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Abstract

In the expanding context of device miniaturization, forming processes of
ultra thin sheet metals are gaining importance. Numerical simulation of
these processes requires accurate material modeling. In this study, both
the phenomenological modeling approach and the crystal plasticity finite
element method (CPFEM) are considered. Theoretical definitions of both
models, numerical implementation as well as their parameter identification
procedures are outlined. Subsequently they are compared on a one to one
basis, mainly with regards to their ability to predict mechanical responses
for a variety of strain loading paths.
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1. Introduction1

The current trend for product and device miniaturization has promoted2

micro-scale manufacturing processes. The demand for microparts has signif-3

icantly increased in the automotive and electronics industries. Due to their4

suitability for mass production, sheet metal forming processes are widely5

used in the manufacturing industry and have been applied to very thin6

sheets. However, microforming raises a number of challenges related to the7

size of the parts targeted and the submillimetric thickness of the sheet met-8

als (Geiger et al. (2001)). Finite element based simulations are nowadays9

common engineering tools. They allow to assess manufacturability of parts10

and to achieve subsequent time savings at the process design stage. Yet,11

the quality and predictiveness of these simulations rely on several factors,12

among which is the material behavior model. Currently, two distinct mate-13

rial modeling approaches can be considered for sheet metal forming. On one14

hand, the so-called phenomenological models are based on discrete macro-15

scopic experimental observations and the assumption of material homogene-16

ity. The constitutive laws consist of sets of relations with parameters which17

are adjusted to reproduce the experimental data available. Commercial finite18

element packages include several phenomenological laws for material model-19

ing. Following the still extensively used von Mises model, quite a number of20

functions have been proposed to take into account anisotropy in the predic-21

tion of plastic yield. Extensive descriptions of most of them can be found22

in Banabic (2010). Beyond the yield point, the material behavior is de-23

scribed using so-called isotropic and/or kinematic hardening. Power (Swift24

type) and exponential (Voce type) laws are commonly used isotropic models25

while kinematic hardening modeling can involve expressions that are linear26

(Prager type), saturating (Armstrong and Frederick (1966)), a mix of these27

two types (Chaboche (1991)) or more conceptually complex (Yoshida and28

Uemori (2003) and Yoshida et al. (2015), Haddadi et al. (2006), Barlat et al.29

(2011)) depending on the material response during mechanical tests and the30

required modeling accuracy. On the other hand, the so-called microstructural31

models are based on the crystal plasticity theory which can be traced back to32

the works of Taylor and Elam (1923) and Schmid et al. (1934) who related33

plastic flow in single crystals to crystallographic planes slip. This class of34

model incorporate material heterogeneity, at microscopic level, in constitu-35

tive relations. We will restrict ourselves in this paper to the crystal plasticity36

finite element method (CPFEM) models which were initiated when Peirce37
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et al. (1982) exploited the versatility of the finite element method to solve38

boundary value problems with crystal plasticity constitutive relations. Em-39

bedding the crystal plasticity theory into a finite element formulation enforces40

the equilibrium of the forces and compatibility of displacements between the41

grains of a polycrystal in a weak form through the principle of virtual work.42

The well known limitations (violation of equilibrium, assumptions on grains43

morphologies and interactions) of mean field models (Taylor (1938), Kröner44

(1961), Lebensohn and Tomé (1993), Van Houtte et al. (2005)) are overri-45

den at the expense of a higher numerical cost. The unalterated growth of46

computing power over the last few decades has triggered an extensive use47

of CPFEM for various applications, in the research framework, Erieau and48

Rey (2004), Kim et al. (2012), Khadyko et al. (2015), Kim and Yoon (2015),49

Khan et al. (2015) as well as for industrial process simulations (Kalidindi50

and Anand (1992), Beaudoin et al. (1994), Grujicic and Batchu (2002), Li51

et al. (2008), Rousselier et al. (2009), Verma et al. (2013)). A thorough re-52

view of CPFEM features, applications and challenges can be found in Roters53

et al. (2010). Presently, although they provide a physically based simulation54

framework, CPFEM models are not available in commercial software. The55

phenomenological approach truly represents the standard constitutive mod-56

eling choice for industrial process simulations. Indeed, in addition to their57

computational efficiency, the latter approach has proven reliable and predic-58

itive enough for most industrial applications.59

Nevertheless, when it comes to processes involving very thin sheet metals60

with a few grains in the thickness, usually termed as ultra-thin sheet met-61

als, phenomenological models often fail to render material behavior (Engel62

and Eckstein (2002), Geißdörfer et al. (2006), Peng et al. (2007)). As there63

are few grains, the individual response of each grain which is driven from64

its orientation, size and shape, strongly influences the behavior of the part65

being formed. During processing, these sheet metals present a strong hetero-66

geneity of deformation. In such a context, the phenomenological approach67

which is based on the assumption of deformation homogeneity becomes ques-68

tionnable. At the same time, CPFEM based process simulations become69

computationnally conceivable as the number of grains is lower (Wang et al.70

(2009)). The present study examines a case where the macroscopical length-71

scale approaches the microstructural one but where scale separation is still72

workable. This paper aims at providing a one to one comparison of phe-73

nomenological and CPFEM based approaches in such a context. The ability74

of these approaches to predict the response of a copper alloy under differ-75
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Cu Be Co Ni Fe
97 1.8 - 2 0.3 0.15 0.15

Table 1: Chemical composition in mass percent of CuBe2.

ent strain paths is investigated. First of all, the mechanical tests performed76

for the experimental characterisation of the considered material are briefly77

reported in Section 2. Hill (1948) and Bron and Besson (2004) anisotropic78

yield functions are considered in the phenomenological model and the devel-79

oped parameter identification procedure is presented in Section 3. Then the80

adopted CPFEM framework , its embedment and numerical implementation81

as well as the parameter identification procedure are presented in Section 4.82

Comparisons of the two modeling approaches are performed in Section 5 and83

the main conclusions are presented in Section 6.84

2. Experimental characterization85

The studied material is the copper alloy CuBe2 whose chemical compo-86

sition is given in Table 1. The cold rolled sheet is 0.1 mm thick and used87

in the micro-parts and connectors manufacturing industry. An industrial88

sheet metal grade is used for the experimental characterization, which is not89

annealed after cold rolling. The rolling direction of the sheet metal will be90

indicated RD, the transverse direction TD and the normal direction ND.91

Quantitative information on the microstructure was obtained from Electon92

BackScatter Diffraction (E.B.S.D.) scans. The microstructure was measured93

in the RD-TD and TD-ND sections. The device used in this study is a 700194

Field Electron Gun Scanning Electron Microscope from Jeol equiped with an95

Oxford EBSD CCD camera. EBSD data were post-treated with the software96

CHANNEL 5 from Oxford. The scanned areas were 320×240µm2 large and97

the step size was set to 0.3 µm. No sensible microstructure gradient was98

observed and the grains were considered equiaxed. An EBSD map of the99

microstructure is shown in Fig. 1. The texture is marked and of Goss type.100

The experimentally measured average grain size was about 4 µm. Although101

the maximum grain size was about 50 µm, little dispersion was observed102

and the grain size was quite homogeneous leading to an average of 25 grains103

throughout the sheet thickness. These thin sheet metals provide a convenient104

framework for the upcoming models comparison as both phenomenological105
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and microsctructural based models are still relevant. The influence of the106

reduction of the sheet thickness with respect to the grain size (T/D ratio)107

on models predictions will be assessed in future work.108

In order to investigate the sheet behavior under different stress and strain109

paths, three types of mechanical tests were performed namely tensile tests,110

monotonic and Bauschinger shear tests and balanced biaxial tension. Strains111

were measured using Digital Image Correlation (DIC) system Aramis (GOM112

GmbH).

Figure 1: EBSD map of the industrial copper alloy CuBe2.

113

2.1. Tensile tests114

A sample geometry was prepared according to ISO 6892-1 standard, sim-115

ilarly to Pham et al. (2015). In order to evaluate material anisotropy, room116

temperature monotonous tensile tests were performed at 0◦, 45◦ and 90◦ from117

the RD. The tests were controlled by grip displacement and the strain rate118

was around 10−4 s−1. Each type of test was performed three times to ensure119

reproductibility of the results. Longitudinal εxx and transverse εyy logarith-120

mic strains were recorded during the experiments. Plastic anisotropy coeffi-121

cients rα coefficients are used to quantify strain anisotropy. Strain anisotropy122

is quite pronounced especially in the sheet plane with a planar anisotropy123

coefficient ∆r = (r0 + r90 − 2r45) /2 = 0.28 and a normal anisotropy coeffi-124

cient r̄ = (r0 + r90 + 2r45) /4 = 0.92.125

The influence of viscosity was studied by changing the strain rate during126

tensile tests in the RD. The strain rate was increased from 10−4 s−1 (up to127
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2% of deformation) to 10−3 s−1 (up to 4% of deformation) and 10−2 s−1 (up128

to 8% of deformation). Relaxation times of 60 s were imposed between the129

first two reloadings. Eventually, a relaxation time of 120 s was imposed and130

a strain rate of 10−4 s−1 was applied to the specimen.131

132

2.2. Shear tests133

Shear tests were performed with the device presented in Thuillier and134

Manach (2009). Rectangular samples of dimensions 30×15 mm2 were used.135

Monotonic and reversed (Bauschinger) shear tests were performed in the RD136

at a strain rate of γ̇ = 8×10−4s−1. The shear strain γ was obtained from the137

measured non diagonal component ε12 of the Green-Lagrange strain tensor138

as γ = 2ε12. The shear stress was calulated by σ12 = F/S0 where F is the139

load during the test and S0 the initial gauge section.140

2.3. Balanced biaxial tensile test141

Material response at large strains and under a balanced biaxial strain142

state was investigated using a hydraulic bulge test (Zang et al. (2011)). A143

circular blank of a 60 mm gauge diameter was held on a circular die by144

a blank-holder fastened with screws. The blank was then deformed up to145

rupture by water pressure controlled with a sensor. The strain state on the146

sample surface was measured throughout the test. The curvature radius at147

the pole Rpole was approximated by fitting a sphere over a selected area. A148

balanced biaxial stress state was assumed and the stress was then calculated149

using σ = PRpole/2e where P is the hydraulic pressure and e the current150

blank thickness.151

The experimental stress-strain curves in the tensile test (0◦ to the RD),152

balanced biaxial tensile test and simple shear test are shown in Fig. 2. The153

flow stress and work-hardening rate of the balanced biaxial tensile test and154

uniaxial tensile test are similar, while much larger strains are reached with155

the biaxial and shear tests. Detailed experimental results will be further156

shown in the subsequent sections, in comparison to numerical predictions.157

3. Phenomenological modeling and parameter identification158

3.1. Constitutive model159

As sheet metal forming involves large strains and material rotation, the160

constitutive equations need to be written in a finite deformation framework.161
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Figure 2: Stress-strain curves of the experimental strain paths investigated.

The following relations were implemented in the SiDoLo software (Cailletaud162

and Pilvin (1993)) which enables model development and inverse material pa-163

rameter identification. To fulfill the material frame indifference requirement164

(principle of objectivity), the orthogonal rotating frame associated to the165

objective derivative of Jaumann (the so-called co-rotational frame) is consid-166

ered as the main reference (Sidoroff (1982)).167

168

3.1.1. Elastic-viscoplasticity169

In its associated rotating frame, an objective derivative corresponds to170

a simple time derivative. Thus under the assumption of hypoelasticity, the171

constitutive elastic relation is written in an incremental form172

σ̇ = C : De, (1)

where σ is the rotation-compensated Cauchy stress tensor, C is the isotropic173

elastic modulus tensor which is expressed using the Young’s modulus E and174

Poisson’s coefficient ν while De is the elastic part of the strain rate. The175

small-strain like splitting of the strain rate is assumed, leading to the follow-176

ing rate expression:177

De = D − Dp, (2)
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where D is the total strain rate and Dp its viscoplastic part.178

The material is assumed to behave elastically in a domain bounded by a yield179

surface defined by180

f (σ,X, R) = σ̄ (σ,X) −R = 0, (3)

where σ̄ is the equivalent stress, X is the tensorial internal variable pointing181

to the centre of the yield surface which is used to model kinematic hardening,182

and R is the isotropic hardening.183

The viscoplastic strain rate tensor Dp accounting for plastic flow at yield is184

derived from a Norton-like viscoplastic potential Ω and the flow rule is then185

expressed by186

Dp =
∂Ω

∂σ
. (4)

The stress potential Ω is expressed as187

Ω (f) =
Kv

nv + 1

(
f+
Kv

)nv+1

(5)

where f+ is the positive part of f, Kv is a weighting coefficient of the viscous188

contribution and nv a strain-rate sensitivity coefficient.189

Isotropic hardening is chosen as:190

R = σsat − (σsat − σ0) exp (−CRpnr) , (6)

where nr is a material parameter, σsat is the saturation stress, σ0 the initial191

yield stress, CR the saturation rate and p the cumulated viscoplastic strain192

defined by193

p =

∫ t

0

√
2

3
Dp : Dpdt. (7)

The so-called back-stress tensor X is written as the sum of Armstrong-194

Frederick law terms with a Prager type term in order to achieve a good195

description both at larger strains and at the onset of plastic flow during196

reverse loading. The resulting expression is197

X =
2

3

(
N∑
i=1

CXi
αi +HXdp

)
; dp =

∫ t

0

Dpdt, (8)

with198

α̇i = Dp −BXi
ṗαi, (9)
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where CXi
is associated to the non-linear Armstrong-Frederick term, BXi

the199

parameter related to the recall term (memory effect) and HX the slope of200

the linear Prager term.201

Material anisotropy is taken into account in the computation of the equivalent202

stress by mean of anisotropic yield functions. Hill’s 1948 quadratic yield203

function and the Bron&Besson yield function are considered in this work.204

Hill (1948) function is a widely used anisotropic yield function developed for205

materials exhibiting orthotropic symmetry just as rolled sheets.206

The equivalent stress can be expressed as:207

σ̄ = T
′
: M : T

′
, (10)

where T = σ − X and T
′
= deviator (T).208

M is the fourth order tensor inducing the anisotropy and writes in the ma-209

terial orthotropic frame :210

M =
1

3


2G+ 2H − F 0 0 0 0 0

0 2F + 2H −G 0 0 0 0
0 0 2H + 2G−H 0 0 0
0 0 0 N 0 0
0 0 0 0 M 0
0 0 0 0 0 L

 (11)

211

where F,G,H,L,M and N are the anisotropy parameters.212

Bron and Besson (2004) yield function is an extension of the Karafillis and213

Boyce (1993) criterion in which anisotropy is introduced by means of linear214

transformations. The equivalent stress is expressed as:215

σ̄ =

(
2∑

k=1

λk (ψk)
a
bk

) 1
a

;
∑

λk = 1. (12)

The functions ψk are first order homogeneous, positive, convex with respect216

to their argument and defined by:217

ψ1 =
1

2

(∣∣S1
2 − S1

3

∣∣b1 +
∣∣S1

3 − S1
1

∣∣b1 +
∣∣S1

1 − S1
2

∣∣b1) , (13)

218

and ψ2 =
3b2

2b2 + 2

(∣∣S2
1

∣∣b2 +
∣∣S2

2

∣∣b2 +
∣∣S2

3

∣∣b2) . (14)
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Ski=1,3 are the eigenvalues of the modified deviatoric stress tensor s
′k. These219

tensors are obtained from linear transformations on the tensor T which are220

expressed as:221

s
′k = Lk : T, (15)

and where the anisotropy parameters are embedded in the symmetric fourth222

order tensors Lk :223

Lk =
1

3


ck2 + ck3 −ck3 −ck2 0 0 0
−ck3 ck3 + ck1 −ck1 0 0 0
−ck2 −ck1 ck1 + ck2 0 0 0

0 0 0 3ck4 0 0
0 0 0 0 3ck5 0
0 0 0 0 0 3ck6

 . (16)

224

Thus through the two linear transformations, twelve parameters ck=1,2
i=1,6 are225

provided to describe anisotropy. The parameters λ = λ1, a, b1 and b2 affect226

the yield surface’s shape.227

3.2. Parameter identification228

A number of material parameters could be determined independently by229

specific measurements. The remaining ones were determined by inverse iden-230

tification. Young’s modulus E and Poisson’s ratio ν were determined from231

sequential loading-unloadings in the elastic domain. The initial Young mod-232

ulus was 120 MPa, then it decreased with plastic strain and rapidly reached233

a saturation value of 95 MPa. Consequently, this later value was used for234

the simulations throughout the current investigation.235

The viscous contribution to material behavior is assessed by the increas-236

ing strain rate tensile tests and the viscous parameters of Eq (5), Kv and237

nv, were identified based on these experiments. After identification of the238

isotropic hardening parameters, consistency of viscosity parameters obtained239

beforehand was assessed through the simulation of the increasing strain rate240

tensile test. The experimental test and its simulated counterpart are shown241

in Fig. 3. The viscosity effect is relatively small, at least under such homo-242

geneous loading conditions.243

244

10



 0

 100

 200

 300

 400

 500

 600

 700

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

C
au

ch
y 

te
ns

ile
 s

tr
es

s 
(M

Pa
)

Logarithmic tensile strain

Experimental
Simulation

Figure 3: Experimental and predicted increasing strain rate uniaxial tensile test in the
RD.

3.2.1. Inverse identification procedure245

A set of material parameters was sought to minimize the gap between246

the experimental tests and model predictions. Starting from an initial pa-247

rameter set, an optimisation process was conducted with a gradient type248

algorithm in order to minimize an error function defined in the least square249

sense as the weighted gap between experimental and computed data. The250

observable variables accounted for in the error function are the stress and251

strain components. The weights were chosen according to the uncertainty of252

the experimental data and therefore depend on the experimental type of test253

(tensile, shear, bulge) as detailed in Zang et al. (2011).254

Furthermore, anisotropic yield function parameters (L,M) for Hill’s 1948255

function and ck5,6 for Bron&Besson function are related to shear in the sheet256

thickness. Experimental data allowing to identify these parameters was not257

available and they were consequently kept constant and equal to isotropic258

values, L=M=3 and ck5,6 = 1. Additionally, since H+G=2, only one of these259

two parameters needs to be identified.260

In order to achieve a good description of the overall experimental database261

with a single parameter set, the following strategy was used:262

• initial isotropic hardening parameters and a yield stress, σsat, CR, n,263

σ0, were identified considering the three tensile tests and the monotonic264
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shear test,265

• yield surface shape parameters, λ, a, b1, b2 of the Bron&Besson yield266

function were approximated using the balanced biaxial tension test,267

• as mixed hardening is considered, both kinematic hardening parame-268

ters, BX , CX , HX and isotropic hardening parameters were identified269

on cyclic shear tests,270

• anisotropy parameters, ck=1,2
i=1..4 for the Bron&Besson yield function and271

F,G,N for Hill’s 1948 yield function were identified considering the272

whole database.273

The resulting material parameters for the phenomenological model are listed274

in Table 2, Table 3 and Table 4.275

E ν Kv nv σ0
95. 0.37 74.2 30.1 290.

Table 2: Material parameters common to both yield functions. E is in GPa, σ0 in MPa
while Kv is in MPa.sn

−1

.

Up to three Armstrong-Frederick kinematic hardening terms had to be276

added to achieve an accurate description as suggested in Chaboche (1991).277

278

F G H = 2 −G N
1.01 0.83 1.17 3.41
CX1 BX1 CX2 BX2 CX3 BX3 HX σsat CR nr

13400 293 238 0.01 2850 60.4 395 5420 0.16 1.38

Table 3: Material parameters for Hill’s 1948 yield function. CXi
, HX and σsat are in MPa.

12



a b1 b2 λ
49.2 2.1 12.7 0.2
c11 c12 c13 c14 c21 c22 c23 c24
1.1 0.8 1.01 1.1 0.5 1.3 0.6 0.9
CX1 BX1 CX2 BX2 CX3 BX3 HX σsat CR nr
5080 243 44.8 0.1 2190 52 336 2820 0.23 1.21

Table 4: Material parameters for Bron&Besson yield function. CXi , HX and σsat are in
MPa.

The material presents a noticeable stress anisotropy as tensile strain-stress279

curves at 45◦/RD and 90◦/RD are nearly superposed but the stress level at280

0◦/RD is clearly higher. Bron&Besson model captured this feature well while281

Hill’s 1948 model failed to represent the stress anisotropy as shown in Fig. 4.282
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Figure 4: Prediction of the tensile tests at 0◦, 45◦ and 90◦ with the phenomenological
model using the yield functions of a) Bron&Besson and b) Hill’s 1948. Symbols show the
experimental values.

Both models performed well in balanced biaxial tension and shear test283

description as illustrated in Fig. 5 and Fig. 6, although the Bron&Besson284

model predictions were slightly closer to the experiments.285
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Figure 5: Prediction of the hydraulic bulge tests with the phenomenological model using
the yield functions of a) Bron&Besson and b) Hill’s 1948. Symbols show the experimental
values.
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Figure 6: Prediction of the monotonic and reversed shear tests with the phenomenological
model using the yield functions of a) Bron&Besson and b) Hill’s 1948. Symbols show the
experimental values.
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Concerning strain anisotropy, Hill’s model did not adequately render the286

material feature and only r45 was well described. Due to its eight dedicated287

anisotropy parameters, Bron&Besson model performed remarkably as well in288

the strain anisotropy, see Fig. 7, as in the stress levels description.289
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Figure 7: Prediction of the plastic anisotropy ratios with the phenomenological model using
the yield functions of a) Bron&Besson and b) Hill’s 1948. Symbols show the experimental
values.

However in both cases one has to deal with a high number of parameters,290

19 for Hill’s 1948 model and 28 for Bron&Besson, throughout a non linear291

and relatively complex identification procedure.292

4. CPFEM model and corresponding parameter identification strate-293

gies294

The alternative modeling framework adopted in this work is based on the295

rate-dependent theory of crystal plasticity. The rate-dependent or viscoplas-296

tic formulation was adopted as the material presents a certain strain rate297

sensitivity as shown in Fig. 3 but also because of its numerical efficiency and298

robustness when compared to rate-independent formulation.299
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4.1. Single crystal kinematics and plastic flow300

The single crystal plasticity model is based on the works of Rice (1971),301

Peirce et al. (1982), Needleman et al. (1985), Raphanel et al. (2004) and302

its equations are recalled here for the sake of completeness. The formalism303

presented below stands for the general theory of crystal plasticity, regardless304

of any aspect of numerical implementation.305

The classical multiplicative breakdown of the deformation gradient is adopted:306

307

F = Fe · Fp, (17)

where Fp represents plastic deformation of matter through the lattice result-308

ing from shearing along activated slip-systems and Fe corresponds to crystal309

lattice rigid rotation and its elastic stretching while all slip movement is as-310

sumed to be frozen.311

The velocity gradient L = Ḟ · F−1 can then be expressed as:312

L = Le + Lp where Le = Ḟ
e · Fe−1

and Lp = Fe · Lp
i · Fe−1

. (18)

The velocity gradient in the intermediate configuration Lp
i is related to crys-313

tallographic slip by:314

Lp
i = Ḟ

p · Fp−1

=
12∑
s=1

γ̇(s)S
(s)
0 with S

(s)
0 = m

(s)
0 ⊗ n

(s)
0 , (19)

where γ̇(s) is the shearing slip rate on the slip sytem (s) defined by the slip315

direction m(s) and the slip plane normal n(s), S
(s)
0 being the Schmid tensor316

in the reference and intermediate configuration. The subscript ’0’ stands317

for tensorial quantities expressed in the reference configuration. Twelve slip318

systems were considered for the studied copper alloy of FCC structure.319

The rate of deformation D and spin W tensors, which are the symmetric320

and skew-symetric part of the velocity gradient L, can be splitted in elastic321

and plastic components as:322

D = De + Dp with Dp =
12∑
i=1

γ̇(s)D(s) (20)

and323

W = We + Wp with Wp =
12∑
i=1

γ̇(s)W(s). (21)
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In the above equations, D(s)=sym
(
S(s)
)

and W(s)=skew
(
S(s)
)

where S(s) =324

m(s)⊗n(s) is the Schmid tensor of slip system (s) in the current configuration,325

and ’sym’ and ’skew’ designate the symmetric and skew-symmetric part of326

the given tensor, respectively.327

The slip direction vector and the slip plane normal in the current configura-328

tion are convected from their counterparts in the reference configuration by329

means of the elastic deformation gradient:330

m(s) = Fe · m(s)
0 and n(s) = n

(s)
0 · Fe. (22)

Plastic flow occurs on a slip system if the resolved shear stress τ (s) exerted331

on this system is greater than its resistance to slip, the critical resolved332

shear stress τ
(s)
c . The resolved shear stress is calculated with the generalized333

Schmid law:334

τ (s) = m(s) · σ · n(s) = σ : D(s). (23)

According to the rate-dependent formulation, the slip rates can be explicitly335

computed by the plastic flow rule336

γ̇(s) =

{
γ̇
(s)
0 sign(τ (s)

) ∣∣∣ τ (s)
τ
(s)
c

∣∣∣n if
∣∣τ (s)∣∣ ≥ τ

(s)
c

0 if τ (s) < τ
(s)
c

, (24)

where γ̇
(s)
0 is the reference shear strain rate and n is the strain rate sensitivity337

coefficient.338

If one assumes an hypoelasticity formalism, the constitutive equation in the339

global frame can be written in terms of the rate of deformation tensor and340

its work-conjugate stress measure Kirchhoff tensor τ as:341

τ̂ e = C : De = C : (D − Dp) , (25)

where τ̂ e is the Jaumann derivative of stress based on crystal lattice spin342

tensor We and C is the elastic modulus tensor.343

When considering the Jaumann stress rate related to the spin tensor W, this344

equation can be rewritten in terms of Cauchy stress as:345

σ̇ = C:D + W · σ − σ · W − σtr(D) − (C : Dp + Wp · σ − σ · Wp) (26)

where σ̇ stands for the time derivative of σ.346

As straining occurs, material properties evolve. The common generic hard-347

ening model on the slip systems is expressed as348

τ̇ (s)c = Hsβγ̇
β (27)
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where Hsβ are the components of the hardening matrix. In this work, we will349

consider the expression proposed by Peirce et al. (1983) and usually termed350

as the PAN (for Peirce Asaro Needleman) model. More accurate models are351

available in the literature where hardening is explicitly linked to dislocation352

density based internal variables (Tabourot (1992)). A comparative study of353

such models with PAN-type models can be found in Lee et al. (2010).354

The hardening matrix used in this work reads:355

Hsβ = [q + (1 − q)δsβ]h(γ), with h(γ) = h0 sech2

(
h0γ

τ *-τ0

)
, (28)

where δsβ is the Kronecker delta, q is the latent hardening parameter, γ =356 ∫ ∑
s γ̇

(s)dt is the cumulated glide on all slip systems, h0 is the initial hard-357

ening slope, τ ∗ relates to a saturation shear stress and τ0 is the initial critical358

resolved shear stress.359

Additionaly, straining induces large rotations and subsequent reorientation360

of the crystals. Within the formalism used here, the evolution of the crystal361

orientation matrix can be expressed in an incremental way as:362

Q̇ = We · Q = (W − Wp) · Q. (29)

4.2. Finite element implementation363

The elastic-viscoplastic CP model was further implemented in the FE364

code ABAQUS/Explicit. In this code, the default coordinate system is the365

corotationnal frame (Hibbitt (1992)) associated with the Green-Naghdi ob-366

jective derivative. This frame is generated by the rotation tensor R calculated367

from the polar decomposition of the deformation gradient:368

F = R · U, (30)

where U is the right stretch tensor.369

Thus for crystal plasticity implementation, three coordinate systems should370

be distinguished : the global frame, the Crystal lattice Axes Coordinate371

System (C.A.C.S) and the additional system defined above termed as the372

Material Element Coordinate System (M.E.C.S.), see Fig. 8.373

Although only the fixed and crystal frames are involved in the theoretical374

model, efficiency can be improved by considering an implementation in the375

rotating objective space frames, namely the MECS and the CACS (Amirkhizi376

and Nemat-Nasser (2007)).377
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Figure 8: Different frames and associated rotation matrices for crystal plasticity imple-
mentation in ABAQUS/Explicit

Several other authors Guan et al. (2006), Zamiri et al. (2007), Li et al. (2008),378

Rousselier et al. (2009), Segurado et al. (2012), Zhang et al. (2012) have pro-379

posed procedures to achieve finite element implementations in objective space380

frames. The algorithm adopted here is summarized in Table 5. Except for381

orientation update, numerical integration of rate equations was performed382

with explicit Runge-Kutta integration schemes of orders 1, 2 and 4. It has383

been confirmed, (Haddag et al. (2007), Franz et al. (2009)), that for consti-384

tutive models with a large number of internal variables, explicit integration385

schemes represent a good compromise between efficiency and accuracy. In386

the applications presented in this paper, the first order proved as accurate387

and robust as the second and fourth order Runge-Kutta scheme while be-388

ing much more efficient. The Euler explicit scheme has also been tested in389

CPFEM by Grujicic and Batchu (2002), Dumoulin et al. (2009) and Du-390

moulin et al. (2012), Zhang et al. (2014) with very good results. Orientation391

update was performed using the method of Raphanel et al. (2004) in order392

to ensure that computed rotation matrices remain orthogonal.393

In the remaining part of the paper and unless specified otherwise, quantities394

expressed in the CACS are indicated with a tilde while those in the MECS395

carry no distinctive symbol for the sake of clarity.396

397

4.3. Parameter identification398

The parameter identification was conducted while simulating experimen-399

tal tests on Representative Volume Elements (RVE). The concept of RVE400

(e.g. Kanit et al. (2003), Gitman et al. (2007)) bridges the gap between the401

crystal scale and the macroscopical scale. Consistent comparisons can thus402
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• Initialise rotation matrix from CACS to MECS Ot=0 = Q0

• Input : σn, Un+1, Un

Variables : σ̃n , On, F̃
p

n, F̃
e

n, τ
(s=1..12)
cn , γn, Qn

• Compute Dn+1 = sym
(
U̇U−1

n+1

)
• Rotation to CACS D̃n+1 = OT

nDn+1On ; Ũn+1 = OT
nUn+1On

• Update (for s=1..12) S̃
s

n = F̃
e

n S̃
s

c F̃
e−1

n ; M̃
s

n = sym
(
S̃
s

n

)
• Compute (for s=1..12) τ sn+1 = σ̃n : M̃

s

n ; γ̇sn+1 with Eq(24)

• Update F̃
p

n+1 = F̃
p

n+∆t
(
I +

∑12
s=1 γ̇

s
n+1S̃

s

c

)
; F̃

e

n+1 = Ũn+1F̃
p−1

n+1

• Update (for s=1..12) S̃
s

n+1 = F̃
e

n+1 S̃
s

c F̃
e−1

n+1 ;

M̃
s

n+1 = sym
(
S̃
s

n+1

)
; W̃

s

n+1 = skew
(
S̃
s

n+1

)
• Compute D̃

p

n+1 =
∑12

s=1 γ̇
s
n+1M̃

s

n+1 ; W̃
p

n+1 =
∑12

s=1 γ̇
s
n+1W̃

s

n+1

• Update

σ̃n+1 = σ̃n + ∆t
[
C :

(
D̃n+1 − D̃

p

n+1

)
− σ̃ntr

(
D̃n+1

)]
• Update (for s=1..12) τ scn+1

= τ scn + ∆t
(∑12

p=1 h
spγ̇p

)
• Update On+1 = exp

[
∆t
(
W̃

p
)]

On (Euler-Rodrigues formula)

• Rotation to MECS σn+1 = On+1 σ̃n+1 OT
n+1

Table 5: Algorithm for the time integration of the crystal plasticity constitutive model.
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be performed.403

The numerical microstructure was generated using a Laguerre tessellation404

(Quey et al. (2011)). Grain diameters were considered as weights and a405

normal distribution employed with the mean grain size and the standard de-406

viation as parameters. The microstructure was specified to be periodic. Each407

grain was meshed with at least 20 solid reduced integration finite elements,408

in order to guarantee sufficient accuracy for the prediction of the macroscopic409

response (Diard et al. (2005), Lin et al. (2010), Belkhabbaz et al. (2015)).410

The orientations attributed to the grains were obtained following a two step411

procedure. First, the experimental orientation data (4460 triplets of Euler412

angles) from EBSD were converted in an Orientation Distribution Function413

(ODF) using the grain diameter as weights (Tarasiuk et al. (2004)). Then the414

continuous distribution was discretised into the number of desired individual415

crystallographic orientations. We thereby ensured that our volume elements416

statiscally represented the experimental texture even with few orientations.417

Experimental pole figures and numerically sampled ones are compared in418

Fig. 9. The numerical texture replicated the main characteristics of the ex-419

perimental data.420

Periodic Boundary Conditions were applied to the virtual volume elements.421

Tensile tests were simulated on cuboid volume elements of increasing size422

with 100, 200, 300, 400, 500, 600, 700, 800 grains in order to determine the423

required size to be representative of the macroscopic behavior. Again, the424

studied sheet metals were purposely chosen with enough thickness grains to425

enable analysis with both phenomenological and CPFEM based models.426

The macroscopic stresses and strains were obtained by averaging the corre-427

sponding local values over the total volume. The convergence analysis, see428

Fig. 10, revealed that above 500 grains, the scatter in the volume elements429

macroscopic responses was negligible and a Representative Volume Element430

can therefore be set up from a volume element with 500 grains.431

The parameters of the P.A.N model were identified with respect to the ex-432

perimental tensile test performed in the rolling direction. Indeed through rep-433

resentation of material texture, anisotropy features are inherently accounted434

for. Thus, only a few parameters had to be adjusted and no other exper-435

imental test was required in the present calibration procedure. Flow rule436

parameters, γ̇o and n, are usual material values for room temperature Cop-437

per that can be found in the literature (Tabourot (2001)). Hardening matrix438

parameters, h0, q, τ
∗ and τ0 are calibrated with respect to the RD tensile439

test. As illustrated in Fig. 11, a good agreement was obtained between the440

21



(100) (110) (111)

 

 

0.5

1

1.5

2

2.5

(a) Experimental

(100) (110) (111)

 

 

0.5

1

1.5

2

2.5

(b) Numerical

Figure 9: Pole figures obtained from a) EBSD experiments orientation data and b) nu-
merically sampled orientations for the RVE.

experiment and the simulated curve although the elastic-plastic transition441

could not be perfectly captured. It is worth noting that the phenomenologi-442

cal models were also unable to describe this specific detail of the experimental443

data set. This feature may be an effect of the cold rolling pre-strain which444

is not taken into account in any of the models.445

446

5. Comparison of both approaches and discussion447

5.1. Models descriptions for various strain paths448

Tensile tests at 45◦ and 90◦ from the R.D. were simulated with the cali-449

brated PAN model. The microstructure was numerically rotated by decreas-450

ing the RD corresponding Euler angle of the desired value (45◦ and 90◦) while451
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Figure 10: Convergence analysis on Volume Elements for a CPFEM simulated tensile test
in the RD. The RVE is shown on the right, prior to straining (with the mesh) and after
deformation. The color of the grains is not related to their orientation.
(Model parameters : h0=300 MPa, τ∗=750 MPa, τ0=250 MPa, q = 1.4, γ̇o=0.001 s−1,
n=50)

h0 (MPa) τ ∗ (MPa) τ0 (MPa) q γ̇o (s−1) n
100 700 175 1.4 0.001 50.

Table 6: Material parameters for CPFEM calibrated on a tensile test in the RD.

the mesh and the boundary conditions remain unchanged. This methodology452

proved relevant for quasi equiaxed grains (Zhang et al. (2015)) as is the case453

in the present work.454

455

The simulated curves match closely with the experimental ones as can be456

seen in Fig. 12 and Fig. 13, both in the elastic-plastic transition zone and457

at higher strains, even though a little deviation arises at the very end of the458

90◦/RD curve.459

Thus, using hardening parameters calibrated on a single tensile test in the460

RD, a good description of stress anisotropy was achieved with the CPFEM461

approach as the texture was accounted for.462

The CPFEM model’s predictions under balanced biaxial tensile loading are463
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Figure 11: CPFEM model identification on the 0◦/RD tensile test.
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Figure 12: Experimental and CPFEM model simulated tensile curves at 45◦/RD.

shown in Fig. 14. A good agreement was obtained between experimental464

and simulated curves. It is worth noting that the strain level used for this465

validation is three times larger than the strain level used for the parameter466

identification of the hardening model. Shear test in the RD, as well as reverse467

shear tests at different pre-strain ranges were also simulated. The response468
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Figure 13: Experimental and CPFEM model simulated tensile curves at 90◦/RD.
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Figure 14: Experimental and CPFEM model simulated responses to equi-biaxial tensile
loading.

under monotonic shearing was well reproduced, see Fig. 15, nevertheless the469

predicted hardening rate being larger than the experimental one. Again,470

similar behavior was also predicted with the phenomenological model, see471

Fig. 6. The Bauschinger effect and permanent softening induced after strain472
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Figure 15: Experimental and CPFEM model simulated responses to monotonic shear
loading.

path reversal were underestimated quite significantly by the CPFEM model473

as shown in Fig. 16.474

In order to more accurately describe material response during strain rever-475

sal, several authors (Cailletaud (1992), Li et al. (2012)) introduce a kinematic476

hardening variable in the flow rule at the slip system level. That variable evo-477

lution is governed by an Armstrong-Frederick type law and its material pa-478

rameters have to be fitted on cyclic tests. A different approach was proposed479

by Balland et al. (2011) which requires relatively less effort for identification.480

Different initial critical resolved shear stresses are distributed in the grains481

of the aggregate. Thereby stress inhomogeneity, which can be linked to such482

material behavior, is introduced in the model. A Rayleigh distribution was483

adopted to model an inhomogeneous repartition of the initial critical resolved484

shear stress in the aggregate. It is written as:485

f (τo) =
τo(

τhom0

)2 exp

(
− (τo)

2

2
(
τhom0

)2
)
, (31)

where the modal of the distribution τhom0 is chosen equal to the previously486

identified initial critical resolved shear stress τ0.487

The latter approach proved successful for pre-strains up to 20 % as can488
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be seen in Fig. 17. However when the pre-strain is larger, the model still489

underestimates the Bauschinger effect and permanent softening induced.490

These results tend to show that intergranular stress inhomogeneity may
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Figure 16: Experimental reversed shear test and CPFEM model simulated curves.
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Figure 17: Experimental reversed shear test and CPFEM model simulated curves while
accounting for initial stress inhomogeneity.
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491

be sufficient to describe strain reversal behavior up to moderate pre-strain492

levels. Afterwards, the effect of intragranular backstress cannot be neglected493

and the hardening model needs further improvements (Kim et al. (2012), Li494

et al. (2014)).495

5.2. Phenomenological models calibration with a reduced experimental database496

As described in the previous section, the CPFEM model was calibrated497

using only a tensile test in the RD as well as the measured texture. In order498

to establish a more relevant one-to-one comparison, the phenomenological499

models were recalibrated using a reduced experimental database. The latter500

consists only of the stress-strain curves for the monotonic tensile tests at 0,501

45 and 90◦ with respect to the rolling direction.502

The identification procedure was simplified accordingly :503

• isotropic hardening parameters and a reference yield stress were iden-504

tified considering the three tensile tests505

• yield function shape parameters of Bron&Besson model retained the506

reference values (a=b1=b2=2)507

• anisotropy parameters were identified on the considered database508

Calibration of the models was conducted as previously, with the SiDoLo509

software, and the obtained parameter sets are given in Table 7 and Table 8.510

Then, the entire set of tests was simulated with this new set of parameters.511

F G N σ0 σsat CR n
1.27 1.14 2.94 316 5780 0.11 0.55

Table 7: Material parameters for the phenomenological model and Hill’s 1948 yield func-
tion identified on the reduced database. σ0 and σsat are in MPa.

c11 c12 c13 c14 σ0 σsat CR n
1.11 0.97 0.95 1.01 316 5780. 0.11 0.55

Table 8: Material parameters for the phenomenological model and Bron&Besson yield
function identified on the reduced database. σ0 and σsat are in MPa.
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As expected, this time the predictions of both models were less accurate.512

Bron&Besson still performed better than Hill’s 1948 model and described513

quite well yield stress anisotropy and stress levels, see Fig. 18. The predic-514

tions of equi-biaxial tensile loading are shown on Fig. 19. Hill’s 1948 model515

largely underestimated the stress level while Bron&Besson accurately de-516

scribed the hardening behavior only up to 5% of deformation. Both models517

provided fairly good predictions of monotonic shear tests. However since518

cyclic shear tests were not considered in the database, the two models did519

not describe the correct transient behavior after strain reversal, see Fig. 20.520

Also, Fig. 21 showed that strain anisotropy could not be captured by the521

models.522
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Figure 18: Prediction of the tensile tests at 0◦, 45◦ and 90◦ with the phenomenological
model based on the reduced database using the yield functions of a) Bron&Besson and b)
Hill’s 1948. Symbols show the experimental values.
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Figure 19: Prediction of the hydraulic bulge tests with the phenomenological model based
on the reduced database using the yield functions of a) Bron&Besson and b) Hill’s 1948.
Symbols show the experimental values.

5.3. Discussion524

When calibrated on the full experimental database, the Bron&Besson525

model provided a good overall prediction of all the experiments and strain526

paths. Its eight anisotropy parameters enabled an excellent description of527

material anisotropy, both in flow stresses and plastic strain ratios. Let us528

recall that the parameter identification was performed to optimize simulta-529

neously strain and stress anisotropy. Hill’s 1948 model could not accurately530

capture both features. It couldn’t account for the distinctive hardening slope531

at 0◦ from the RD and only the plastic strain ratio at 45◦ from the RD was532

well predicted. Nevertheless, it provided a description of equi-biaxial loading533

and shear tests nearly as good as the Bron&Besson model. Stress anisotropy534

was still well predicted by Bron&Besson model and failed using Hill’s 1948535

model. However, this time neither of the two models could predict any of the536

plastic strain ratios. Bron&Besson model prediction for equi-biaxial loading537

was clearly better than Hill’s 1948 model but still it considerably lacked ac-538

curacy for large strains. The monotonic shear test description was quite good539

for both models while kinematic hardening effects in reversed shear loading540
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Figure 20: Prediction of the monotonic and reversed shear tests with the phenomenological
model based on the reduced database using the yield functions of a) Bron&Besson and b)
Hill’s 1948. Symbols show the experimental values.

were not rendered as expected.541

The CPFEM model, calibrated on a single tensile test in the RD and ac-542

counting for EBSD measured grain orientations, predicted remarkably well543

the stress-strain hardening curves. Thus, its predictions on stress anisotropy544

compare well with those of Bron&Besson model. Regarding equi-biaxial load-545

ing as well as the monotonic and reversed shear tests description, phenomeno-546

logical models calibrated on the reduced database were outperformed by the547

CPFEM model. The latter even performed equally well on equi-biaxial load-548

ing with the former calibrated on the full experimental database. However,549

CPFEM model monotonic and reversed shear tests predictions were not as550

accurate as full database calibrated phenomenological models ; especially for551

large pre-strained reversed shear loading, Bron&Besson and Hill’s 1948 mod-552

els provide clearly more accurate predictions. Additionally, Fig. 22 shows553

that when it comes to strain anisotropy, the best description was clearly554

achieved by Bron&Besson model calibrated on the full database. This time,555

simulations were made at every 5◦ from the RD for the sake of completeness.556

The CPFEM model predictions were also in good agreement with experimen-557
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Figure 21: Prediction of the plastic anisotropy ratios with the phenomenological model
based on the reduced database using the yield functions of a) Bron&Besson and b) Hill’s
1948. Symbols show the experimental values.

tal data and this model gave the best description in the case of the reduced558

database.559

Ultimately, the Bron&Besson model calibrated on the extended database pro-560

vided the best description with respect to the existing experiments, demon-561

strating the possibilities of advanced phenomenological material models. How-562

ever, collecting such an amount of experimental data is time consuming and563

not always affordable. Indeed, usual material characterization for industrial564

purposes often consist of tensile tests such as the reduced database employed565

in this work. If one considers such a database, it is clear that the CPFEM566

model stands out as the best modeling choice in terms of accuracy and ro-567

bustness. Furthermore, it must be stated that the CPFEM model employed568

in the present study was relatively basic and designed to embed the least569

possible parameters to fit. This was intented to obtain a model relying fun-570

damentally on material microstructure and texture input in the present case.571

As a result, only 3 parameters had to be adjusted. Up to 28 and 19 parame-572

ters had to be calibrated on the full database respectively for Bron&Besson573

model and Hill’s 1948 model. The calibration procedure was far more com-574
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plex for phenomenological models and required dedicated procedures and575

software. Additionally, it was demonstrated in the reduced database case576

that when confronted with strain paths that had not been accounted for in577

the calibration step, the phenomenological models could not provide good578

results. Consequently, the accuracy of phenomenological models calibrated579

on monotonic experiments alone (thus, involving only isotropic hardening)580

can be reasonably questioned whenever non-proportional strain paths may581

occur. In contrast, the CPFEM model calibrated on a single uniaxial tensile582

test proved capable of accurately predicting the mechanical response of a non583

annealed copper alloy under various strain paths, although its reverse loading584

predictions were not perfect. As it accounts for deformation mechanisms, the585

shapes and orientations of the grains, the CPFEM model has the potential586

to predict global material behavior.
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Figure 22: Prediction of the plastic strain ratios at 0◦, 45◦ and 90◦ with the CPFEM
model and the phenomenological models calibrated on the a) full experimental database
and b) reduced experimental database.

587

6. Conclusion588

State-of-the-art phenomenological models (Bron&Besson, Hill’s 1948) and589

a CPFEM classical model (Peirce-Asaro-Needleman type) were compared on590
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their ability to describe the mechanical response of very thin copper alloy591

sheet metals under several strain paths. Theoretical and numerical imple-592

mentation aspects as well as material calibration of material parameters of593

the models were presented. It can be summarized that :594

• The phenomenological model based on the BB yield function provided595

the best results and accurately predicted all the mechanical tests on596

which it was calibrated597

• Hill’s 1948 could not perform well on the simultaneous description of598

stress and strain anisotropy599

• both phenomenological models results were very sensitive to the scope600

of the experimental database considered for calibration ; their predic-601

tions quality was poor on a reduced database602

• in contrast, a basic CPFEM model calibrated on a single tensile test603

provided an overall good description of all explored strain paths and604

strain anisotropy605

• an initial stress inhomogeneity between grains in the CPFEM model im-606

proved the prediction of the reversed shear test (especially the Bauschinger607

effect) up to moderate pre-strains608
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