
HAL Id: hal-01556243
https://hal.science/hal-01556243v1

Preprint submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Monotone Partitions of Partially-Ordered
Domains (Work in Progress)

Oded Maler

To cite this version:
Oded Maler. Learning Monotone Partitions of Partially-Ordered Domains (Work in Progress). 2017.
�hal-01556243�

https://hal.science/hal-01556243v1
https://hal.archives-ouvertes.fr

Learning Monotone Partitions
of Partially-Ordered Domains

(Work in Progress)

Oded Maler

VERIMAG
CNRS and Univ. of Grenoble-Alpes

France
oded.maler@univ-grenoble-alpes.fr

July 4, 2017

Abstract

We present an algorithm for learning the boundary between an upward-
closed set X and its downward-closed complement. The algorithm selects
sampling points for which it submits membership queries x ∈ X . Based
on the answers and relying on monotonicity, it constructs an approximation
of the boundary. The algorithm generalizes binary search on the continuum
from one-dimensional (and linearly-ordered) domains to multi-dimensional
(and partially-ordered) ones. Applications include the approximation of Pareto
fronts in multi-criteria optimization and parameter synthesis for predicates
where the influence of parameters is monotone.

1 Introduction and Motivation

Let X be a bounded and partially ordered set that we consider from now on to be
[0, 1]n. A subset X of X is upward closed in X if

∀x, x′ ∈ X (x ∈ X ∧ x′ ≥ x)→ x′ ∈ X.

Naturally, the complement of X , X = X −X is downward closed, and we use the
term monotone bi-partition (or simply partition) for the pair M = (X,X). We do
not have an explicit representation of M and we want to approximate it based on
queries to a membership oracle which can answer for every x ∈ X whether x ∈ X .

1

Y

Y

X

X

Figure 1: A monotone partition and its approximation.

Based on this information we construct an approximation of M by a pair of sets,
(Y , Y) being, respectively, a downward-closed subset of X and an upward-closed
subset of X , see Figure 1. This approximation, conservative in both directions,
says nothing about points residing in the gap between Y and Y . This gap can be
viewed as an over-approximation of bd(M), the boundary between the two sets.
There are two degenerate cases of monotone partitions, (X, ∅) and (∅, X) that we
ignore from now on, and thus assume that 0 ∈ X and 1 ∈ X , where r denotes
(r, . . . , r). We adopt the conventions that bd(M) belongs to X .

Before presenting the algorithmic solution that we offer to the problem, let us
discuss some motivations. To start with, the problem is interesting for its own sake
as a neat high-dimensional generalization of the problem of locating a boundary
point that splits a straight line into two intervals. This problem is solved typically
using binary (dichotomic) search, and indeed, the essence of our approach is in
embedding binary search in higher dimension.

One major motivation comes from the domain of multi-criteria optimization
where solutions are evaluated according to several criteria and the cost of a solution
can be viewed as a point in a multi-dimensional cost space X . The optimal cost of
such optimization problems is rarely a single point but rather a set of incomparable
points also, known as the Pareto front of the problem. It consists of solutions that
cannot be improved in one dimension without being worsened in another. Under
certain assumptions, the Pareto front can be viewed as the boundary of a monotone
partition. For a minimization problem, X corresponds to infeasible costs and X
represents the feasible costs. The Pareto front is the set bd(M) = min(X) and
the approximation that is provided is min(Y). In [2] we developed a procedure
for computing such an approximation using a variant of binary search that submits
queries to a constraint solver concerning the existence of solutions of a given cost
x. The costs used in the queries were selected in order to reduce the distance be-
tween the boundaries of Y and Y and improve approximation quality. The present

2

algorithm provides an alternative (and hopefully more efficient) way to approxi-
mate Pareto fronts.

Another motivation comes from some classes of parametric identification prob-
lems. Consider a parameterized family of predicates/constraints {ϕp} where p is a
vector of parameters ranging over some parameter space. Given an element u from
the domain of the predicates, we would like to know the range of parameters p
such that ϕp(u) holds. We say that a parameter p has a fixed (positive or negative)
polarity if increasing its value will have a monotone effect on the set of elements
that satisfy it. For example if a parameter p appears in a parameterized predicate
u ≤ p, then for any p′ > p and any u, ϕp(u) implies ϕp′(u). When no param-
eter appears in two constraints in opposing sides of an inequality, and after some
pre-processing, the set of parameters that lead to satisfaction is upward closed. Its
set of minimal elements indicates the set of tightest parameters that lead to sat-
isfaction of ϕp(u), which is a valuable information about u. In [1] we explored
the idea for the domain of real-valued signals u(t) and temporal formulas such as
∃t < p1 u(t) < p2.

2 Binary Search in One Dimension

Our major tool is classical binary search over one-dimensional and totally-ordered
domains, where a partition of [0, 1] is of the form M = ([0, z), [z, 1]) for some
0 < z < 1. The outcome of the search procedure is a pair of numbers y and y such
that y < z < y, which implies a partition approximation M ′ = ([0, y), [y, 1]).
The quality of M ′ is measured by the size of the gap y − y, which can be made
as small as needed by running more steps. Note that in one dimension, y − y is
both the volume of [y, y] and its diameter. We are going to apply binary search
to straight lines of arbitrary position and arbitrary positive orientation inside high-
dimensional X , hence we formulate it in terms that will facilitate its application in
this context.

Definition 1 (Line Segments in High-Dimension) The line segment connecting
two points x < x ∈ X = [0, 1]n is their convex hull

〈x, x〉 = {(1− λ)x+ λx : λ ∈ [0, 1]}.

The segment inherits a total order from [0, 1]: x ≤ x′ whenever λ ≤ λ′.

The input to the binary search procedure, written in Algorithm 1, is a line
segment ` and an oracle for a monotone partition M = (`, `) = (〈x, z〉, 〈z, x〉),
x < z < x. The output is a sub-segment 〈y, y〉 containing the boundary point z.

3

The procedure is parameterized by an error bound ε ≥ 0, with ε = 0 representing
an ideal variant of the algorithm that runs indefinitely and finds the exact boundary
point. Although realizable only in the limit, it is sometimes convenient to speak in
terms of this variant. Figure 2 illustrates several steps of the algorithm.

Algorithm 1 One dimensional binary search: search(〈x, x〉, ε)
1: Input: A line segment ` = 〈x, x〉, a monotone partition M = (`, `) accessible

via an oracle member() for membership in ` and an error bound ε ≥ 0.
2: Output: A line segment 〈y, y〉 containing bd(M) such that y − y ≤ ε.
3: 〈y, y〉 = 〈x, x〉
4: while y − y ≥ ε do
5: y = (y + y)/2
6: if member(y) then
7: 〈y, y〉 = 〈y, y〉 . left sub-interval
8: else
9: 〈y, y〉 = 〈y, y〉 . right sub-interval

10: end if
11: end while
12: return {〈y, y〉}

zx x

y y

y

Figure 2: Binary search and the successive reduction of the uncertainty interval.

4

3 Monotone Partitions in High Dimension

The following definitions are commonly used in multi-criteria optimization and in
partially-ordered sets in general.

Definition 2 (Domination and Incomparability) Let x = (x1, . . . , xn) and x′ =
(x′1, . . . , x

′
n) be two points. Then

1. x ≤i x′ if xi ≤ x′i; x <i x′ if xi < x′i;

2. x ≤ x′ if x ≤i x′ for every i;

3. x < x′ if x ≤ x′ and x <i x′ for some i. In this case we say that x dominates
x′;

4. x||x′ if x 6≤ x′ and x′ 6≤ x, which means that x <i x′ and x′ <j x′ for some
i and j. In this case we say that x and x′ are incomparable.

Any two points x < x define a rectangle bx, xe = {x : x ≤ x ≤ x} for which
they are, respectively, the minimal and maximal corners, as well as the endpoints
of the diagonal 〈x, x〉. A point x defines various rectangles consisting of points
with which it is in certain order relations. Similar relations can be associated with
a rectangle bx, xe.

Definition 3 (Rectangular Half-Space) Let i ∈ {1, . . . , n} be a dimension.

• The orthogonal i-half-spaces associated with a point x ∈ X are

Ci,0(x) = {x′ ∈ X : x′ ≤i x}, Ci,1(x) = {x′ ∈ X : x′ ≥i x}.

• The orthogonal i-half-spaces associated with a rectangle bx, xe ⊆ X are

Ci,0(bx, xe) = {x′ ∈ X : x′ ≤i x}, Ci,1(bx, xe) = {x′ ∈ X : x′ ≥i x}.

Observe that for a point, the half-spaces Ci,0(x) and Ci,1(x) form a partition while
for a rectangle Ci,0(bx, xe) and Ci,1(bx, xe overlap over the interval [xi, xi]. They
can be defined, alternatively, as all the points x′ for which there exists x ∈ bx, xe
such that x′ ≤i x (resp. x ≥i x′).

Definition 4 (Rectangular Cones) Let α ∈ {0, 1}n be a Boolean vector.

• The rectangular α-cone induced by a point x is

Bα(x) =

n⋂
i=1

Ci,αi(x).

5

�
�
�
�

B10(x)

B01(x) x B11(x)

x||x′

x||x′

B00(x)

x′ < x

x < x′

Figure 3: Rectangular cones in dimension 2.

• The rectangular α-cone induced by a rectangle bx, xe is

Bα(bx, xe) =
n⋂
i=1

Ci,αi(bx, xe).

The rectangular cones of x partition X into 2n boxes and x is a corner of
each. In particular, B0(x) = b0, xe and B1(x) = bx,1e are, the downward and
upward cones of x, consisting, respectively, of points below and above x. The
set of all other 2n − 2 cones, denoted by I(x), contains rectangles consisting of
points incomparable to x. These notions are illustrated for n = 2 in Figure 3.
Naturally, the cones associated with a rectangle do not form a partition, and only
B0(bx, xe) = B0(x) and B1(bx, xe) = B1(x) are separated from the other cones.
We use I(bx, xe) for the incomparable cones.

The multi-dimensional algorithm presented in the sequel is based on the ob-
servation that any line ` of a positive slope inside a rectangle bx, xe that admits a
monotone partition M , intersects bd(M) at most once. In particular, the diagonal
` = 〈x, x〉 of the rectangle is guaranteed to intersect bd(M). Hence ` admits by
itself a monotone partition (`, `) that can be subject to Algorithm 1 to obtain an
approximation of bd(M) ∩ `.

Figure 4 illustrates the interaction between the result of the one-dimensional
search process on the diagonal and the approximation of the higher-dimensional
partition. Initially both Y and Y are set to ∅ and their complement, the over-
approximation of bd(M), is the whole domain X . Figure 4-(a) shows the outcome
of running the ideal version of Algorithm 1 which finds the boundary point y. In
this case the upward cone of y is added to X and the downward cone is added to
Y . The boundary approximation is thus refined to become their complement, the
union B01(y) ∪B10(y) of the rectangles incomparable to y.

6

B01(by, ye)

(b)

(a)

y

B11(y)

B00(y)

B10(y)

B01(y)

y

y B11(y)

B00(y)

B10(bx, xe)

Figure 4: (a) The effect of finding the exact intersection of the diagonal with the
boundary; (b) The effect of finding an interval approximation of that intersection.

The situation with the non-ideal variant of the search algorithm is a bit more
involved qualitatively, but since ε can be easily made small, it does not make a
big quantitative difference. Figure 4-(b) shows the outcome of a search process
that approximates the boundary of the one-dimensional partition by 〈y, y〉. In this
case only B11(y) and B00(y) can be classified with certainty while the partition of
by, ye between X and X is unknown. In order to guarantee a safe approximation
of the boundary, the points in by, ye are treated as incomparable. The boundary ap-
proximation is refined into the union of the two overlapping rectanglesB01(by, ye)
and B10(by, ye).

The whole procedure for learning/approximating a monotone partition is writ-
ten down in Algorithm 2. It maintains at any moment the current approximation
(Y , Y) of the partition as well s its complement represented as a list L of rectangles

7

Figure 5: Successive approximation of the partition boundary by running binary
search on diagonals of incomparable boxes.

whose union constitutes an over-approximation of the boundary. For efficiency rea-
sons, L is maintained in a decreasing size order. We successively take the largest
rectangle fromL, run binary search on its diagonal and refine it until some stopping
criterion on the size of the boundary approximation (for example total volume) is
met. A Some steps of the algorithm are illustrated in Figure 5.

Algorithm 2 Approximating a monotone partition (and its boundary) by unions of
rectangular cones.

1: Input: A rectangle X , a partition M = (X,X) accessed by a membership
oracle for X and an error bound δ.

2: Output: An approximation M ′ = (Y , Y) of M and an approximation L of
the boundary bd(M) such that |L| ≤ δ. All sets are represented by unions of
rectangles.

3: L = {X}; (Y , Y) = (∅, ∅) . initialization
4: repeat
5: pop first bx, xe ∈ L . take the largest rectangle from the boundary

approximation
6: 〈y, y〉 = search(〈x, x〉, ε) . run binary search on the diagonal
7: Y = Y ∪ {B0(y)} . add backward cone
8: Y = Y ∪ {B1(y)} . add forward cone
9: L = L ∪ I(bx, xe) . insert incomparable rectangles to L

10: until |L| ≤ δ

8

4 Current Status

Having presented the algorithm, what remains is to evaluate its performance, both
empirically and theoretically. The algorithm has been implemented by Marcell
Vazquez-Chanlatte, and it will hopefully be used in the future for systematic evalu-
ation. Preliminary ideas on worst-case complexity were proposed by Nicolas Bas-
set and Eugene Asarin. Other useful comments were made by Alexey Bakhirkin
and Dogan Ulus.

References

[1] Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nickovic. Paramet-
ric identification of temporal properties. In RV, pages 147–160, 2011.

[2] Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler. Approximat-
ing the Pareto front of multi-criteria optimization problems. In TACAS, pages
69–83, 2010.

9

