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Abstract. We propose a method to visualize information flow in the
visual pathway following a visual stimulus. Our method estimates struc-
tural connections using diffusion magnetic resonance imaging and func-
tional connections using electroencephalography. First, a Bayesian net-
work which represents the cortical regions of the brain and their con-
nections is built from the structural connections. Next, the functional
information is added as evidence into the network and the posterior
probability of activation is inferred using a maximum entropy on the
mean approach. Finally, projecting these posterior probabilities back
onto streamlines generates a visual depiction of pathways used in the net-
work. We first show the effect of noise in a simulated phantom dataset.
We then present the results obtained from left and right visual stimuli
which show expected information flow traveling from eyes to the lateral
geniculate nucleus and to the visual cortex. Information flow visualiza-
tion along white matter pathways has potential to explore the brain
dynamics in novel ways.

1 Introduction

The brain can be described as a network of interconnected information process-
ing nodes. Each node, corresponding to a brain region, is specialized for a specific
type of information. It is the interaction of the different nodes via the connec-
tions of the network that allows the brain to process and appropriately respond
to external stimuli. Consider a subject that is asked to reach for and grasp an
object when a visual cue is presented. First, visual information is transferred
from the retina to the primary visual cortex through the optic nerve, optic tract
and optic radiation. It is then expected that the reach and grasp component of
the task will be handled separately by subregions of the parietal and premo-
tor cortex [1]. Finally, the primary motor cortex will be involved to initiate the
reaching movement. Individually, the visual, parietal, premotor, and motor cor-
tex cannot produce the desired task. It is their interaction, or more specifically
their exchange of information, that allows the subject to reach and grasp the
object. The ability to image and observe the interaction of the different regions
of the brain would therefore be invaluable to our understanding of the brain.



In this work, we present a new model of information flow in the brain built on
the previous work of [2]. First, we build a Bayesian network which captures the
state of the cortical surface of the brain and their connections. The network is
subject specific as it is built from the structural connectivity via diffusion mag-
netic resonance imaging (MRI). Next, we introduce the electroencephalography
(EEG) measurements as evidence into this network. Finally, using the principle
of maximum entropy on the mean, we infer the posterior probability that cortical
regions and connections are active. By projecting activation probabilities of con-
nections back onto the streamlines obtained from diffusion MRI, we generate an
animated representation of information flow. Thus, by combining functional in-
formation obtained from EEG with anatomical information obtained in diffusion
MRI, we infer the information flow in the white matter of the brain.

2 Theory

We model the cortical activity using a distributed dipole model. The activation of
a small area of the cortical surface is modeled by a dipole n that is perpendicular
to the surface and whose intensity at a time t is given by xn,t ∈ IR. We distribute
thousands of these dipoles on the cortical surface and combine their intensities
in a vector x ∈ IRNdNt where Nd and Nt are the number of dipoles and samples,
respectively. The forward problem can then be modeled as m = Gx + ε where
m ∈ IRNsNt is the vector of EEG measurements with Ns the number of sensors.
The matrixG is the lead field that projects the dipole intensities onto the sensors.
It can be computed using the anatomical MR images of the subject [5] and is
therefore a known quantity. The observation are corrupted by the additive noise
term ε. Note that we consider all time samples in a single very large problem
which makes the forward operator G block diagonal.

2.1 Connectivity informed maximum entropy on the mean

The vector of dipole intensities x represents the cortical activity for a given time
window. Estimating these intensities from the measurements m is an ill-posed
problem. We have many more intensities to estimate than available measure-
ments. In [2], Amblard et al. propose to group the dipoles into NS cortical
regions, which we refer to as clusters. Each cluster is assigned a state vari-
able which dictates the possible intensities of dipoles within the cluster. Let Sk
represent the state of the kth cluster, that is whether it is active or not. Let
S = [S1, S2, ..., SNS

] be the cluster state vector. Note that like m and x, the
vector S incorporates a time component. That is, if the cortical surface is seg-
mented into 60 regions and the data window contains 10 time points, S contains
600 state variables. Let dµ(x,S) = µ(x,S)dx be a reference law that represents
the a priori information of the dipole intensities and cluster states. We assume
the source amplitudes xk of the kth cluster depends only on the state of the



cluster Sk to get

dµ(x,S) = π(S)

NS∏
k=1

dµ(xk|Sk) (1)

where π(S) is the joint probability law of the cluster states. This distribution,
along with the assumption of independent cluster states, was used by [2] to
constrain the inverse problem and estimate the dipole intensities.

The output of a tractography pipeline is a set of streamlines which represent
the white matter fiber bundles. When streamlines begin in a cluster and end in
another, we say that those two clusters are connected. A connection between
two clusters is characterized by its length, which is the average length of the
streamlines that reach those clusters. We treat these connections as wires or
pipes which allow communication between cortical regions. The state of a clus-
ter at a time t0 can influence the state of a different cluster at a time t∆ if they
are connected. The delay ∆ is proportional to the length of the connection and
the speed at which information flows in the connection. For example, if a cluster
is known to be active at a time t0, it increases the likelihood that its connected
counterpart is active at a time t∆. This spatio-temporal regularization consti-
tutes an additional prior and is therefore included in the model by modifying
the distribution (1). The connections are added as a new set of variable which
represent connection states. Much like the state of the clusters affect the dipoles,
the state of the connections affect clusters. That is, the state of a connection Ci
gives us information about the state of the clusters it connects. Like clusters, we
assume connections are either active or inactive. Let C be the connection state
vector, the updated prior information on sources, clusters, and connections is
then given by

dµ(x,S,C) = ϕ(C)π(S|C)

NS∏
k=1

dµ(xk|Sk) (2)

where ϕ(C) is the joint probability law of the connection states. The distribution
(2) is too general. It allows the state of a cluster to be affected by a connection
that does not reach it. We therefore assume that the state of a cluster depends
only on the connections that reach it. If we let Cγ(k) be the connections that

reach the kth cluster, the joint distribution of the cluster states given the con-
nection states is

π(S|C) =

NS∏
k=1

π(Sk|Cγ(k)). (3)

Finally, we assume that the state of a connection is independent of other con-
nection which, along with (3) yields

dµ(x,S,C) =

NC∏
i=1

ϕ(Ci)

NS∏
k=1

π(Sk|Cγ(k))dµ(xk|Sk). (4)

The distribution (4) contains all of the available prior information. It describes
our prior knowledge of the source intensities, cluster states, and connection states



given no EEG measurements. The next step is to insert the observed EEG mea-
surements as evidence and thus be able to infer the posterior probability of any
given source, cluster, and connection configuration.

Let the dipole intensities x have a probability law dp(x), distinct from the
reference law dµ(x) described previously. The objective of the MEM algorithm
is to find the probability law dp∗(x) = p∗(x)dx that satisfies

m = Gx∗ with x∗ =

∫
xp∗(x)dx (5)

while minimizing the distance to the reference law measured using the Kullback-
Leibler divergence DKL(p(x)|dµ(x)). In other words, the solution is the probabil-
ity law dp∗(x) closest to the reference law dµ(x) that explains the observations
on average. By introducing Lagrange multipliers, minimizing DKL(p(x)|dµ(x))
subject to (5) can be written as

minimize
p(x),λ,λ0

DKL(p(x)|dµ(x)) + λT (m−G
∫
xp(x)dx) + λ0(1−

∫
dp(x)). (6)

The first term is the entropy of the model, the second is the data fit, and the
third ensures p(x) is a probability distribution. Equation (6) can be thought of
as finding the optimal compromise between the uncertainty (i.e. entropy) of the
model and the observations. If we assume the noise is Gaussian with zero mean,
the unique optimal Lagrange multipliers λ∗ can be determined by solving [2]

λ∗ = arg min
λ

lnZ(λ) + (λTm− λTΣ2
ελ) (7)

where Σ2
ε is the variance of the additive noise and where Z(λ) is the partition

function given by

Z(λ) =

∫
exp (λTGx)dµ(x). (8)

Note that (7) does not depend on p(x) or λ0, which can be determined from the
unique minimizer λ∗. Finding the optimal Lagrange multipliers from (7) requires
evaluating Z(λ) which in turn requires the reference law dµ(x). We propose to
obtain this reference law by marginalizing S and C out of (4), that is

dµ(x) =
∑
{C}

NC∏
i=1

ϕ(Ci)
∑
{S}

NS∏
k=1

π(Sk|Cγ(k))dµ(xk|Sk) (9)

where the sum over {C} indicates a sum over all possible realizations of C.
The optimal Lagrange multipliers λ∗ are identified by solving (7) which requires
evaluating Z(λ) repeatedly. The sum over all possible states of C which ap-
pears in (9) is prohibitive because it generates 2Nc terms which quickly becomes
intractable. This problem can be mitigated by noting that Z(λ) is the unnor-
malized sum of the marginal probability of any variable in C or S. All terms in
the sum need not be evaluated because the state of a cluster depends only on a
few connections. Using a suitable variable elimination order, which depends on
the specific connections between clusters, the sum of products can be rearranged
to compute Z(λ) efficiently.



3 Methods

3.1 Synthetic data

To validate our algorithm, synthetic EEG data was generated using a simplified
model of the visual system. The model consists of two clusters of 10 sources
representing the left and right primary visual cortices. In addition, the model
contains four clusters representing the lateral geniculate nuclei (LGN) and the
eyes. These four clusters each have a single invisible source, i.e. their corre-
sponding column of G contains only zeros. Bidirectional connections are present
between the LGN and between the visual cortices. Unidirectional connections
link the eyes to the LGN and the LGN to the visual cortices. To simulate sig-
nals, information is propagated from the eyes to the LGN and to the visual
cortex by selecting random connections. When a cluster is activated by one of
its connections, the correspond sources are activated. The synthetic EEG signals
are then recorded by two sensors located near the visual cortices. Gaussian noise
is added to the synthetic EEG measurements to obtain the desired signal to
noise ratio (SNR) defined as the variance of the signal over the variance of the
noise.

To quantify how the SNR affects our algorithm’s ability to recover informa-
tion flow patterns, synthetic signals were generated with an SNR varying between
1 and 20. These signals were then used to recover the posterior probability that
each connection was active. A recovery was deemed successful if all connections
used to simulate the data obtained a posterior probability above 0.5 while all
other posterior probabilities were below 0.5.

3.2 Experimental data acquisition and preprocessing

Magnetic resonance images and EEG signals were acquired on a healthy vol-
unteer. The MR images included diffusion weighted images acquired using a
SPLICE sequence (b-value 1000 s/mm2, 64 directions) and a T1 weighted im-
age. The SPLICE sequence was selected over a more common EPI sequence
because it does not generate distortions near the eyes and allows us to track
the optic nerve and optic tract. Fiber orientation distribution functions were
computed using constrained spherical deconvolution [6] implemented in dipy [4].
Fiber tracking was performed using anatomically constrained particle filter trac-
tography [7] also implemented in dipy. The surface of the cortex was extracted
and segmented from the T1 weighted image using FreeSurfer and then downsam-
pled to 8000 vertices. The forward operator G was computed using OpenMEEG
[5, 8].

After the MR acquisition, the subjects were fitted with a 64 channel acti-
CAP (Brain Products GmbH) EEG cap. The subjects were seated in front of a
computer screen in a dark quiet room and were asked to fixate on a red circle
appearing at the center of the screen. The visual stimuli consisted of a circle
appearing on the left or right side of the screen. One run consisted of 50 left and
50 right visual cues randomly interleaved. A total of 10 runs were performed, 5



Fig. 1. Rate of successful information flow recovery at different SNR.

with each stimuli. The EEG signals were separated into 150ms epochs starting
at the stimulus onset. Epochs with blink artifacts were excluded from further
analysis. All remaining epochs for each stimuli were averaged and downsampled
to 100Hz.

3.3 Model parameters

The model presented above relies on several parameters. First, the information
velocity must be specified to compute the delay associated with each connection.
Here, we assume a constant velocity of 6 m/s [9] for all connections of the
brain. Next, the parameters of the prior distribution dµ(x,S,C) must be given.
Connections and clusters are initialized with a 0.9 probability of being inactive.
However, when a connection is active, the clusters it connects must also be active.
Finally, the intensity of sources follows a Gaussian distribution with zero mean.
If the cluster is active or inactive, the variance of the distribution is 1e-4 or 1e-7,
respectively.

4 Results

Figure 1 illustrates the rate of successful information flow recovery averaged over
100 realizations for each SNR. The rate of recovery sharply rises between a SNR
of 5 and 10. An example of a successful recovery is illustrated in Figure 2. The
left part of the figure presents the posterior probabilities projected back onto
the model and animated. Information can be seen flowing through the different
clusters. The right part of the figure presents and overview of the same results in
the form of a flow diagram. Each row of the graph represents a cortical region and
the circles correspond to individual time points. Information flow in connections
is illustrated by lines connecting cortical regions at different time points. In
both cases, green indicates a high probability that a region or connection is
active whereas white indicates a low probability.

Reconstruction of the information flow following a left and right visual stim-
ulus is illustrated in Figure 3. For the left visual stimulus, information flow



Fig. 2. Reconstruction of the information flow from the left eye, to the right LGN,
to right visual, to the left visual (SNR = 5). The left of the figure is a video of the
information flow projected back onto the model. The right of the figure presents the
same information in the form of an information flow diagram.

through the optic nerve and optic chiasm to reach the right LGN. The informa-
tion then goes through the optic radiation to reach the occipital lobe. Notably,
the right LGN and right optic radiation have a higher posterior probability than
their left counterpart, consistent with the expected visual activation. Similar re-
sults are obtained for the right visual stimuli, however the right and left visual
pathways are activated with similar posterior probabilities.

5 Conclusion

By combining structural connectivity information from diffusion MRI and func-
tional information from EEG, our algorithm is able to infer information in the
white matter of the brain. We evaluated the rate of successful recovery using
synthetic data and presented preliminary in vivo results of information flow in
the visual pathway. In this study, a constant information velocity of 6m/s was
assumed for all connections of the brain. However, it should be noted that our
model is not specific to this assumption and can accommodate different informa-
tion velocities for different connections. In the future, it may be possible to tune
information speed using additional micro-structure information such as axon
diameter or myelination. Our method represents a promising new approach to
visualizing brain dynamics and connectomics across white matter pathways.
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(a) (b)

Fig. 3. Video of the reconstructed information flow in the visual pathway for the 120ms
following a left (a) or right (b) visual stimulus.
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