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Abstract. We consider one-dimensional topological insulators characterized by zero energy
end states. In presence of proximity induced pairing, those end states can become Majorana
states. We study here the fate of those various end states when Hubbard electron-electron
repulsive interactions are added, using a combination of mean-field theory and density matrix
renormalization group techniques.

1. Introduction
In the context of quantum field theory, Jackiw and Rebbi [1] introduced a general mechanism to
generate zero modes with fractional charges. In condensed matter, this mechanism manifests itself
by the apparition of topologically protected states localized at the end of some atomic chain, like
polyacetylene [2, 3]. More recently, another type of zero-energy excitation, the Majorana fermion,
has attracted a lot of attention from the condensed matter community [4, 5]. A Majorana fermion
is its own antiparticle [6], and can appear at defects of topological superconductors, such as
p-wave superconductors [7] or superconducting hybrid systems mimicking them, like nanowires
with strong spin-orbit deposited on a singlet s-wave superconductor [8, 9, 10, 11].

This paper aims at understanding the physics of systems that host fractionally charged solitons
in their normal state and Majorana modes in some of their superconducting phases. In the whole
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paper, superconductivity refers to pairing correlations transfered from a standard s-wave singlet
superconductor towards the 1D fermionic chain. We focus on the Creutz model [12, 13, 14, 15],
and address two kinds of issues: 1) the evolution from zero-energy solitonic modes towards
Majorana states under the addition of proximity-induced superconductivity, 2) the robustness
of these zero energy states with respect to strong Hubbard repulsive interactions. The effect
of a repulsive Hubbard interaction is studied using a combination of mean-field theory and
density matrix renormalization group (DMRG). Globally, the parameter range, where topological
superconductivity is obtained, grows upon increasing the Hubbard interaction, as recently
obtained in nanowire models [16]. Nevertheless, there is a region in parameter space, where
interactions prove detrimental to the Majorana states (cf. Fig. 1).

The paper is organized as follows: Section 2 reviews the Creutz model and its topological
properties. Section 3 investigates the transition from chiral bound states to Majorana bound
states upon increasing the pairing. Section 4 takes into account the effects of repulsive interactions
in the Creutz-Majorana-Hubbard model (CMH).

2. Creutz model
Here, we present the noninteracting part of the lattice Creutz model, first in absence of
superconductivity and then in presence of proximity induced pairing.

2.1. Normal state
In the absence of superconductivity and interactions, our starting point is the lattice Hamiltonian

HC =
1

2

∑
j

[
wc†jσ1cj + c†j(itσ3 − gσ1)cj−1

]
+ H.c., (1)

where the sum runs over all sites indexed by j. The electronic spin is represented by the
standard Pauli matrices σi (i = 1, 2, 3). The spin indices for the electron annihilation operators
cj = (cj↑, cj↓) and spin matrices are implicit. The electrons can jump from one site to the
nearest-neighboring site while conserving their spin: this process has a complex amplitude ±it,
i.e., the electrons gain or lose a phase π/2 when hopping between the same spin states. The
electrons can also hop between sites with amplitude g while flipping their spin, which mimics a
spin-orbit coupling. Finally, there is an onsite mass term w which favors the polarization of the
electronic spin along the x direction. The Hamiltonian is diagonalized by Fourier transforming it

into momentum space HC =
∑

k c
†
kHC(k)ck:

HC(k) = t sin kσ3 + (w − g cos k)σ1. (2)

Consequently, there are two bands with the energy dispersion

E± = ±
√

(t sin k)2 + (w − g cos k)2. (3)

From Eq. (3) it follows that the two energy bands can touch either at k = 0, or at k = π. At
these momenta, the energy dispersion is linear and there is a Dirac cone band touching. For
g = w, the band touching takes place at k = 0, and for g = −w, at k = π. When both g and w
vanish, the system exhibits two Dirac cones.

When g = w (resp. g = −w), the system is gapless with a Dirac cone at momentum k = 0
(resp. k = π). A particular point is the case of vanishing g and w, when the system recovers
the time-reversal symmetry, and exhibits two Dirac cones at k = 0 and π. For all other values
of the parameters (g, w), the chain is a fully gapped insulator, whose topological properties are
encoded in its associated winding number W,

W =
1

2

[
sgn(w + g)− sgn(w − g)

]
. (4)
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When |g/w| < 1, the system is a topologically trivial insulator (W = 0) and when |g/w| > 1, it
is a topologically nontrivial insulator characterized by W = sgn(g) [15].

In the topologically nontrivial state there are chiral zero-energy bound states (CBS) at the
edges of an open system. These localized states are protected by the chiral symmetry σ2 and the
bulk gap. For a finite chain, the two edge CBS overlap through the insulating bulk. This overlap
is exponentially small for chains longer than the spatial extension of the CBS wave function [13].

2.2. Proximity induced superconductivity
Let us modify the Creutz Hamiltonian (1) by adding an s-wave singlet superconducting pairing
with amplitude ∆. This leads to the Creutz-Majorana model described by the Hamiltonian

HCM = HC +H∆, H∆ =
∑
j

∆c†j↑c
†
j↓ + H.c., (5)

where the sum is taken over all the lattice sites. The order parameter ∆ can be considered real
without any loss of generality. The momentum-space Hamiltonian is quadratic in the standard

BdG form. Let us choose the basis C†k = (c†k↑, c
†
k↓, c−k↑, c−k↓). In this basis, the Hamiltonian is

written as HCM = 1
2

∑
k C
†
kHCM(k)Ck with

HCM(k) = t sin kσ3τ0 + (w − g cos k)σ1τ3 −∆σ2τ2. (6)

The σ are the spin Pauli matrices and τ are Pauli matrices in particle-hole space. The products
of two Pauli matrices from different spaces is understood as a tensor product.

By diagonalizing the BdG Hamiltonian HCM(k), it follows that there are four energy bands
±E± satisfying

E± =
√

(t sin k)2 + (w − g cos k ±∆)2. (7)

There are four possible gap closings in the system at k = 0, for ∆ = ±(w − g), and at k = π, for
∆ = ±(w + g). As it will be shown, all these lines mark topological transitions between different
gapped topological phases.

Following Ref. [17], the Majorana number is defined at the time-reversal-invariant momenta,
k = 0 and π

M = sgn{Pf[τ1HCM(0)]Pf[τ1HCM(π)]} = sgn
[(

1 +
g2

w2
− ∆2

w2

)2 − 4
g2

w2

]
, (8)

where Pf denotes the Pfaffian of a matrix. The ensuing phase diagram is illustrated in Fig. 1. Both
the phase without in-gap states (gray) and the CBS hosting phase (yellow) are trivial, with respect
to the Majorana number (M = 1). In fact, these two phases are actually distinct with regards
to a different topological invariant. When |g/w| = 1, an infinitesimal ∆ is sufficient to open a
superconducting gap at the Dirac cone, and produces a topologically nontrivial superconductor.
However, when the Creutz model is deep in a nontrivial insulating state with solitons at its
end, the addition of superconducting pairing does not destroy these modes. Since the CBS are
protected by the bulk gap and a chiral symmetry, they survive the induced superconducting
pairing.

3. From chiral bound states to Majorana fermions
Here, we further analyze the transition between the trivial superconductor with CBS and the
topological superconductor with MBS (respectively the yellow and blue regions in Fig. 1). To
this aim, we consider the Creutz model on an infinite line, and an additional spatial twist is
introduced in the mass of the Dirac fermion v(x) = (g − w)sgn(x) = v sgn(x), where v is a
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Figure 1. (Color online) Left panel: Phase diagram of the non interacting Creutz-Majorana
model. The blue region represents the topological superconductor with zero-energy Majorana
bound states (M = −1). The gray and yellow regions represent phases with M = 1. The yellow
region hosts chiral bound states at zero energy, even if it is trivial with respect to Majorana
number M. Right panel: Topological phase diagram of the Creutz-Majorana-Hubbard model
at different interaction strengths. The dotted line represents transitions between topological
phases obtained at the mean-field level, while the dots represent critical points from the DMRG
calculations.

positive number, and x is the spatial coordinate. According to Eq. (4), the trivial phase is
realized to the left (x < 0), and the nontrival phase, to the right (x > 0). At the interface there
will be a single solitonic mode (CBS), eigenstate of the chiral symmetry operator σ2.

Now, let us investigate the more interesting case of the Creutz-Majorana model, when a
superconducting pairing ∆ is added to the nontrivial insulating phase in order to study the effect
of the superconducting pairing on the bound state from the topological insulator. The continuum
Hamiltonian which models the interface between the trivial Creutz insulator and the CM model
is readily obtained by linearizing the lattice Hamiltonian near k = 0 and neglecting second-order
contributions in momentum

H = vFσ3τ0p− v(x)σ1τ3 − θ(x)∆σ2τ2, (9)

with v(x) = v sgn(x) and v = g − w > 0. The function θ(x) is the Heaviside step function. The
Fermi velocity vF is determined from the lattice model vF = ta/~, with a the lattice constant.

It is possible to solve analytically this problem and obtain in particular the wave function at
zero-energy. Details are provided in Ref. [18]. In conclusion, we have described the transition
between the trivial superconducting phase with doubly-degenerate zero-energy states protected
by the chiral symmetry to a phase with Majorana fermions.

4. Interaction effects
The Creutz-Majorana model on a finite-size chain hosts either zero-energy solitonic (CBS) states,
or Majorana modes, depending on the strength of the superconducting pairing ∆. The aim of
this section is to investigate the effects of repulsive onsite interactions on these edge modes and
to obtain the topological phase diagram of the model. To that end, we consider the following
Hamiltonian of the Creutz-Majorana-Hubbard (CMH) model:

H = HCM + U
∑
j

nj↑nj↓. (10)
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Figure 2. (Color online) Local spectral function A1(ω) at the edge of an open wire for U = 0
(left column) and U = 1 (right column). (a), (d) The trivial phase at g2 = 0.5 and ∆2 = 5 has
no quasiparticle peak at zero energy. (b), (e) A Majorana edge fermion in the topological phase
at g2 = ∆2 = 1 is seen as a sharp peak at zero energy, which survives finite interactions. (c), (f)
The superconducting phase at g2 = 5 and ∆2 = 0.5. (e) The presence of zero-energy states is
reflected in the spectral function peak at zero energy. (f) The CBS are not robust to interactions
U , which removes them from zero energy. Each subfigure combines TEBD (red open points)
with mean-field results (lines), scaled by an overall factor.

The first term, HCM, represents the Hamiltonian of the Creutz-Majorana model from Eq. (5),
and the second term contains the Hubbard interaction between onsite electronic densities of
opposite spin, with U being the interaction strength.

This CMH model has been studied using a combination of self-consistent Hartree-Fock theory
and extensive DMRG simulations. Here we present the results while technical details (mean field
procedure and DMRG) are provided in Ref. [18].

4.1. Phase diagram
Figure 1 shows the topological phase diagram for different values of interaction U , combining
results from the mean-field analysis and DMRG simulations. The agreement between both
approaches is overall very good. The main standout feature of the phase diagram is that
the topological phase and its associated Majorana bound states at zero energy are robust to
interactions. In fact, the parameter range for which a topological Majorana phase is stabilized
globally expands, upon increasing the Hubbard coupling. However, there is also a region in
the phase diagram (|∆/w|, |g/w| < 1), where the Hubbard interaction is detrimental to the
Majoranas. The mean-field phase diagram captures the topological transitions of the model
rather accurately for small and moderate interactions. At strong interactions, the mean field
keeps a very good estimate of the topological transition at small g/w, while at large g/w it
tends to overestimate the extension of the Majorana phase. The “spin-orbit” coupling g tends to
delocalize the electrons and leads to quantum fluctuations in the particle number. This explains,
at a qualitative level, the divergence of the mean field results from the “exact” DMRG results at
large “spin-orbit” coupling. A priori, this overall very good agreement may seem surprising in a
quantum 1D system, where fluctuations are expected to be pronounced. However, let us recall
that U(1) charge and the SU(2) spin-rotation symmetries are broken in this model, and hence
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the system acquires a certain stiffness to fluctuations, as observed in nanowire models [16] which
also break these symmetries.

4.2. Spectral properties
We now turn our attention to the edge physics, and evaluate the local spectral function
A1(ω) = A(i = 1, ω) for open chains of size L = 140 a (Fig. 2) using both mean-field results and
DMRG approaches. In the trivial phase, the interactions simply renormalize the energy gap [cf.
Figs. 2(a) and 2(b)]. In the topological phase, a clear signature of the Majorana zero-energy
mode is shown for both U = 0 and 1 in Figs. 2(c) and 2(d). Without interactions, this mode is
well separated by a symmetric gap of width ω = 1 from the remainder of the excitations. The
overall structure survives the addition of interactions, reflecting once again the robustness of
the Majorana states. The edge CBS at large g are also clearly evidenced by the presence of a
zero-energy peak in the noninteracting regime [Fig. 2(e)]. In order to perform this simulation,
the ground-state MPS is biased to one of the four degenerate states by applying a small pinning
potential to an edge of the chain. Turning interactions to U = 1 splits this peak into two peaks
at nonzero energies, showing that the CBS have moved away from zero energy, as described in
the preceding sections.

5. Conclusions
Using a specific model, we have shown that Majorana states are robust to Hubbard
interactions. Moreover the Hubbard interaction can extend the parameter range where topological
superconductivity and Majorana modes are stabilized.

J. C. acknowledges support from EU/FP7 under contract TEMSSOC. D. S. and J. C. were
supported by the French ANR through projects ISOTOP and MASH.
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