
HAL Id: hal-01555998
https://hal.science/hal-01555998

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Minimizing-Operators on Polyhedra via
Parametric Linear Programming

Alexandre Maréchal, David Monniaux, Michaël Périn

To cite this version:
Alexandre Maréchal, David Monniaux, Michaël Périn. Scalable Minimizing-Operators on Polyhedra
via Parametric Linear Programming. Static Analysis Symposium (SAS), Francesco Ranzato, Aug
2017, New York, United States. �hal-01555998�

https://hal.science/hal-01555998
https://hal.archives-ouvertes.fr


Scalable Minimizing-Operators on
Polyhedra via

Parametric Linear Programming12
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Abstract

Convex polyhedra capture linear relations between variables. They are used in
static analysis and optimizing compilation. Their high expressiveness is however
barely used in verification because of their cost, often prohibitive as the number of
variables involved increases. Our goal in this article is to lower this cost. Whatever
the chosen representation of polyhedra – as constraints, as generators or as both –
expensive operations are unavoidable. That cost is mostly due to four operations:
conversion between representations, based on Chernikova’s algorithm, for libraries
in double description; convex hull, projection and minimization, in the constraints-
only representation of polyhedra. Libraries operating over generators incur expo-
nential costs on cases common in program analysis. In the Verimag Polyhedra
Library this cost was avoided by a constraints-only representation and reducing
all operations to variable projection, classically done by Fourier-Motzkin elimina-
tion. Since Fourier-Motzkin generates many redundant constraints, minimization
was however very expensive. In this article, we avoid this pitfall by expressing pro-
jection as a parametric linear programming problem. This dramatically improves
efficiency, mainly because it avoids the post-processing minimization. We show
how our new approach can be up to orders of magnitude faster than the previous
approach implemented in the Verimag Polyhedra Library that uses only constraints
and Fourier-Motzkin elimination, and on par with the conventional double descrip-
tion approach, as implemented in well-known libraries.
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1 The Challenge of Verification using Polyhedra

Static analyzers establish the validity of assertions in programs by discovering inductive invariants that
entail them. Analyzers based on abstract interpretation consider invariants within an abstract domain [5].
Invariants on numeric variables are of particular interest. They may entail that software produce no arith-
metic overflow, no array index out of bounds — the user may be directly interested in such properties, or
an optimizing compiler may discard runtime checks for violations that cannot occur. Furthermore, proofs
of more complicated properties may use numerical invariants internally — for instance proofs of sorting
algorithms need invariants on indices.

An example of abstract domain suitable for program states given by vectors of n numerical variables is
the domain of products of n intervals; but such a domain cannot express relationships between variables.
This hinders verification even if the final goal is to prove that a given variable lies within certain bounds,
for instance to prove that a string length is less than a fixed buffer size: one may need to prove that the sum
of the length of two strings is less than this size, thus a relation between these lengths.

The domain of convex polyhedra comprises sets of states defined by conjunctions of linear (in)equalities
over the variables [6]. The analyzer needs to perform a variety of operations on these sets — least upper
bound (convex hull, in the case of polyhedra), inclusion tests, projections, image and reverse image by
program operations; also, in some cases, intersections and Minkowski sums. In addition to static analyzers,
convex polyhedra are used inside highly optimizing compilers to reorganize loop nests [1].

Despite their expressiveness and 40 years of research, polyhedra are little used in verification because
operations on polyhedra are still costly and do not scale to large programs [13]. Usually, they are restricted
to a small subset of program variables such as loop indices [14] — including more variables would mean
skyrocketing costs.

Most libraries for computing over convex polyhedra maintain a double description, both as generators
(vertices, in the case of bounded polyhedra) or constraints (faces). A common case in program analysis
is upper and lower bounds are known on all N variables — that is, the vector of variables lies within a
distorted N -dimensional hypercube, which has 2N vertices. This explains the reputation of polyhedra as
unwieldy except in very low dimension, and motivated the design of the Verimag Verified Polyhedra Li-
brary (VPL) that operates on constraints-only representations [8, 10]. An advantage of that approach is
that it is easy to log enough information to independently check that the computed polyhedron includes the
exact polyhedron that should be computed, which suffices for proving that static analysis is sound [9, 10];
the certificate checker was implemented and proved correct in COQ.4 The consequence is that many op-
erations of the VPL, such as assignment, convex hull or Minkowski sum, were encoded as projection,
finally performed by Fourier-Motzkin elimination [2]. Unfortunately, Fourier-Motzkin elimination gener-
ates numerous redundant constraints; and even by incrementally removing them after each elimination of
a variable, intermediate steps may create large lists of constraints.

In 2013, the overall performance of VPL [10] on typical verification benchmarks was on a par with that
of double description libraries, though the timings on individual operations differed: some operations are
faster than in double description, some are slower — all those involving projection, including convex hull.
Projection by Fourier-Motzkin was the bottleneck.

Contribution In this article we report on an algorithmic breakthrough that speeds up typical compu-
tations on polyhedra in constraints-only representation by several orders of magnitude when polyhedra
becomes large (in number of relations) or dense (in number of variables involved in each relations). Scala-
bility results from the inseparable combination of i) the formulation of the projection via Parametric Linear
Programming (PLP) (§3); ii) the implementation of a PLP-solver over rationals, to get exact results (§5);
iii) a new normalization criterion, which ensures the absence of redundant constraints and saves the post-
processing elimination of redundancy (§6). This normalization, its proof and an certifying implementation
are the main contributions of this paper.5

4Certifying a library in double description would have likely entailed implementing and proving in COQ the correctness of
Chernikova’s conversion algorithm from one representation to the other.

5The VPL 0.2 is available at https://github.com/VERIMAG-Polyhedra/VPL
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We demonstrate the scalability by comparing timings of projections between the PLP-based algorithm,
Fourier-Motzkin elimination and an existing library based on double description (§7).

Related work The high cost of general convex polyhedra was long deplored. It motivated studying
restricted classes of polyhedra, with simpler and faster algorithms, such as octagons [26]; and even these
were found to be too slow, motivating recent algorithmic improvements [32]. We instead sought to conserve
the domain of polyhedra as originally described [6, 12], but with very different algorithms.

Our work was inspired by Howe et al.’s attempt to replace the Fourier-Motzkin elimination by a for-
mulation as a Parametric Linear Optimization Problem (PLOP) [15], which they solved by an ad hoc algo-
rithm. Unfortunately, their implementation is not available. We took a step further and developed a generic
PLP-solver exploiting insights by [18, 17]. Our solver, implemented in OCAML, works over rationals and
generates COQ-certificates of correctness of its computations, similar to those in VPL [8, 9, 10].

Most libraries for computing over convex polyhedra for static analysis or compilation, including PolyLib,6

Komei Fukuda’s CDD,7 the Parma Polyhedra Library,8 the NEWPOLKA library included in Apron,9 op-
erate over the double description; see e.g. [28] for an introduction. The costliest and most complicated
operation is the conversion from one representation to the other, using Chernikova’s algorithm [3, 20]. It
is rather easy to prune redundant items from one representation if one has the other, which explains the
attractiveness of that approach. Its only drawback is that, as explained above, the generator representation
is exponential in the dimension on very common and simple cases.

The explosive nature of the generator representation motivated approaches that detect when a polyhe-
dron is a Cartesian product of polyhedra and compute generator representations separately for each element
of the product, thereby avoiding exponential blowup in the case of the hypercube [13, 31].

General texts on polyhedra and linear programming include [7, 4, 29].

2 Basics
Throughout the article, vectors are written in boldface lowercase, and matrices in boldface uppercase. An
affine form over x is a linear combination plus constant of x1, ..., xn. For two vectors a` and x of the same
length, the dot product 〈a`,x〉 =

∑
i a`i xi is a linear function of x. Thus, we often use the notation a`(x)

instead of 〈a`,x〉.
A convex polyhedron10 is the set of points x = (x1, . . . , xn) ∈ Qn that satisfy a conjunction (or a

set) of linear constraints of the form C` :
∑n

i=1 a`i xi ./ b` where xi are program variables, a`i and b` are
constants in Q, and ./ ∈ {≤,=,≥}. All constraints can be assumed to use only ≥.11 Such a constraint is
the `th row of a vector inequality Ax≥ b. We use JPK to specifically refer to the set of points defined by
the set of constraintsP . Given a polyhedron JPK = {x | Ax≥ b }, the same system with strict inequalities
defines P̊ , the interior of P , and x̊ denotes a point of JP̊K def

= {x | Ax> b }. In all the paper and without
loss of generality, we focus on polyhedra with non-empty interior, meaning that equalities (explicit or
implicit) are extracted and treated separately, as in most polyhedra libraries.

Before presenting our encoding of the projection operator as a PLOP, we start by recalling the funda-
mental Farkas’ Lemma and Fourier-Motzkin’s Algorithm for variable elimination.

Example 1.1. Figure 1 shows the geometrical space defined by the polyhedron P = {C1 : −x1− 2x2 +
2x3 ≥ −7,C2 : − x1 + 2x2 ≥ 1,C3 : 3x1 − x2 ≥ 0,C4 : − x3 ≥ −10,C5 :x1 + x2 + x3 ≥ 5} and its
projection on dimensions (x1, x2) resulting from the elimination of variable x3. Projecting variable x3 from
P – noted P\{ x3 } – by Fourier-Motzkin elimination consists in eliminating x3 by combining constraints
with opposite signs for x3. Constraints that do not involve x3 remain unchanged. This retains constraints
C2,C3 and produces two new constraints: C1+2C4 :−x1−2x2 ≥ −27 andC4+C5 :x1+x2 ≥ −5. By

6https://icps.u-strasbg.fr/polylib/
7https://www.inf.ethz.ch/personal/fukudak/cdd_home/
8http://bugseng.com/products/ppl/ [28]
9http://apron.cri.ensmp.fr/library/ [16]

10We only deal with convex polyhedra. For readability, we will omit the adjective convex in the following.
11An equality a = b corresponds to the conjunction of inequalities a ≥ b ∧ a ≤ b and a ≤ b is equivalent to −a ≥ −b.
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Figure 1: Elimination of one variable in a three-dimensional polyhedron.

Farkas’ Lemma, the latter is redundant with respect to C2 and C3 as it can be expressed as a nonnegative
combination of C2, C3.

Lemma 1 (Farkas’ lemma [29, 7.1h, p.93]). A constraintC ′ is a logical consequence of a non-contradictory
set of constraints P = {C1, . . . ,Cp} iff there exists λ0, ..., λp ≥ 0 such thatC ′ = λ0 +

∑p
i=1 λiCi, called

a Farkas decomposition of C ′ on P .

Example 1.2. The combination 4
5C2 + 3

5C3 :x1 + x2 ≥ 4
5 is a logical consequence of C2 and C3 and

it is a stronger condition than C4 + C5 :x1 + x2 ≥ −5 since 4
5 > −5. Thus, the constraint C4 + C5 is

redundant with respect toC2 andC3. Therefore the polyhedron P\{ x3 } is only formed of three constraints
{C2,C3,C1 + 2C4}.

3 Projection via Parametric Linear Programming

Naive Fourier-Motzkin elimination produces O
(
( |P|2 )2k)

constraints when eliminating k variables of a
polyhedron with |P| constraints [30]. Most of them are redundant: indeed, the number of faces of the
projected polyhedron is O(|P|k) [27, §4.1].12 Removing the redundant constraints is costly, even though
there exists improved algorithms [21].

Jones et al. [17] then Howe et al. [15] noticed that the projection of a polyhedron can be expressed as
a Parametric Linear Programming problem. In fact, PLP naturally arises when trying to generalize Fourier-
Motzkin method to eliminate several variables simultaneously. In this article we achieve the work initiated
by [15], whose goal was to compute the projected polyhedron without generating redundant constraints.
Let us first explain their approach.

Example 1.3. As a consequence of Farkas lemma, any constraint implied by {C1, ...,C5} is a nonnega-
tive combination of them, written λ0 +

∑5
i=1 λiCi with λi ≥ 0, i.e.

λ0 + λ1(−x1 − 2x2 + 2x3) + λ2(−x1 + 2x2) + λ3(3x1 − x2)
+ λ4(−x3) + λ5(x1 + x2 + x3) ≥ − 7λ1 + λ2 − 10λ4 + 5λ5

The left-hand side of the inequality can be rearranged to reveal the coefficient of each variable xi and we
can bring the right-hand side term of ≥ to the left.

λ0 + (−λ1 − λ2 + 3λ3 + λ5)x1 + (−2λ1 + 2λ2 − λ3 + λ5)x2

+ (2λ1 − λ4 + λ5)x3 − (−7λ1 + λ2 − 10λ4 + 5λ5) ≥ 0
(1)

12This follows from McMullen’s bound on the number of n− k − 1-faces of the polyhedron [24, 25].
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Then, any instantiation of that inequality with λi canceling the coefficient of x3, i.e. that satisfies (α) 2λ1−
λ4 + λ5 = 0, is an over-approximation of P\{ x3 }. Indeed, it does not involve x3 and, as a Farkas
combination, it is by construction a logical consequence of P . Constraints found by the FM elimination
of x3 correspond to the solutions (λ0, . . . , λ5) ∈ {(0,0,1,0,0,0), (0,0,0,1,0,0), (0,1,0,0,2,0), (0,0,0,0,1,1)} of Equation
(α). Note that it is possible to eliminate several variables simultaneously by setting an elimination equation
for each variable that must be discarded.

Here is a first formulation of a projection as a PLOP. We will refine it later, as it is not sufficient to
avoid redundancies in the result. Given a polyhedron P = {C1 :a1(x) ≥ b1, . . . ,Cp :ap(x) ≥ bp } on
variables x1, . . . , xn, the projection of P by elimination of k variables xe1 , . . . , xek can be obtained as the
solution of the optimization problem:

minimize the objective function z(x) = λ0 +
∑p

i=1 λi × (ai(x)− bi)
under the constraints (F ) λ0 ≥ 0, ..., λp ≥ 0

(†)
∑p

i=0 λi = 1
(α) αe1(λ) = 0, ...,αek(λ) = 0

 (2)

where αi(λ) denotes the coefficient of xi in the reformulation of the objective as α1(λ) × x1 + . . . +
αn(λ)×xn+α0(λ). The unknowns λi are called the decision variables: the solver must find a solution for
them. Note the inequalities (F ) from Farkas’ Lemma in addition to the (α) equations defining a projection.
This problem has a parametric objective: the objective function depends on parameters x1, . . . , xn due to
the terms ai(x) in the coefficients of the decision variables. But once x1, . . . , xn are fixed, both the
objective function and the constraints become linear in the decision variables, thus this problem belongs to
parametric linear programming.

An additional constraint, here
∑

i λi = 1, is needed to prevent the solver from obtaining the optimal
solution λ = 0 which is always valid in a projection problem, whatever the parameter values. The (†)
condition only excludes this useless null solution because any other solution can be scaled so that

∑
i λi =

1. The presence of λ0 in the objective can seem useless and strange to readers who are familiar with linear
programming: the solution λ0 = 1 and λ1 = ... = λp = 0 becomes feasible and generates a trivially
redundant constraint Ctriv : 1 ≥ 0. The role of λ0 will become clear in §4 and §6.

Example 1.4. The elimination of x3 via PLP is defined by two matrices: O is built from [−b|A]ᵀ and
encodes the objective. The other one captures the requirement (α) and (†). As usual in solvers, Farkas
constraints (F ) are left implicit.

minimize the objective function

(1, x1, x2, x3)ᵀ

O︷ ︸︸ ︷
0 1 7 −1 0 10 −5

0 0 −1 −1 3 0 1

0 0 −2 2 −1 0 1

0 0 2 0 0 −1 1




1
λ0

...
λ5

 = z(x)

︸ ︷︷ ︸
[−b|A]ᵀ

under the constraints

(†)︷ ︸︸ ︷(
−1 1 1 1 1 1 1

0 0 2 0 0 −1 1

)
︸ ︷︷ ︸

α


1
λ0

...
λ5

= 0



(3)

This formulation of the projection is correct. Unfortunately, it may still generate redundant constraints:
the solutions (λ0, . . . , λ5) ∈ {(1,0,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0), (0, 1

3
,0,0, 2

3
,0), (0,0,0,0, 1

2
, 1
2

)} include the trivial
constraint 1 ≥ 0 and 1

2C4 + 1
2C5 which is equivalent to the redundant constraint C4 + C5 found by

Fourier-Motzkin elimination. We shall address this point in §6.
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4 Polyhedra as Solutions of Parametric Linear Optimization Prob-
lems

In the previous section we encoded the projection of a polyhedron as a PLOP. For interpreting the result of
a PLP-solver as a polyhedron we need to go one step further into the field of PLP and look at the solutions
of a PLOP.

To summarize, Parametric Linear Programming is an extension of Linear Programming where the con-
stants in the constraints or the coefficients in the objective function may be replaced by affine combinations
of parameters [11]. In this article, we only deal with the case where parameters appear in the objective
function. The general form of a PLOP that stems from projection is

minimize the objective function z(x)
def
= λ0 +

∑p
i=1 λi × (ai(x)− bi)

under the constraints λ0, ..., λp ≥ 0, (†)
∑p

i=0 λi = 1, αλ = 0

}
(4)

where x is the vector of parameters (x1, ..., xn); (ai(x) − bi) are affine forms on the parameters; andα
is a matrix. In a projection problem the system of equationsαλ = 0 constrains the decision variables
λ1, ..., λp but not λ0.

The solution is a concave, piecewise affine function z?, mapping the parameters to the optimal solution:

z? def
= x 7→


z?

1(x) if x ∈ R1

...
z?
r(x) if x ∈ Rr

(5)

Each piece is an affine form over x, obtained by instantiating the objective function z with a solution λ;
a piece can also be denoted by z?

λ. Each z?
i is associated to a region of optimality Ri that designates the

set of x for which the minimum of z?(x) is z?
i (x). Regions of optimality are polyhedra; that will be

clear in §5 when we will explain how they are computed by our solver (see Example 1.6.). They form a
quasi-partition of the space of parameters: their union covers Qn and the intersection of the interior of two
distinct regions is empty. They however do not form a partition because two regions Ri,Rj may overlap
on their frontiers; then, their solutions z?

i ,z?
j coincide on the intersection.

From optimal function to polyhedron. A PLOP can be thought of as a declarative description of the
projection operator. The solution z? can be interpreted as a polyhedron P? that is the projection of an
input polyhedron P . This requires some explanations:

• Due to the Farkas conditions λ0, ..., λp ≥ 0 which preserve the direction of inequalities, the objective
function of PLOP (4), i.e. λ0 +

∑p
i=1 λi × (ai(x) − bi) can be interpreted as a constraint implied

by the input polyhedron P = {C1 :a1(x)≥ b1, ...,Cp :ap(x)≥ bp}. Actually, for a given λ, the
statement z?

λ(x)≥ 0 is equivalent to the constraint

λ0 +

p∑
i=1

λi × ai(x)≥
p∑

i=1

λi × bi (6)

• Minimizing the objective ensures that the λ0-shift of the constraint will be minimal, meaning that
the constraint z?

λ(x)≥ 0 will be tightly adjusted.

• The requirement αλ = 0 captures the expected effect of the projection. Thus, any solution λ
defines a constraint zλ(x) ≥ 0 of the polyhedron P?.

Now recall that a polyhedron is a set of points that satisfy linear inequalities. Therefore, it is natural to
define JP?K as {x | z?(x) ≥ 0 }. The following lemma proves that this set of points is a polyhedron.

Lemma 2. {x | z?(x) ≥ 0 } =
r⋂

k=1

{x | z?
k(x) ≥ 0 }

6/17 Verimag Research Report no 4
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Proof. Let us prove the mutual inclusion.

(⊆) Pick up a point x′ ∈ {x | z?(x) ≥ 0 }. By definition of z? as a piecewise function
defined on the whole space of parameters, then there exists i such that x′ ∈ Ri and
z?(x′) = z?

i (x′). It follows that z?
i (x′) ≥ 0 since x′ belongs to the set of points where

z? is nonnegative. Moreover, the fact that x′ belongs to Ri – the region of optimality
of z?

i in a minimization problem – ensures that z?
k(x′) ≥ z?

i (x′) for all k and therefore,
z?
k(x′) ≥ 0 for all k. Thus, x′ ∈ {x | z?

k(x) ≥ 0 } for all k = 1..r. Finally, x′ ∈⋂
k=1..r

{x | z?
k(x) ≥ 0 }.

(⊇) Pick up a point x′ ∈
⋂r

k=1 {x | z?
k(x) ≥ 0 }. Then, x′ belongs to a least one Ri be-

cause the regions form a (pseudo) partition of the whole space of parameters Qn, thus⋃r
k=1Rk = Qn. Yet, the affine piece that defines z? on x′ is z?

i and z?(x′) = z?
i (x′).

Moreover, all the affine pieces of z? are nonnegative onx′ sincex′ ∈
⋂r

k=1 {x | z?
k(x) ≥ 0 }.

Then, in particular z?
i (x′) ≥ 0 and the same goes for z?(x′). Finally, x′ ∈ {x | z?(x) ≥ 0 }.

�

Constructing the vector inequality Z? x ≥ b? that defines the polyhedron P? is straightforward from
the solution z?. If suffices to get rid of the regions of optimality and to interpret each affine piece of
z? as an inequality: {x | z?(x)≥ 0 } = (by Lemma 2)

⋂r
k=1 {x | z?

k(x)≥ 0 } = {x |
∧r

k=1z?
k(x)≥ 0}

= {x |
∧r

k=1〈z?k,x〉 − b?k ≥ 0} = {x | Z?x≥ b? } . Let us detail this construction.
Each piece z?

k of the solution is a affine form over x and z?
k(x) ≥ 0 defines a constraint in the form (6)

which can be written
∑n

i=1 z
?
ki xi ≥ b?k i.e. 〈z?k,x〉 ≥ b?k for some vector z?k = (z?k1, ..., z

?
kn) and some

constant b?k. It follows from Lemma 2 that the set of points x where z?(x) is nonnegative is a polyhedron
defined by the vector inequality Z?x≥ b? where the rows of Z? are the vectors z?1 , . . . ,z

?
r and b? is the

column vector (b?1, . . . , b
?
r)ᵀ.

Example 1.5. On our running projection problem, the PLP-solver returns the following optimal function,
and the instantiation of the decision variables λi that defines each affine piece:

z? def
= (x1, x2) 7→



z?
2 : −x1 + 2x2 − 1 on R2 (for λ2 = 1)

z?
3 : 3x1 − x2 on R3 (for λ3 = 1)

z?
4 : − 1

3x1 − 2
3x2 + 9 on R4 (for λ1 = 1

3 , λ4 = 2
3 )

z?
5 : 1

2x1 + 1
2x2 + 5

2 on R5 (for λ4 = 1
2 , λ5 = 1

2 )

z?
1 : 1 on R1 (for λ0 = 1)

from which we construct the polyhedron

P? =

Z?︷ ︸︸ ︷
−1 2 0

3 −1 0

− 1
3 − 2

3 0

1
2

1
2 0

0 0 0


x︷ ︸︸ ︷x1

x2

x3

 ≥
b?︷ ︸︸ ︷

1
0
−9

− 5
2

−1

 =



C2 : −x1 + 2x2 ≥ 1

C3 : 3x1 − x2 ≥ 0
1
3C1 + 2

3C4 : − 1
3x1 − 2

3x2 ≥ −9
1
2C4 + 1

2C5 : 1
2x1 + 1

2x2 ≥− 5
2

Ctriv : 0 ≥ −1


Variable x3 does not appear anymore in the constraints of P? because its column in Z? is made of 0. The
regions of optimality, shown on Fig.2(a) form a pseudo-partition of the whole space of parameters (x1, x2):
regions R2, . . . ,R5 are unbounded; the central triangle is the region R1 associated to the constant affine
form z?

1 = 1 which produces the trivial constraint Ctriv : 1 ≥ 0. Each boundary of P? (shown as bold
lines in the figure) is the intersection of a region of optimality Ri with the space where the associated
affine form z?

i evaluates to zero. We retrieve constraints equivalent to those of Example 1.1., except that
the redundant constraint 1

2C4 + 1
5C5 generated by z?

5 is still present. The drawing of the regions reveals
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(a) (b)

Figure 2: The regions of optimality of the solution z? of Example 1.5. obtained by solving PLOP (3).
The bold lines are the boundaries of the projected polyhedron P?. Figure (a) shows regions obtained
when the PLOP contains the constraint

∑
i λi = 1. Figure (b) shows regions obtained when constraints are

normalized on point x̊ (see §6).

that z?
5 does not vanish on its region of optimality, i.e. Jz?

5 = 0K ∩ JR̊5K = ∅. Actually, this is true for
any redundant constraint. Indeed, we will prove in §6 (Lemma 5) that Jz?

i = 0K ∩ JR̊iK 6= ∅ ensures the
irredundancy of the constraint z?

i ≥ 0 in P?.

5 Principle of a PLP-solver
Due to space limitations we shall only sketch how our parametric linear programming solver works. It is
based on a recent algorithm by Jones et al. [18] with some improvements: it uses a fast simplification of
regions [23] and performs exact computations in rationals so as to avoid rounding errors.

This algorithm for solving a PLOP is a generalization of the simplex algorithm which can itself be seen
as an extension of Gaussian elimination for solving a system of linear equations.

Gaussian elimination proceeds by rewriting: each equation defines a variable in terms of the other
ones. This equation can be used to eliminate the variable from the other equations by substitution. This
operation is called a pivot. Gauss pivoting strategy leads to an equivalent system in echelon form where
un/satisfiability becomes trivial.

The simplex algorithm follows the same principle but differs in the selection of the variable to eliminate.
First, each inequality C` :

∑n
i=1 a`i xi ≤ b` is changed into an equality

∑n
i=1 a`i xi + xn+` = b` by

introducing a variable xn+` ≥ 0 called a slack variable. Second, the objective function is added to the
system as an extra equation defining the variable z as a linear form z =

∑n+r
i=1 oixi. Then, the simplex

performs pivots as in Gaussian elimination until reaching an equivalent system of equations where the
optimality of z becomes syntactically obvious. Let us take an example.

Example 1.6. To illustrate the behavior of a LP-solver, such as the simplex, let us instantiate the objective
of PLOP (3), e.g. with x1 = 5, x2 = 11, x3 = 1, to obtain a non-parametric version: z = λ0 − 18λ1 +
16λ2 +4λ3 +9λ4 +12λ5. The simplex strategy chooses to define λ1 and λ4 in terms of the other decision
variables. It exploits the equations (†) and (α) of PLOP (3) and gets (i) λ1 = − 1

3 λ0− 1
3 λ2− 1

3 λ3− 2
3 λ5+ 1

3
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using (α) to eliminate λ4 in (†), and (ii) λ4 = − 2
3 λ0 − 2

3 λ2 − 2
3 λ3 − 1

3 λ5 + 2
3 using (†) to eliminate

λ1 in (α). Then, it performs two rewritings using equations (i, ii) and returns an equivalent version of
the objective z = λ0 + 16λ2 + 4λ3 + 21λ5 on which it is clear that choosing λ0, λ2, λ3, λ5 greater than
0 would increase the value of z because their coefficients are positive. Thus, the minimum value of z is
reached for λ0 = λ2 = λ3 = λ5 = 0 which entails λ1 = 1

3 and λ4 = 2
3 using equations (i) and (ii). This

example summarizes the principle of linear programming.
Now consider our minimization problem (3) with its parametric objective

z(x1, x2, x3) = λ1(−x1 − 2x2 + 2x3 + 7) + λ2(−x1 + 2x2 − 1) + λ3(3x1 − x2) + λ4(−x3 + 10)
+λ5(x1 + x2 + x3 − 5) + λ0

Our PLP-solver uses the previous instantiated problem to discover the useful pivots (i, ii). Then, it replays
the same rewritings on the parametric version. Those operations are efficiently implemented using the
matrix representation of (3): they boils down to the addition of combinations of rows of (†) andα to those
ofO. We end up with the following objective:

−1

3
x1 −

2

3
x2 + 9︸ ︷︷ ︸

z?
4

+ λ0
1

3
(x1 + 2x2 − 24)︸ ︷︷ ︸

≥ 0 :C4.1

+ λ2
2

3
(−x1 + 4x2 − 15)︸ ︷︷ ︸

≥ 0 :C4.2

+ λ3
1

3
(10x1 − x2 − 27)︸ ︷︷ ︸

≥ 0 :C4.3

+ λ5
1

3
(5x1 + 7x2 − 39)︸ ︷︷ ︸

≥ 0 :C4.4

We recognize the 4th piece of z?. The argument for optimality used in the non-parametric version can
be generalized: The minimality of z?

4 holds if the parametric coefficients of the remaining variables
are nonnegative, since increasing the values of λ0, λ2, λ3, λ5 (which must be nonnegative) would make
the objective value grow. This condition defines the region of optimality R4 of z?

4 as the polyhedron
{C4.1,C4.2,C4.3 }, see Fig.2(a). C4.4 is actually redundant with respect to C4.1, C4.2 and C4.3. It is
thus eliminated from the representation ofR4, and therefore does not appear on Fig.2(a).

The PLP-solver then chooses an opposite sign condition of a parametric coefficient C4.i – that means
exploring an adjacent region by crossing a frontier – and selects a new instantiation point on this side of the
constraint. The objective is then instantiated accordingly and submitted to the simplex which provides the
meaningful pivots leading to another optimal affine form and its region of optimality. The benefit of PLP is
that the exploration of one instance with the simplex is generalized into a whole region of optimality. The
exploration goes on until the whole space of parameters has been covered by the union of regions: any new
instantiation point falls in an already explored region.

6 Polyhedra in Minimal Form for Free
The previous sections showed how to compute the optimal solution of a PLOP and how to interpret the
solution z? as a polyhedron P? =

∧r
k=1 z?

k(x) ≥ 0. Still, the representation of P? may not be minimal:
some constraints z?

k(x) ≥ 0 may be redundant in P?. We could remove those redundancies afterwards but,
as noticed by Howe et al. [15], it is highly preferable to prevent their generation by adding a normalization
constraint to the PLOP. We adapt their intuition to our formulation of the problem and we bring the proof
that it indeed avoids redundancies. This requires to make a detour via normalized solutions to explain the
expected effect of a normalization constraint.

6.1 Normalizing the Projection PLOP

Let us normalize the function z? so that it evaluates to 1 on a given point x̊ in the interior of P?. Formally,
we consider a solution z̃?

(x)
def
=

z?
(x)

z?
(x̊)

or equivalently ∀k, z̃?

k(x)
def
=

z?
k(x)

z?
k(x̊)

. The key point of this transfor-
mation is that the space Jz? ≥ 0K, which is the polyhedron P? of interest, is unchanged. The normalized
solution z̃?

will differ from the original one but must fulfills Jz̃? ≥ 0K = Jz? ≥ 0K which is true on the
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main functions if it holds on each of their pieces, i.e. ∀k, Jz̃?

k ≥ 0K = Jz?
k ≥ 0K. The normalization

preserves the nonnegativity space of each z?
k because 1z?

k(x̊)
is a positive scalar: Indeed, x̊ belongs to the

interior of P?, i.e. J
∧

k z?
k > 0K by Lemma 2. The proof of this remark is in the appendix (see Lemma 7).

Example 2. The transformation of the solution only changes the inclination of z?
k, not the space where they

cross 0. This can easily be illustrated on one-variable constraints. Consider three constraintsC1 : 2x ≥ 5,
C2 :x ≤ 12 and a redundant one C3 :x ≥ 2, corresponding to three affine forms z?

1(x) = 2x − 5,
z?

2(x) = 12 − x and z?
3(x) = x − 2. On the left-hand side we plotted the functions z = z?

i (x) for
i ∈ { 1, 2, 3 } and, on the right-hand side, their normalizations with respect to the point x̊ = 3.

The most interesting consequence of the normalization is that a constraint is redundant iff its normal-
ized affine form is nowhere minimal. This property does not hold on the non-normalized forms: although
C3 is redundant w.r.t. C1 and C2, z?

3 is minimal w.r.t. z?
1 and z?

2 on x ∈ [3, 7]. On the contrary, consider-
ing the normalized forms, z̃?

3 is no longer minimal, thus it will be absent from the piecewise solution of a
minimization problem. One of our contribution is the proof of this result (§6.2).

Last, but no least, the normalized pieces are not computed a posteriori from the original solutions.
They are obtained directly by enforcing the normalization of the objective through an additional constraint
z(x̊) = 1. Recall from (4) that the objective of the PLOP is z(x)

def
= λ0 +

∑p
i=1 λi × (ai(x) − bi).

Then, the normalization constraint becomes (‡) λ0 +
∑p

i=1 λi × (ai(̊x) − bi) = 1 where the ai(̊x) are
coefficients in Q, obtained by evaluating the constraints of the input polyhedron at x̊. The normalization
constraint replaces the previous requirement (†)

∑
i λi = 1 in the PLOP: like (†) it excludes the solution

λ0 = ... = λp = 0. Back to Example 1.5., our PLP-solver running on the normalized PLOP only builds the
irredundant constraints z?

2 ≥ 0, z?
3 ≥ 0 and z?

4 ≥ 0 associated to the regions of Fig.2(b).
Note that we must be able to provide a point x̊ in the interior of P? while P? is not already known.

Finding such a point is obvious for projection, convex-hull and Minkowski sum. It is feasible because the
operators based on PLP are applied on polyhedra with non-empty interior; the treatment of polyhedra with
equalities is explained in Example 3 below. For projection, x̊ is obtained from a point x in the interior of
the input polyhedron P . Removing the coordinates of variables marked for elimination provides a point x̊
that will be in the interior of the projected polyhedron P?.

Example 3. Consider the case of a polyhedron over variables x, x′, x′′ made of inequalities P and an
equality E :x′′ = f(x, x′). The computation of the projection (P ∧ E)/{ x′,x′′ } is done in two steps: we
use equation x′′ = f(x, x′) to eliminate x′′ from P by substitution. If implicit equalities show up we
exploit them in the same way, otherwise we apply the projection via PLP on P[x′′/f(x, x′)] to eliminate
the remaining variable x′.

6.2 A Normalized PLOP is Free of Redundancy
The advantage of PLP over Fourier-Motzkin comes from the following theorem:

Theorem 1. Let z̃? def
= min{z̃?

1, . . . , z̃
?

r} be the optimal solution of a normalized parametric minimization
problem. Then each solution z̃?

k that is not the constant function x 7→ 1 is irredundant with respect to
polyhedron Jz̃? ≥ 0K.

Proof. Theorem 1 is a direct consequence of three intermediates results: (i) each region of
optimality in a normalized PLOP is a cone pointed in x̊ (Lemma 3); (ii) each piece z?

k which
is not constant, is decreasing on its region of optimality along lines starting at x̊ (Lemma 4);
(iii) each piece that crosses 0 on its region produces an irredundant constraint (Lemma 5). �
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Let us summarize the key facts that are needed for exposing the proof of the lemmata: Projection via
PLP leads to a parametric linear minimization problem whose solution is a function z̃?

defined by pieces
{z̃?

1 onR1, . . . , z̃?

r onRr}; each Rk is the region of optimality of z̃?

k, meaning that among all the pieces
z̃?

k is the minimal one on Rk, i.e. Rk = {x | z̃?
(x) = z̃?

k(x)}. By construction, z̃?
(x) is the minimum

of {z̃?

1(x), . . . , z̃?

r(x)} and z̃?
(x̊) = z̃?

1(x̊) = . . . = z̃?

r(x̊) = 1 is enforced by the (‡)-normalization con-
straint.
This is where λ0 comes into play: the fact that λ = (1, 0, ..., 0) fulfills
(‡) and (α), hence leading to the constant function z?

λ = 1, sets an
upper-bound on z?. Therefore, any minimal piece z̃?

k, which evaluates
to 1 on x̊, can not grow on its region of optimality otherwise it would
not be minimal compared to z?

λ = 1. Thus, z̃?

k is either constant and
equal to 1 or it satisfies ∀x ∈ R̊k, 1 > z?

k(x) which entails its decline
on the infinite regionRk as meant by Lemma 4, causing its nullification
in Rk, hence its irredundancy (Lemma 5). The constant piece z?

λ =
1 arises among the solutions of a normalized PLOP when the resulting
polyhedron P? is unbounded as illustrated alongside.

We focus on the proof of Lemma 5 which gives a criterion of irre-
dundancy illustrated on Fig.2. The proofs of the other lemmata are just
computational arguments; they are provided in the appendix.

Lemma 3. ∀x ∈ Qn, x ∈ R̊k ⇒ x̊+ µ(x− x̊) ∈ R̊k, ∀µ > 0.

Lemma 4. Either z̃?

k is the constant function x 7→ 1, or it decreases on lines of Rk starting at x̊, i.e.
∀x ∈ R̊k, ∀µ > 1, z̃?

k(x) > z̃?

k(x̊+ µ(x− x̊)).

Lemma 5.
(
Jz̃?

k = 0K ∩ JR̊kK
)
6= ∅ ⇒ z̃?

k ≥ 0 is irredundant w.r.t. z̃? ≥ 0.

Proof by contradiction. Consider z̃?

k, a piece of z̃?
such that Jz̃?

k = 0K ∩ JR̊kK 6= ∅.
Let us assume that z̃?

k is redundant. Then, by Farkas Lemma 1, ∃ (λj)j 6=k ≥ 0, ∀x ∈
Qn,

∑
j 6=k λj z̃

?

j (x) ≤ z̃?

k(x). Let x be a point of the nonempty set Jz̃?

k = 0K ∩ JR̊kK.

Then z̃?

k(x) = 0, as x ∈ Jz̃?

k = 0K, and the previous Farkas inequality becomes∑
j 6=k

λj z̃?

j (x) ≤ 0 (7)

Since x ∈ R̊k, then, z̃?

k(x) < z̃?

j (x) for j 6= k by definition ofRk as the region of optimality
of z̃?

k. More precisely, 0 < z̃?

j (x) since x ∈ Jz̃?

k = 0K. Therefore, 0 < λj z̃?

j (x) for j 6= k as
λj ≥ 0. Then, summing up this inequation for all j 6= k, we obtain

0 <
∑
j 6=k

λj z̃?

j (x) (8)

(7) and (8) are contradictory, proving thereby that z̃?

k is irredundant. �

6.3 Minimizing Operators based on Projection via PLP

As mentioned in introduction, several polyhedral operators, e.g. Minkowski sum, convex hull, assign-
ment and linearization, are encoded using extra variables which are then eliminated by projection. If the
projection is done by PLP, all these operators produce polyhedra free of redundancy if we can provide a
normalization point in the interior of the expected polyhedron. Let us give insights of the encodings.

The Minkowski sum of two polyhedra P ′ and P ′′ is the set of points x = x′ + x′′ with x′ ∈ JP ′K
and x′′ ∈ JP ′′K. It is computed by eliminating the variables of x′ and x′′ from the polyhedron P ′(x′) ∧
P ′′(x′′) ∧ {x = x′ + x′′ }, where P ′(x′) (resp. P ′′(x′′)) denotes the set of constraints of P ′ (resp. P ′′)
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over variables x′ (resp. x′′). We use x̊ def
= x̊′ + x̊′′ as normalization point where x̊′ (resp. x̊′′) is a point

lying within the interior of P ′ (resp. P ′′).
The convex-hull of P ′ and P ′′ is the smallest convex polyhedron that includes P ′ and P ′′. It is the set

of barycentres of x′ ∈ JP ′K and x′′ ∈ JP ′′K which can be formally defined as P ′(x′) ∧ P ′′(x′′) ∧ {x =
β1 × x′ + β2 × x′′, β1 + β2 = 1, β1 ≥ 0, β2 ≥ 0}. The equation defining x is non-linear but it can be
linearized using a simple change of variable [2]. Then, the convex-hull is obtained by elimination of β1, β2

and the variables of x′ and x′′ to get a polyhedron over x. We can use x̊′ or x̊′′ as normalization point.
Assignment and more generally, image by an affine map represented by a matrix M can be encoded

as intersection with equalities x′ = Mx, projection of the unprimed variables, and then renaming of the
prime variables into unprimed ones; the reverse image is just substitution. We use the image by M of a
point x̊ in the interior of the input polyhedron for normalization.

Our linearization operator for computing a polyhedral over-approximation of a conjunctions of linear
and polynomial constraints

∧
i gi(x) ≥ 0 is also implemented in the VPL via PLP [21]. However, it does

not prevent redundancies as we do not know how to provide a normalization point satisfying
∧

i gi(x̊) ≥ 0.

7 Experiments
Benchmarks. We reused the benchmark suite of [23]. It contains polyhedra gener-
ated randomly from several characteristics: number of constraints, number of variables
and density (ratio of the number of zero coefficients by the number of variables). Con-
straints are created by picking up a random integer between -100 and 100 as coefficient
of each variable. All constraints are attached the same constant bound ≤ 20. These
polyhedra have a potatoid shape, as shown on the right-hand side figure.

We compare three libraries on projection/minimization problems: NEWPOLKA
[16] as representative of the double description framework, VPL [10] based on Fourier-
Motzkin elimination, and our implementation based on PLP. As we produce polyhedra
in minimized form, we asked NEWPOLKA and VPL to perform a minimization afterwards.

On each problem we measure the execution time, with a timeout fixed at 300 seconds. In addition
to the number of constraints C, the density D and the number of variables V , we consider the effect of
the projection ratio P (number of projected variable over dimension). Fig.3 shows the effect of these
characteristics on execution time (in seconds). The vertical axis is always displayed in log scale, for
readability. Each point is the average execution time for the projection and minimization of 10 polyhedra
sharing the same characteristics.

Fourier-Motzkin Elimination in the VPL. As mentioned earlier, Fourier-Motzkin elimination generates
many redundant constraints and the challenge of a good implementation is their fast removal. The Fourier-
Motzkin elimination implemented in the VPL uses well-known tricks for dynamically removing constraints
that can be shown redundant by syntactic arguments [23]. However, as shown by [8, 3.2.3, p. 76], this
forbids the use of Kohler’s redundancy criterion: when eliminating k variables, a constraint resulting from
the combination of k + 1 constraints is redundant. When syntactic criteria fail to decide the redundancy
of a constraint, the VPL calls a LP solver. Hence, polyhedra are minimized after each single-variable
elimination.

Projection Ratio. Fig.3(a) gives the time measurements when projecting polyhedra of 15 constraints,
10 variables and a density of 50%, with a projection ratio varying from 10 to 90%. Fourier-Motzkin is
very efficient when projecting a small number of variables. Its exponential behavior mainly occurs for
high projection ratio, as it eliminates variables one after the other and the number of faces tends to grow
at each projection. PLP is not suitable when there is only few variables to project, e.g. in the case of a
single assignment. On the contrary, it becomes interesting compared to Fourier-Motzkin elimination when
the projection ratio exceeds 50%, i.e. when projecting more than half of the variables. This ratio is always
reached when computing Minkowski sums or convex hulls by projection (§6.3). It can also be the case on
exits of program blocks where a whole set of local variables must be forgotten. As PLP usefulness grows
with a high projection ratio we will focus on the case P = 75%, studying the effect of other characteristics.
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(a) : C = 15, V = 10, D = 50%, P = [10%, 90%] (b) : C = [8, 60], V = 8, D = 50%, P = 75%

(c) : C = 20, V = [4, 19], D = 50%, P = 75% (d) : C = 10, V = 8, D = [30%, 90%], P = 75%

Figure 3: Execution time in seconds of NewPolka (blue), Fourier-Motzkin (red) and PLP (green) depending
on respectively (a) projection ratio, (b) number of constraints, (c) number of variables and (d) density.

Number of Constraints. Fig.3(b) shows the time measurements when projecting polyhedra with 8 vari-
ables, a density of 50% and a projection ratio of 75% (i.e. elimination of 6 variables). The number of
constraints varies in [8, 60]. While Fourier-Motzkin blows up when reaching 15 constraints, PLP and NEW-
POLKA scale better and the curves shows that PLP wins when the number of constraints exceeds 35.

Dimension. The evolution of execution time in terms of dimension is given in Fig.3(c). With 20 con-
straints, the exponential behavior of Fourier-Motzkin elimination emerges. PLP and NEWPOLKA show a
similar curves with an overhead for PLP on a log scale, i.e. a proportionality factor on execution time. It
would be interesting to see the effect of dimension beyond 20 variables, which takes considerable time
since it requires increasing the number of constraints. Indeed, when the dimension is greater than the
number of constraints, polyhedra have a really special shape with very few generators and the comparison
would be distorted.

Density. The effect of density on execution time is shown on Fig.3(d). NEWPOLKA and PLP are little
sensitive to density. The case of Fourier-Motzkin can be explained: Elimination of a variable x with
FM consists in combining every pair of constraints having an opposite sign for x. The more non-zero
coefficients within the constraints, the greater the number of possible combinations.

What can we conclude from these experiments? On small problems our projection is less efficient
than that of a double description (DD) library but the shape of the curves of NEWPOLKA and PLP is similar
on a logarithmic scale, meaning that there is a proportionality factor between the two algorithms. This is
an encouraging result as projection – and the operators encoded as projection – are the Achilles heel of
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constraints-only representation whereas it is straightforward in DD: the complexity is exponential with FM
elimination but linear in the number of generators. On the other hand, the conjunction operator, which, in
constraints-only representation, consists in the union of two sets followed by a fast minimization [23], is
less efficient in DD because it triggers one step of Chernikova’s algorithm per constraint.

8 Conclusion & Future Work
We have shown how usual operations over convex polyhedra (projection, convex hull, Minkowski sums,
image by an affine map, linearization) can be formulated as PLOP instances. In short, all costly operations
on polyhedra in constraints-only representation can be implemented using PLOP.

This approach was made practical by the combination of an efficient PLP-solver and a normalization
constraint ensuring that the solutions of the PLOP are free of redundancies, which avoids costly post-
processing minimization. This makes the VPL, a polyhedra library in constraints-only representation,
competitive with other libraries in double description, and much faster on problems that have exponential
generator representations.

Experiments on Minkowski sum met our expectations but raised an issue for convex-hull: On large
problems with the same characteristics, we beat other libraries, but we suffer from an exponential blow-up
of region subdivisions when the two polyhedra have many faces in common, which induces a high degree
of degeneracy. Our PLP-solver does not have special counter-measures to deal with degeneracy. Proposals
exist for tackling primal and dual degeneracies but they come with an extra-cost [18]. Thus, dealing with
degeneracy is a trade-off and we need a deeper understanding of the phenomenon before addressing it in
our PLP-solver or by a pre-processing for convex-hull.

As future work, our approach can be combined with Cartesian product factorization [13, 31]. While
the main advantage of factorization is to avoid exponential generator representations, which we also do
because we never compute generators, using low dimension factors is likely to speed up parametric linear
programming.

Other avenues of research include experiments in the large on static analysis of actual programs, the
parallelization of the algorithms (we already use a parallel minimization algorithm) and the increased use
of floating-point computations instead of exact rational arithmetic without destroying soundness.

Acknowledgments. The authors thank Alexis Fouilhé, Andy King, Jacob Howe, and Paul Feautrier for
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[23] Maréchal, A., Périn, M.: Efficient Elimination of Redundancies in Polyhedra by Raytracing. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 10145, pp. 367–
385. Springer (2017) 5, 7, 7, 7

[24] McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184
(1970) 12

[25] McMullen, P., Shepard, G.C.: Convex polytopes and the upper bound conjecture, London Mathemat-
ical Society lecture note series, vol. 3. Cambridge University Press (1971) 12

Verimag Research Report no 4 15/17
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A Proofs
The proofs make an intensive usage of the following remark.

Lemma 6. For any affine form af , any points x̊ and x and any scalar µ,

af (x̊+ µ× (x− x̊)) = af (x̊) + µ× af (x)− µ× af (x̊)

Proof. An affine form af is a linear form f plus a constant a, that is af (x) = a+ f (x). Then,

af (x̊+ µ× (x− x̊)) = a+ f (x̊+ µ× (x− x̊))
= a+ f (x̊) + µ× f (x)− µ× f (x̊) because f is linear
= a+ f (x̊) + µ× f (x) + (µ× a− µ× a)− µ× f (x̊)
= (a+ f (x̊)) + µ× (a+ f (x))− µ× (a+ f (x̊))
= af (x̊) + µ× af (x)− µ× af (x̊)

�

Lemma 3. ∀x ∈ Qn, x ∈ R̊i ⇒ x̊+ µ(x− x̊) ∈ R̊i, ∀µ > 0.

Proof. Consider x ∈ R̊i, µ > 0 and let j be the index of the piece that is minimal at x̊+µ(x−
x̊), i.e.

z?
j (x̊+ µ(x− x̊)) = z̃?

(x̊+ µ(x− x̊))
def
= min

k

{
z̃?

k(x̊+ µ(x− x̊))
}

(9)

Let us prove that j 6= i leads to a contradiction. Since z̃?

j is affine, z̃?

j (x̊ + µ(x − x̊)) =

z̃?

j (x̊)+µ× z̃?

j (x)−µ× z̃?

j (x̊). And z̃?

j (x̊) = 1 by normalization. Thus, z̃?

j (x̊+µ(x− x̊)) =

1 − µ + µ × z̃?

j (x). The same reasoning leads to z̃?

i (x̊ + µ(x − x̊)) = 1 − µ + µ × z̃?

i (x).
Moreover, z̃?

j (x) > z̃?

i (x) as x ∈ R̊i, z̃?

i ’s region of optimality. Then, 1− µ+ µ× z̃?

j (x) >

1 − µ + µ × z̃?

i (x) as µ > 0 and finally, z̃?

j (x̊ + µ(x − x̊)) > z̃?

i (x̊ + µ(x − x̊)) which
contradicts (9). Thus, j = i and z̃?

(x̊ + µ(x − x̊)) = z̃?

i (x̊ + µ(x − x̊)) meaning that
x̊+ µ(x− x̊) ∈ Ri.

It remains to be proven that x̊ + µ(x − x̊) cannot lie in a boundary of Ri and thus belongs
to R̊i. Recall that, by construction, a boundary is the intersection of two adjacent regions, say
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Ri and Rj , and their affine forms are equal on the boundary. That would mean i 6= j and
z?
j (x̊ + µ(x − x̊)) = z̃?

(x̊ + µ(x − x̊)) = z̃?

i (x̊ + µ(x − x̊)). We already proved that it is
unsatisfiable. �

Lemma 4. Either z̃?

k is the constant function x 7→ 1, or it decreases on lines of Rk originated in x̊, i.e.
∀x ∈ R̊k, ∀µ > 1, z̃?

k(x) > z̃?

k(x̊+ µ(x− x̊)).

Proof. Assume ~x ∈ R̊k. We already noticed in §6.2 that if z̃?

k is not the constant function
x 7→ 1, then z̃?

k(~x) < 1, ∀~x ∈ R̊k.

Let µ > 1, then

z̃?

k(x) > z̃?

k(x̊+ µ(x− x̊))

⇔ z̃?

k(x) > z̃?

k(x̊) + µ× z̃?

k(x)− µ× z̃?

k(x̊) because z̃?

k is affine
⇔ z̃?

k(x) > 1− µ+ µz̃?

k(x) because z̃?

k(x̊) = 1

⇔ 0 > (1− µ)− z̃?

k(x)(1− µ)

⇔ 0 > (1− µ)(1− z̃?

k(x))

⇔ 0 < 1− z̃?

k(x) because (1− µ) < 0

⇔ z̃?

k(x) < 1

�

Lemma 7. Jz? ≥ 0K = Jz̃? ≥ 0K.

Proof. Let us prove by double inclusion that normalizing the solution of a PLOP does not
change the resulting polyhedron P? def

= Jz? ≥ 0K.

Let z?
k be a piece of z?. Then, z̃?

k(x) =
z?

k(x)

z?
(x̊)

is well-defined if z?
k(x̊) 6= 0. Take x ∈ Jz?

k ≥

0K. Then, z?
k(x) ≥ 0 and z̃?

k(x) ≥ 0⇔ z?
k(x̊) > 0. Repeating this reasoning for each pieces,

the inclusion Jz? ≥ 0K ⊆ Jz̃? ≥ 0K is only valid if ∀k, z?
k(x̊) > 0.

Reciprocally, let x ∈ Jz̃?

k ≥ 0K. By definition, z?
k(x) = z?

k(x̊)× z̃?

k(x). This time, z̃?

k(x) ≥ 0

and z?
k(x) ≥ 0⇔ z?

k(x̊) ≥ 0. Thus, Jz̃? ≥ 0K ⊆ Jz? ≥ 0K is enforced by ∀k, z?
k(x̊) ≥ 0.

Finally, the point x̊must be chosen in the interior of Jz? ≥ 0K to ensure ∀k, z?
k(x̊) > 0. Then,

both inclusions hold, proving that normalization does not change the output polyhedron. �
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