properties of the snow entrained by an avalanche
during its motion (density, temperature) significantly affect flowdy-
namics and can determine whether the flowing material forms gran-
ules or maintains its original fine-grained morphology. In general,
a cold and light snow cover can be brought into suspension easily,
while warmer and more cohesive snow may form a granular, denser
layer. This diversification has a fundamental influence not only on the
mobility of the flow but also on the impact pressure avalanches exert
on structures (Sovilla et al., 2015). Steinkogler et al. (2015) recently

b

a

Fig. 1. The 20 m high VdlS instrumented pylon. Panel a shows an overview with
the piezo and cantilever impact sensors and close-up of optical sensors, capacitance
probes and flow height sensors. Panel b shows a cross section of the pylon with the
geometrical details of the sensor installation.

showed that granulation in snow occurred when the snow temper-
ature exceeded −1 ◦ C. Different snow conditions result in different
granulation regimes. Specifically, granules can be differentiated into
moist or wet, depending on the liquid water content of snow, show-
ing significantly different mechanical properties upon collision. Thus,
granulation is mostly relevant for snow with a temperature higher
than −1 ◦ C and therefore it plays a crucial role for avalanches close
to the melting point. The avalanches studied in this paper are all in
this category, and their characteristic flow regime is easily identifi-
able by the plug-like behavior measured at the pylon (Sovilla et al.,
2008a); thus, they are expected to behave as granular flows. Never-
theless, we do not have information concerning the snow liquid water
content or the exact temperature of the snow in the area of the obsta-
cles, since appropriate measuring devices are not available at the site,
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and thus a precise distinction between different granulation regimes
is not possible.

The conclusion drawn from previous analysis(Sovilla et al., 2010)
cannot simply be extrapolated to finite-sized obstacles that are rel-
evant for engineering purposes, such as ski or chairlift pylons. In
particular, large pressures measured with small cells may be related
to the dimensions of the sensors, since they are of a similar size as the
granules (10–25 cm in diameter) that usually characterize wet flows
(Steinkogler et al., 2015).

In order to investigate whether high pressures measured with
small sensors also occur at larger scale, i.e. the scale of real struc-
tures impacted by avalanches, we compared pressures measured in
wet, granular avalanches with sensors of different dimensions. On
this basis, we determined a reduction coefficient from small to large
obstacles.

Additionally, we compared measurements with a theoretical
model recently proposed by Faug (2015) to describe granular flow
interaction with obstacles. This model assumes that, in a mobi-
lized volume whose geometry depends on both structure width and
avalanche flow depth, gravity-loaded grain-grain contacts are likely
to form. The model quantifies an amplification factor explaining how
these contacts enhance the force undergone by the obstacle.

2. Methods

2.1. Infrastructure and sensors

Pressure measurements are performed on an oval-shaped steel
pylon, 20 m high, 0.59 m wide and 1.58 m long (Fig. 1). Six piezoelec-
tric load cells, hereafter designated as piezo sensors, are installed on
the uphill face of the pylon, with 1 m vertical spacing, from 0.5 to
5.5 m above ground. The sampling frequency is 7.5 kHz and they
have a diameter of 0.10 m with an area of 0.008m2. Geometrical
details of the sensor installation are shown in Fig. 1b.

The cantilever sensing devices are installed on the right side
of the pylon, at the same height as the piezoelectric sensors, and
extend into the avalanche flow (Fig. 1b). They have an area of about
0.0125m2 and an acquisition frequency of 2.0 kHz (Baroudi et al.,
2011).

The pylon is also equipped with optical sensors for the determi-
nation of velocity profiles (between 0.5 and 6 m above ground) (Dent
et al., 1998; Tiefenbacher and Kern, 2004), capacitance probes for
density measurements (at 3 and 6.5 m) (Louge et al., 1997) and flow
depth sensors (toggles switches between 0.25 and 7.5 m).

Thirty meters downstream from the pylon a small concrete wall,
1 m wide, 4.5 m high and 3.5 m long, supports a 1m2 pressure plate
(bottom left in Fig. 1), which is mounted with its center at a height
of 3 m above ground surface (Fig. 2). The pressure plate is supported
by four strain-gauged pins. The set-up makes it possible to measure
normal and shear forces along the horizontal and vertical directions
with a sampling frequency of 2 kHz. A more detailed description of
the infrastructure and sensors can be found in Sovilla et al. (2008b)
and Schaer and Issler (2001).

2.2. Criteria for data comparison

The pylon and the plate are approximately 30 m apart; thus, it
is very important to verify that the avalanche reached both infras-
tructures with similar velocities and depths. As a general criterion,
we observe deposition patterns, and avalanche dynamics from pic-
tures and videos to visually identify avalanches that have interacted
with both infrastructures in a similar manner. Avalanches character-
ized by a large width in the run-out zone are better suited for the
analysis since they exert a similar pressure over a large area. Only sig-
nals comparable in duration and shape were included in the analysis
presented here.

Given that the 1m2 plate is mounted with its center 3 m above the
ground and vertically extends from 2.5 to 3.5 m, we compared these
data with the average impact pressure measured with the small sen-
sors on the pylon, 2.5 m and 3.5 m above ground. This implies that
the sliding surface is the same at the plate and pylon locations. Fur-
ther, velocity and flow depth measurements are performed only at
the pylon, and thus the pressure data at the plate need to be coupled
with measurements taken 30 m away. To account for the time shift
between pylon and wall measurements, we moved the time origin of
the two records using the avalanche front velocity.

Pressure is strongly correlated with the flow regime, with grav-
itational, transitional and inertial regimes characterized by com-
pletely different obstacle–avalanche interactions (Baroudi et al.,
2011; Sovilla et al., 2008a). Thus, data need to be classified into these
categories. Difficulties arise when many flow regimes are present
in one single avalanche. We used different criteria to associate flow
regimes to impact signals, including: (1) analyzing the ratio between
pressure fluctuations and average pressure, which is very different
for each flow regime (Sovilla et al., 2010) and (2) comparing the
velocity profiles and their fluctuations to distinguish between plug
flow, sheared flow and more energetic zones of the signal (Sovilla
et al., 2015; Steinkogler et al., 2015). In the analysis presented here,
only data pertaining to the gravitational and transition regimes were
considered. In other words, we manually excluded time slots for
which inertial forces prevail.

a

b

Fig. 2. The small concrete wall supports a 1m2 pressure plate. The plate is mounted
with its center at a height of 3 m above the ground surface.
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Table 1
Overview of avalanches used in this analysis. The parameters neglect information
referring to the inertial flow regime, when present.

Date Av. # v(ms−1) Hmax (m) Fr

01-03-2007 8448 1–3 4 Fr < 1
30-12-2009 20103003 6–10 6–7 1≤ Fr ≤ 2
06-12-2010 20113003 1–2 2.5 Fr < 1
01-02-2013 20133019 1–5 3.5 Fr ≤ 1
02-02-2013 20133021 2–7 5 Fr < 1.5

3. Data

Measurements at both the plate and the pylon have been per-
formed since the winter season 2004/05. Over this period, we have
recorded impact pressures of about 40 avalanches, of varying dimen-
sion and typology, that interacted with both infrastructures. Five
of these were wet avalanches and were analyzed in this study. All
wet avalanches released naturally, making it difficult to establish the
exact location of release and the avalanche volumes. Nevertheless,
pictures taken after the avalanche release allowed us to characterize
their dimensions in the avalanche deposition zone, i.e. at the location
of the measurements. Table 1 shows the most relevant avalanche
parameters characterizing the flow, namely the avalanche velocity,
v, the maximum avalanche depth, Hmax and the Froude number, Fr.
It is noteworthy that our analysis distinguished between the flow
depth, H, which is the total avalanche flow depth with respect to the
avalanche sliding surface, and the effective flow depth, Heff, which
is the avalanche flow depth with respect to the position of the sen-
sor where the pressure is measured, zs. The effective flow depth is
calculated as: Heff = H − zs.

3.1. Avalanche #8448

Avalanche #8448 released naturally on 1 March 2007 at 21:19.
It released after a snow precipitation event of nearly 0.4 m on an
existing 2–3 m thick snowpack, according to measurements made
close to the release zone at an altitude of 2390 m.a.s.l. Air temper-
ature was about −4 ◦ C in the release zone and slightly above 0 ◦ C
in the run-out zone. The avalanche started as a dry flow but devel-
oped into a typical wet, dense, slow flow, at lower altitude. At the
pylon, the avalanche had an average velocity of 1–3 ms−1 and was
characterized by plug flow (Kern et al., 2009), with a sliding sur-
face approximately 2.0 m above ground. At the same location, the
maximum flow depth was about 4.0 m (Fig. 3, left). From permittiv-
ity measurements performed 3 m above ground, we estimated the
flow density to be 400kg m−3 (Louge et al., 1997). The avalanche was
characterized by a gravitational flow regime (Sovilla et al., 2010).

Signals from the piezo and plate sensors were largely consistent
except for the first five seconds of the measurements, where the
pressure at the plate showed a decreasing trend but the pressure
at the pylon showed the opposite (increasing) trend (Fig. 3, right).
For this reason, the beginning of the signal was excluded from the
analysis (dashed area in Fig. 3). On the contrary, a large part of the
signal from the cantilever sensor showed a different trend (gray line
in Fig. 3). This difference was interpreted as large fluctuations occur-
ring during the loading of the most energetic part of the avalanche
(Baroudi et al., 2011). This part of the measurements was not con-
sidered for this study. Further informations on this avalanche can be
found in Kern et al. (2009), Sovilla et al. (2010) and Baroudi et al.
(2011).

3.2. Avalanche #20103003

Avalanche #20103003 released naturally on 30 December 2009
at 13:30. At the time of release, about 0.20 m of new snow had fallen

in the preceding 24 h on a snow cover of 1.80 m, as measured close
to the release zone at an altitude of 2390 m.a.s.l. Air temperature was
−4 ◦ C in the release zone, and around 0 ◦ C in the run-out zone. These
values indicate that the snow precipitation might have evolved into
rain at lower altitude. The avalanche started as a dry flow but at the
pylon was characterized by a dilute, fast moving front, followed by a
denser, slower avalanche body moving with velocities up to approxi-
mately 10 ms−1. Oscillations in velocity and flow depth indicate that
the flow was characterized by successive surges. This large avalanche
had a maximum flow depths of up to 6–7 m at the pylon and it slid
directly on the rock ground (Fig. 4, left).

Signals from the different sensors were largely consistent, except
during the first part of the measurements where the pressure at the
plate showed a decreasing trend whereas an increasing trend was
observed at the pylon (Fig. 4, right). For this reason, the first ten
seconds of signal were excluded from the analysis (dashed area in
Fig. 4).

Apart from the dilute frontal part, this avalanche had 1 ≤ Fr ≤ 2.
Thus, it was largely characterized by a transition flow regime
where gravitational forces were balanced by inertial forces. Further
information on this avalanche can be found in Kogelnig et al. (2011).

3.3. Avalanche #20113003

Event #20113003 occurred on 6 December 2010 at 18:30. The
avalanche naturally released after a snow precipitation event of
about 0.50 m in the preceding 48 h on a snow cover of 0.80 m, as
measured close to the release zone at an altitude of 2390 m a.s.l.
Air temperature in the release zone was −4 ◦ C. The motion of the
avalanche could be observed using a new phased array FMCW radar
system (GEODAR) (Vriend et al., 2013). At the pylon, the avalanche
was characterized by three distinct surges. The first two surges were
dry diluted and traveled at a maximum velocity of 24ms−1 and
21ms−1, respectively. The third surge traveled slowly at 1–2 ms−1,
had the typical characteristics of a wet dense flow with a maximum
flow depth of 2.5 m, and was characterized by a Fr<1, and thus by a
gravitational regime. Density measurements of this avalanche have
been presented by Sovilla et al. (2015). The sliding surface of this
avalanche was estimated to be 1.2 m above ground.

3.4. Avalanche #20133019

Event #20133019 naturally released on 1 February 2013 at 17:16
after a snow precipitation event of about 0.35 m in the preceding 36
h on a snow cover of 2.2 m, as measured close to the release zone at
an altitude of 2390 m a.s.l.. Air temperature in the release zone was
−2.5 ◦ C. The GEODAR data confirms that, at the pylon, the avalanche
had mostly a wet flow behavior characterized by velocity in the range
1–5ms−1. A small powder component was probably still present
at this distance but rapidly disappeared. The deposit depicted the
typical characteristics of wet avalanche debris with granules aggre-
gations. At the pylon location, the avalanche slid on a 1 m thick
previous snow deposit and was characterized by plug flow. Maxi-
mum flow depth was about 3.5 m. The avalanche was characterized
by a gravitational regime.

3.5. Avalanche #20133021

Event #20133021 naturally released on 2 February 2013 at 05:28
after a snow precipitation event of about 0.70 m in the preceding
42 h on a snow cover of 2.2 m, according to measurements made
close to the release zone at an altitude of 2390 m a.s.l.. Air tempera-
ture in the release zone was −4.7 ◦ C. The GEODAR data confirms that
the avalanche was traveling slowly at the pylon and had the typical
characteristics of a wet flow avalanche, with velocities in the range
2–7 ms−1. A small powder component was probably still present
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Fig. 3. Avalanche #8448. The top left panel shows flow depth, H, and velocity at 3 m above ground, while the bottom left panel shows the corresponding Froude numbers. The
horizontal dashed line in the upper left panel highlights the position of the impact pressure measurements, which was used to define the effective flow depth, Heff . The right panel
shows the impact pressures measured with the plate (blue), piezo (red) and cantilever (green) sensors. The dashed area and the gray data highlight measurements excluded from
the analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

at this distance but rapidly disappeared. The deposit depicted the
typical characteristics of wet avalanche debris. At the pylon, the
avalanche was characterized by plug flow with a small shear rate,
and it slid on an old deposit about 1.0 m thick and reached a maxi-
mum flow depth of about 5 m. The avalanche was characterized by
a Froude number in the range 0.6–1.5; thus, it had characteristics of
both the gravitational and transition regimes.

4. Snow avalanche pressure in the gravitational and transitional
regimes

Recently, Sovilla et al. (2010) provided further evidence that the
impact pressure of wet avalanches, characterized by a gravitational
regime, increases proportionally to the flowing depth according to:

p = fqgHeff, (1)

where Heff is the location of the pressure measurement in respect
to the avalanche surface, q is the flow bulk density, g is the gravita-
tional acceleration and f is an empirical parameter. Adopting q =
400 ± 80kg m−3, as derived from permittivity measurements (Louge
et al., 1997), Eq. (1) was fitted to representative vertical pressure pro-
files using f values in the range 7.2–8.1. Furthermore, Eq. (1) is found
to match results from a number of laboratory experiments on the
force experienced by solid objects in low-speed granular flows (see
for instance Albert et al. (1999) and Wieghardt (1975)).

Following the study of Sovilla et al. (2010), in order to understand
how sensor and obstacle dimensions influence pressure measure-
ments, this fitting was extended to other measurements. Fig. 5
shows, as an example, the fitting of Eq. (1) for avalanche #8448
in the time domain. Specifically, Eq. (1) was fitted to the pressure
signals of piezo (red line), plate (blue line) and cantilever (green
line) data by properly adapting the parameter f and considering the
effective flow depth, Heff. In particular, f was solved with a linear
least-squares regression of the pressure and flow height data. The
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Fig. 5. Impact pressure as a function of effective flow depth, Heff , (left panel) and as a function of time (right panel) for avalanche #8448. Dots indicate measurements performed
with piezo (red), plate (blue) and cantilever (green) sensors. Continuous lines show best fits for the Eq. p = fqgHeff using f = 6.5 ± 1.4, 3.7 ± 0.5 and 12.1 ± 3.0 for piezo, plate
and cantilever measurements, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

confidence interval for f is the standard deviation between the fit
and the data.

An exception to the linear fitting is represented by avalanche
#20103003, which was characterized by a Froude number between
1 and 2 and maximum velocities above 10ms−1, and thus, charac-
terized by a transitional flow regime. In this case, the gravitational
component alone could not satisfactorily reproduce the load and
an additional inertial contribution needed to be considered. In a
first approximation, the total load for avalanche #20103003 was
calculated as:

p =
1
2

Cdqv2 + fqgHeff, (2)

where v is the velocity of the flow upstream the obstacle and Cd is a
drag coefficient, which normally depends on the form and size of the
object, but is also a function of the flow regimes and thus depends
on dimensionless numbers such as the Reynolds, Re, and Froude, Fr,
numbers.

The drag coefficient is normally chosen following the criteria
defined by standard pressure calculations in the inertial flow regime
(Rudolf-Miklau et al., 2015; Jóhannesson et al., 2009; Salm et al., 1990).

Fig. 6. Best fit coefficient f for all avalanches in Table 1 using Eq. (1). Green squares
represent cantilever sensors, red squares piezo sensors and blue squares the plate. Red
open squares represent f values obtained by a similar analysis in Sovilla et al. (2010).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

It is noteworthy that these values are normally valid for calculations
where only inertial contributions are considered. This implies that, in
caseswherethegravitationaltermisdominant, thesecoefficientsneed
to be considered as an approximation. Following the rules defined in
Salm et al. (1990), Jóhannesson et al. (2009), and Rudolf-Miklau et al.
(2015), we selected a Cd = 3, which corresponds to a round cylinder
hit by a wet flow avalanche.

Fig 6 shows the best fit coefficients f for the examined avalanches,
with blue dots representing measurements performed at the large
plate, red dots representing measurements performed with the piezo
sensors and green dots representing measurements performed with
the cantilever sensors. The plot also includes the f coefficients found
by Sovilla et al. (2010) by analyzing impact pressures from piezo
sensors of three wet avalanches. Sovilla et al. (2010) estimated f =
7.2 ± 2.1, 8.1 ± 1.6 and 7.6 ± 1.7, for avalanches #8448, #6236 and
#6241, respectively, using a linear fitting applied to a representative
vertical pressure profile.

Fig. 6 shows that, on average, the parameter f strongly varies
between sensors, indicating a dependency of f on the dimensions
either of the measurement device or of the structure on which the
sensor is installed. Further variability in f is observed among mea-
surements performed with the same sensor, indicating the influence
of the intrinsic material properties, such as liquid water content or
granulometry (Steinkogler et al., 2015).

Finally, Fig. 7 shows the coefficient f(t), calculated as the ratio
between the impact pressure from the piezo (red line) and plate
(blue line) sensors for avalanche #8448, p(t), scaled by the gravi-
tational pressure contribution qgHeff(t). f(t) is compared with the
constant, best fit coefficient f (orange lines) and the effective flow
depth, Heff(t) (black lines). We observed that a constant f reproduced
measurements fairly well for most of the signal but the quality of
the matching decreased for the smaller flow depths, suggesting the
coefficient f may also have an intrinsic flow depth dependence.

5. Pressure on a thin structure from a mobilized volume
of particle

The nature of the pressure exerted by a slow thrust of snow on
a thin obstacle is not fully understood. Nevertheless, it is gener-
ally assumed that the cause of such a pressure is connected with
the formation of a mobilized volume of grains that are disturbed by
the presence of the obstacle (Faug, 2015; Sovilla et al., 2010) or by
the formation of a dead zone upstream of the obstacles or sensor
(Baroudi et al., 2011).
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Recent numerical simulations on a thin object dragged into a
granular medium have demonstrated the existence of a network of
force chains extending from the intruder into the granular mate-
rial flowing around it (Tordesillas et al., 2014). This network, or
mobilized volume, is rather circular and much denser ahead of
the intruder (Tordesillas et al., 2014). By analogy, we expected a
denser force chains network of snow granules to form upstream the
obstacles in VdlS.

Assuming the pressure on the obstacle is defined by the mobilized
volume, this force is likely to depend on the obstacle dimensions as
suggested by Fig. 6, but also on the depth of the incoming flow, as
suggested by Fig. 7. We discuss hereinafter how a recent model care-
fully calibrated using a great number of force data for granular flows
around thin objects (Faug, 2015) may be able to account for those
effects.

Faug (2015) presented a new semi-empirical model that describes
the total force exerted by the particle flow on the obstacle as a function
of the width of the structure, D, and the depth of the incoming flow, H:

F =
p

8
qgH(yD + xH)

2
(sin h − le cos h) , (3)

where h is the slope angle, le is the effective friction of the granular
material, andy andx are parameters that describe the increase in the
mobilized volume with the obstacle width and the flow height, respec-
tively. It is assumed that the mobilized volume, V, has a cylindrical
form, extending across the entire immersed height of the obstacle, and
satisfies V = HS, where S is the typical surface of the mobilized volume
surrounding the obstacle. It is worth noting that the effective friction
le is, by construction, smaller than h in Eq. (3). Note also that, Eq. (3) is
only valid for D ≥ d, and H > nd where d is the particle diameter and
n = 5–10. Belowthis limit,acontinuumapproachisnotreasonable for
granular materials.

Faug (2015) found that the diameter D∗ of the circular surface S
could be described by a linear dependency with obstacle width and
incoming flow depth in the form: D∗ = yD + xH. The pre-factor
(sinh − lecosh) in Eq. (3) indicates that the force contribution from
the mobilized volume is nothing more than its apparent weight, i.e.
the weight of the mobilized volume decreased by the effective friction
force.

The parameters y and x were found to vary in relatively narrow
ranges for data from granular flows (Faug, 2015): y = 2–6 (mean
value around 3) and x = 0.5– 2.4 (mean value around 1.5). It is worth
stressing that the parameters y and x are, by construction, associated
with the hypothetical geometry of the mobilized volume, i.e. a cylinder

of height H. Faug (2015) assumed that this relationship is reasonable
for granular flows, in light of the discrete numerical simulations on a
small intruder dragged onto a granular medium by Tordesillas et al.
(2014). This model has been applied to the measurements performed
with the piezo and plate, which can be easily extended to represent the
loadexertedonthinobjects, i.e. thepylonandthewall. Inparticular, for
thepiezomeasurements,weassumedthevolumemobilizedupstream
of the pylon was controlled by the pylon geometry and thus dependent
on the pylon width, D = 0.60 m, rather than on the sensor diameter,
D = 0.10 m. For this reason, in the following calculations the piezo
measurements were associated with D = 0.60 m, corresponding to
the pylon width. The cantilever sensors were not considered in this
analysis, as they extended into the flow as individual arms (Fig. 1,b).

To compare our data with the model of Faug (2015), Eq. (3) needs
to be matched with Eq. (1). This can only be done if the modeled
amplification factor fm obeys the following relationship:

fm(t) =
p

4

(
2yx + x2 H(t)

D
+ y2 D

H(t)

)
(sin h − le cos h) . (4)

Again, this equation is only valid for D ≥ d, and H > nd, where d is
the particle diameter and n = 5–10. Before providing detailed results
of calculations, it is interesting to analyze the qualitative trends pre-
dicted by Eq. (4) for values of H/D much higher than 1, as in our case.
First, a similar granular flow (H kept constant) impacting two thin
obstacles of distinct widths is likely to exert a greater pressure (largest
fm) on the obstacle whose width D is the smallest. This outcome from
Eq. (4), if applied to full-scale wet snow avalanches, is consistent with
Fig. 6, which shows larger pressures for the pylon (D = 0.6 m) than
for the plate (D = 1 m). Second, Eq. (4) suggests that a decrease in
H/D leads to a decrease in fm. Fig. 7 shows this trend at the tail of the
wet avalanche (after t = 670 s): fm does not remain constant but is
significantly reduced while the avalanche depth decreases.

As an example, we apply this model to avalanche #8448. We con-
sider h = 21◦, corresponding the local slope at the locations of the
obstacles, and a constant density of 400kg m−3. For snow, the effec-
tive friction le may vary a lot depending on the type of snow and the
frictional boundary conditions at the sliding surface. Since this exper-
imental information was not available, it is reasonable to assume that
the slope on which the avalanche stopped (15◦) can provide a rough
estimation of the effective friction le = tan15◦ = 0.27. Note that
le = 0.27 is compatible with the typical values of effective friction
found for full-scale wet snow avalanches by Naaim et al. (2013).

Fig. 7. Coefficients f(t) and f for avalanche #8448. f(t) was calculated as the avalanche pressure p(t) scaled by the gravitational pressure contribution qgHeff(t). The left panel
shows the data from the piezo sensor (red line) while the right panel shows the data from the plate (blue line). The orange horizontal lines show the best fit f coefficients and
standard deviations (6.5 ± 1.4 and 3.7 ± 0.5 for piezo and plate sensors, respectively). Black lines show the effective avalanche depth, Heff . The dashed area highlights data not
used in the analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Coefficients fm(t), f(t) and f for avalanche #8448. The panels shows f(t) values derived from measurements, using f(t) = p(t)/(qgHeff(t)), for the piezo sensor (left, red
line) and for the plate sensors (right, blue line). Black lines show the parameters fm(t) derived from the model calculations using Eq. (4). The orange lines show the best fit f values
(6.5 ± 1.4 and 3.7 ± 0.5 for piezo and plate, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Likewise, we consider x = 1.5, which corresponds to the mean
value found by Faug (2015) for small-scale granular flows. This param-
eter is kept constant, irrespective of the obstacle and sensor con-
sidered, because it represents how the mobilized volume increases
with avalanche thickness. Under all these reasonable assumptions, the
only free parameter is y, which is back calculated according to piezo
and plate measurements. The results are then compared to f values
obtained as a best fit to the data, and to f(t).

Fig. 8, left panel, shows f(t) = p(t)/(qgHeff(t)) for the piezo mea-
surements. fm(t) values derived from Eq. (4) (black line) can success-
fully reproduce f(t) values (red line) by using y = ypiezo = 3.55. This
isavaluealsousedforgranularflows(Faug,2015).PredictionsfromEq.
(4) are not perfect but are much better than a constant f (orange lines
in Fig. 8). In particular, the decrease of f(t) observed at the avalanche
tail is relatively well captured by Eq. (4).

Fig. 8, right panel, shows fm(t), f(t) and f for the plate measure-
ments. Still considering h = 21◦, q = 400kg m−3 and le = 0.27, we
could reproduce the plate data with a value y = yplate = 3.05. The
difference between the back-calculated values of ypiezo and yplate is
around 15%.

To push forward the prediction of the granular model proposed
by Faug (2015), one can extract the typical diameter of the mobilized

Fig. 9. Time evolution of the diameter of the mobilized volume forming upstream of
the pylon (red) and wall (blue). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

volume (assumed to be cylindrical in shape), which is given by D∗ =
yD + xH. Fig. 9 displays how D∗, back-calculated with the values of
y and x mentioned above, would vary over time for both the pylon
and the plate. The radius D∗/2 of the mobilized domain ranges from
2 to 4.5 m. These values confirm that the model results are physically
acceptable.

6. Discussion

Almost all data analyzed in this context shows that, warm
avalanches characterized by low values of Fr (typically smaller than
1), and thus under a gravitational regime condition, exert an impact
pressure proportional to the flow depth, as already proposed by pre-
vious studies (Sovilla et al., 2010). The impact pressure of the only
avalanche characterized by 1 ≤ Fr ≤ 2, and thus in a transitional
flow regime, could be reproduced successfully by adding, in addition
to the depth dependent component, a velocity square component
analogous to that used in granular flow studies (Faug, 2015).

However, the most striking result of our study is shown in Fig. 6,
where the quasi static component of the impact pressure exerted
by an avalanche on a 1m2 plate was, on average, 1.8 times smaller
that the pressure measured with the piezoelectric load cells and 2.9
time smaller than the pressure measured with the cantilever sensors,
thus indicating that the avalanche-obstacle interaction is strongly
controlled by the geometry of the obstacle and sensor.

Further, Fig. 6 shows that the coefficient f also varied between
avalanches, for the same obstacle. For example, f coefficients mea-
sured at the plate ranged between 3.6 and 4.9. We suspect, these
fluctuations were mostly associated with differences in granulom-
etry between avalanches. As shown by Steinkogler et al. (2015),
granulation regimes depend on snow temperature and liquid water
content. Moist snow tends to create smaller, elasto-plastic granules
(∼2–10 cm in tumbler laboratory experiments) that show a quasi-
brittle behavior upon impact, while wet snow generated, larger
granules (∼10–25 cm in the same experiments) that show a plas-
tic behavior during impact. Thus, different dimensions and material
properties have an influence on the stress distribution occurring
between granules in the mobilized volume upstream of the sensor.

It is noteworthy that, the different granulation processes will
change the internal friction angle of the material, 0, and thus have
a direct influence on the definition of the model parameters, x and
y, that should be constant for one avalanche but clearly depend on
properties of the flowing snow. For instance, the latter parameters
are expected to change with grain size and shape. The grain size and
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shape are controlled by friction and cohesion between snow crys-
tals (much smaller grain scale) as well as by liquid water content.
Finally, the effective basal friction, le, which depends also on snow
properties, may be influenced by granulometry as well.

In our back calculation, the parameters were set according to the
granular experiments of Faug (2015) and topographic observations.
Choosing x = 1.5 and le = 0.27, leads to an average y = 3.3 for
avalanche #8448, which is close to the mean value of y = 3 found
by Faug (2015) for idealized grains, suggesting that for this kind of
avalanches the granular behavior of flowing snow prevails.

Taking into account the granular nature of the flow (Steinkogler et
al., 2015), and in analogy to granular experiments, we postulate that
the differences in pressure may arise from the different mobilized
volume of material forming upstream of the obstacles (Faug, 2015).
Fig. 9 shows that the reconstructed diameter D∗ of these regions
varies between 4 and 8 m for the plate and between 3.5 and 7 m
for the pylon, depending on the incoming flow depth. There is not
a direct measurement inside the avalanche to further demonstrate
the existence of that mobilized volume or its exact geometry, but the
values found for D∗/2 appear to be physically reasonable when they
are compared to the avalanche depth (2–4 m).

Further, our analysis shows that the semi-empirical model pro-
posed by Faug (2015) was able to reproduce the data from both the
piezo and the plate by considering nearly the same set of model
parameters. In particular, in our back calculation, only the parame-
ter y was left free. The y difference between pylon and plate, for
the same avalanche, was estimated to be about 15%. We believe that
the reasons for such a discrepancy may be attributed to manifold
sources. First, flow variabilities between the pylon and plate may
have caused the flow depth measurements at the pylon to be less
representative for the plate. Second, since the shape of the pylon and
plate are different, the geometry of the mobilized volume may also
differ. Finally, there may be local effects, such as the formation of a
small plastic dead zone in front of the sensors and the grain size being
the snow crystal, which may cause an additional increase in pressure
as seen by Baroudi et al. (2011).

Indeed, an alternative framework explaining the differences in
pressure exerted by wet avalanches on small load cells has been
recently proposed by Baroudi et al. (2011). In their work, the
mechanics of continuous media and earth passive pressure formal-
ism is used to introduce the formation of a local wedge of snow
directly on the sensor, for which the relevant grain scale is the snow
crystal, which modifies the force transmission. Comparing measure-
ments at the cantilever and piezo sensors for avalanche #8448, the
impact pressure was back calculated by assuming a shear failure
between moving avalanche snow and the snow wedge around the
obstacle. We believe that, both approaches are relevant. Depending
on the adopted formalism (continuous media mechanics with shear
failure or discrete granular physics with force chains), the associ-
ated obstacle-flow volumes differ but the loadings can be accordingly
reconstructed with the data. Therefore, both approaches may be
investigated jointly to further improve the calculation of impact
pressure on obstacles.

7. Conclusions

We analyzed impact pressures of wet avalanches, loaded under
gravitational and transitional flow regimes. These pressures were
measured with sensors mounted on finite-sized obstacles similar to
ski or chairlift pylons. We show that the pressure exerted by wet
avalanches can be reproduced accurately by a gravitational compo-
nent, which, however, strongly depends on the dimensions of the
obstacle and on the depth of the incoming flow. We show that
the formation of a mobilized volume upstream of the obstacle can
explain the measured pressures. However, verifying the existence of
the mobilized volume and predicting its shape and size remains a

challenge for future research on snow avalanches interacting with
obstacles.

These results are of fundamental importance for the design of
pylon-like structures but also for the up-scaling of impact pressure
measured with small cells to larger dimensions, which are relevant
for structure design. The data presented here correspond to spe-
cific geometries and dimensions and thus cannot be extrapolated to
all possible geometries. While experiments conducted in full scale
representing different geometries are not economically affordable,
numerical simulations may help to investigate the full spectrum of
geometries. An adaptation of the cohesive discrete element sim-
ulations presented by Steinkogler et al. (2015) may be a possible
approach as it is capable of taking into account not only the different
geometries but also the different granulometry classes and thus the
important influence of snow properties.

Acknowledgments

The authors would like to thank the avalanche dynamics team
and logistics staff of the WSL/SLF, the Austrian Service for Torrent
and Avalanche Control - WLV, the BFW avalanche dynamics logistics
team for their support in the experiments and the French ANR-Opale
project. Part of this work was funded by “Canton du Valais” and by
the Swiss National Foundation under grants no. 206021-113069/1
and 200021-143435. Thierry Faug is grateful for the financial sup-
port provided by the People Programme (Marie Curie Actions) of
the European Unions Seventh Framework Programme under REA
Grant Agreement No. 622899 (FP7-PEOPLE-2013-IOF, GRAINPACT).
We gratefully thank C. Ancey and an anonymous reviewer whose
suggestions helped improve and clarify this manuscript.

References

Rudolf-Miklau, F., Pfeifer, M.A., Barabási, A.-L., Schiffer, P., Rudolf-Miklau, F., 2015. The
technical avalanche protection handbook. Ernst & Sohn

Albert, R., Pfeifer, M.A., Barabási, A.L., Schiffer, P., 1999. Slow drag in granular medium.
Phys. Rev. Lett 82 (1), 205–208.

Ancey, C., 2006. Dynamique Des Avalanches. Presses Polytechniques et Universitaires
Romandes

Ancey, C., 2015. Bain, v. Rev. Geophys
Ancey, C., Evesque, P., 2000. The frictional–collisional regime for granular suspension

flows down an inclined channel. Phys. Rev. E. 62, 8349–8360.
Baroudi, D., Sovilla, B., Thibert, E., 2011. Effects of flow regime and sensor geometry on

snow avalanche impact pressure measurements. J. Glaciol 57 (202), 1–12.
Dent, J.D., Burrell, K.J., Schmidt, D.S., Louge, M.Y., Adams, E., Jazbutis, T.G., 1998. Den-

sity, velocity and friction measurements in a dry snow avalanche. Ann. Glaciol 26,
247–252.

Faug, T., 2015. Macroscopic force experienced by extended objects in granular flows
over a very broad Froude-number range. Eur. Phys. J. E 38 (5), 120

Forterre, Y., Pouliquen, O., 2008. Flows of dense granular media. Annu. Rev. Fluid Mech
40 (1-24),

Gauer, P., Lied, K., Kristensen, K., 2008. On avalanche measurements at the Norwegian
full-scale test-site ryggfonn. Cold Reg Sci. Technol 51 (2-3), 138–155.

Jóhannesson, T., Gauer, P., Issler, D., Lied, K., 2009. The Design of Avalanche Protection
Dams.

Kern, M.A., Bartelt, P., Sovilla, B., Buser, O., 2009. Measured shear rates in large dry and
wet snow avalanches. J. Glaciol 55 (190), 327–338.

Kogelnig, A., Suri nach, E., Vilajosana, I., Hübl, J., Sovilla, B., Hiller, M., Dufour, F., 2011.
On the complementariness of infrasound and seismic sensors for monitoring
snow avalanches. Nat. Hazards Earth Syst. Sci. 11, 2355–2370.

Louge, M.Y., Steiner, R., Keast, S., Decker, R., Dent, J., Schneebeli, M., 1997. Application
of capacitance instrumentation to the measurement of density and velocity of
flowing snow. Cold Reg. Sci. Technol. 25 (1), 47–63.

Naaim, M., Durand, Y., Eckert, N., Chambon, G., 2013. Dense avalanche friction
coefficients: influence of physical properties of snow. J. Glaciol 59 (216), 771–782.

Salm, B., 1966. Contribution to avalanche dynamics. Scientific Aspects of Snow and Ice
Avalanche, Davos, IAHS Press Wallingford, Oxfordshire, UK.

Salm, B., Burkard, A., Gubler, H.U., 1990. Eidg. Institut f. Schnee- und Lawinen-
forschung, CH-7260 Davos Dorf.

Savage, S.B., Hutter, K., 1991. The dynamics of avalanches of granular materials from
initiation to run-out. Part I. Analysis. Acta Mech. 86 (1-4), 201–223.

Schaer, M., Issler, D., 2001. Particle densities, velocities and size distribution in large
avalanches from impact-sensor measurements. Ann. Glaciol 32, 321–327.

Sovilla, B., Kern, M., Schaer, M., 2010. Slow drag in wet avalanche flow. J. Glaciol 56
(198), 587–592.

http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0005
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0010
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0015
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0020
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0025
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0030
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0035
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0040
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0045
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0050
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0055
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0060
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0065
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0070
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0075
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0080
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0085
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0090
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0095
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0100


B. Sovilla, T. Faug, A. Köhler, D. Baroudi, J-T. Fischer, E. Thibert / Cold Regions Science and Technology 126 (2016) 66–75 75

Sovilla, B., McElwaine, J.N., Louge, M.Y., 2015. The structure of powder snow avalanches.
C. R. Phys 16 (1), 97–104. http://dx.doi.org/10.1016/j.crhy.2014.11.005.

Sovilla, B., Schaer, M., Kern, M., Bartelt, P., 2008. Impact pressures and flow regimes in
dense snow avalanches observed at the Vallée de la Sionne test site. J. Geophys.
Res 113, F01010 http://dx.doi.org/10.1029/2006JF000688.

Sovilla, B., Schaer, M., Rammer, L., 2008. Measurements and analysis of full-scale
avalanche impact pressure at the vallée de la Sionne test site. Cold Reg. Sci.
Technol. 51, 122–137. http://dx.doi.org/10.1016/j.coldregions.2007.05.006.

Steinkogler, W., Gaume, J., Löwe, H., Sovilla, B., 2015. Lehning, m. J. Geophys. Res http://
dx.doi.org/10.1002/2014JF003294.

Tiefenbacher, F., Kern, M.A., 2004. Experimental devices to determine snow avalanche
basal friction and velocity profiles. Cold Reg. Sci. Technol. 38 (1), 17–30.

Tordesillas, A., Hilton, J.E., Tobin, S., 2014. Stick-slip and force chain evolution in a
granular bed in response to a grain intruder. Phys. Rev. E 89, 042207.

Voellmy, A., 1955. über die zerstörungskraft von lawinen (on the destructive forces
of avalanches). Schweiz. Bauztg 73 (12/15/17/19), 159–162. 212-217, 246-249,
280-285.

Vriend, N.M., McElwaine, J.N., Sovilla, B., Keylock, C.J., Ash, M., Brennan, P.V., 2013.
High-resolution radar measurements of snow avalanches. Geophys. Res. Lett 40
(4), 727–731.

Wieghardt, K., 1975. Experiments in granular flow. Annu. Rev. Fluid Mech 7, 89–114.

http://dx.doi.org/10.1016/j.crhy.2014.11.005
http://dx.doi.org/10.1029/2006JF000688
http://dx.doi.org/10.1016/j.coldregions.2007.05.006
http://dx.doi.org/10.1002/2014JF003294
http://dx.doi.org/10.1002/2014JF003294
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0125
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0130
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0135
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0140
http://refhub.elsevier.com/S0165-232X(16)30032-5/rf0145

	Gravitational wet avalanche pressure on pylon-like structures
	1. Introduction
	2. Methods
	2.1. Infrastructure and sensors
	2.2. Criteria for data comparison

	3. Data
	3.1. Avalanche #8448
	3.2. Avalanche #20103003
	3.3. Avalanche #20113003
	3.4. Avalanche #20133019
	3.5. Avalanche #20133021

	4. Snow avalanche pressure in the gravitational and transitional regimes
	5. Pressure on a thin structure from a mobilized volume of particle
	6. Discussion
	7. Conclusions
	Acknowledgments
	References


