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4 Service de Physique de l’Etat Condensé, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.

(July 13, 2011)

It is shown that the large-N approach yields two energy scales for the Kondo lattice model. The
single-impurity Kondo temperature, TK , signals the onset of local singlet formation, while Fermi
liquid coherence sets in only below a lower scale, T ⋆. At low conduction electron density nc (“ex-
haustion” limit) , the ratio T ⋆/TK is much smaller than unity, and is shown to depend only on
nc and not on the Kondo coupling. The physical meaning of these two scales is demonstrated by
computing several quantities as a function of nc and temperature.

How coherent quasi-particles form in the Kondo lattice
has been a long-standing issue. For a single impurity,
there is a single scale TK below which the local moment
is screened and a local Fermi liquid picture applies. TK

can be defined e.g. as the scale at which the effective
Kondo coupling becomes large. All physical quantities
(e.g. specific heat, susceptibility) obey scaling properties
as a function of T/TK in the limit where both T and
TK are smaller than the high-energy cutoff (bandwidth,
denoted 2D in the following). In contrast, for a Kondo
lattice, one may suspect that the physics is no longer
governed by a single scale. Indeed, while magnetic mo-
ments can still be screened locally for temperatures lower
than the single-impurity Kondo scale TK , the formation
of a Fermi-liquid regime (with coherent quasi-particles
and a “large” Fermi surface encompassing both conduc-
tion electrons and the localized spins) is a global phe-
nomenon requiring coherence over the whole lattice. If
at all possible, it could be associated with a much lower
coherence temperature T ⋆. The situation is reminiscent
of strong-coupling superconductivity in which local pair
formation may occur at a much higher scale than Tc, the
scale at which long-range order sets in.

As was originally pointed out by Nozières [1], this issue
becomes especially relevant when few conduction elec-
trons are available to screen the local spins, i.e. in the
limit of low concentration (nc ≪ 1). In this “exhaus-
tion” regime, two possibilities arise: i) either magnetic
ordering wins over Kondo screening or ii) a paramag-
netic Fermi liquid state still manages to form, but with
a much suppressed coherence scale T ⋆ ≪ TK . Nozières
has suggested in Ref. [2] that T ⋆ ∼ ncD for strong cou-
pling JK/D ≫ 1 (where TK ∼ JK), while T ⋆ ∼ T 2

K/D
for weak coupling JK ≪ D. Recently, several studies
[3,4,5,6,7,8] have addressed this issue using dynamical
mean-field theory (DMFT) [9]. The conclusion was that
two scales are indeed present in the Kondo lattice, with
the coherence scale with T ⋆ ≪ TK in the “exhaustion”
regime. Because the DMFT equations require a numer-
ical treatment, no detailed analytical insight into these

two scales was obtained, even though the validity of the
estimate [2] T ⋆ ∝ T 2

K/D was questioned [8].
In this letter, we solve this problem using the slave-

boson approach, in the form of a controlled large-N so-
lution of the SU(N) Kondo lattice model. This ap-
proach has been extensively used in the past twenty years
[10,11,12,13,14,15]. Surprisingly, the issue of the coher-
ence scale and the temperature dependence of physical
quantities has not been discussed in detail in the exhaus-
tion limit nc ≪ 1 (See, however, Ref. [16]). We find
that the large-N approach provides a remarkably simple
and physically transparent realization of the two-scale
scenario described above. Furthermore, because of its
simplicity, it allows for an analytical calculation of the
coherence scale, which is found to disagree (for weak cou-
pling) with Nozières’ estimate in Ref. [2] (while it agrees
with it at strong coupling). We also calculate the tem-
perature dependence of several physical quantities and
find remarkable agreement with the more sophisticated
(and demanding) DMFT approach.

We consider the Kondo lattice model (KLM):

H =
∑

kσ

ǫkc+
kσckσ +

JK

N

∑

iσσ′

Sσσ′

i c+
iσ′ciσ (1)

In this expression, the spin symmetry has been extended
to SU(N) (σ = 1, · · · , N) and the local spins will be con-
sidered in the fermionic representation: Sσσ′

i = f+
iσfiσ′ −

δσσ′/2, with the constraint
∑

σ f+
iσfiσ = N/2. Standard

methods [10] are used to solve this model at large N : a
boson field Bi(τ) (conjugate to the amplitude

∑

σ f+
iσciσ)

is introduced in order to decouple the Kondo interaction,
and the constraint is implemented through a Lagrange
multiplier field λi(τ). For N = ∞, a saddle point is
found at which the Bose field condenses 〈Bi(τ)〉 = r
and the Lagrange multiplier takes a uniform, static value
〈iλi(τ)〉 = λ. Two quasiparticle bands ω±

k are formed,
solutions of (ω +λ)(ω +µ− ǫk)− r2 = 0. Changing vari-
ables to ω±

k , the three saddle-point equations can be cast
in the compact form:
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{

−
1

JK
,
1

2
,
nc

2

}

=

∫ +∞

−∞

dωnF (ω)ρ0(ω + µ −
r2

ω + λ
) ×

{

1

ω + λ
,

r2

(ω + λ)2
, 1

}

. (2)

Here, nF is the Fermi function, nc/2 is the conduction
electron density per spin colour, and ρ0(ǫ) ≡

∑

k δ(ǫ−ǫk)
is the non-interacting density of states.

In the large-N approach, the onset of Kondo screening
is signaled by a phase transition at a critical temperature
TK , below which r(T ) becomes non-zero. The equation
for TK is 2/JK =

∫

dǫρ0(ǫ) tanh[(ǫ − µ0)/2TK ]/(ǫ − µ0),
with µ0 the non-interacting chemical potential (at T =
TK). This equation coincides with that for the single-
impurity case: Kondo screening of individual local mo-
ments starts taking place in this approach precisely at the

single-impurity Kondo scale. We have derived an explicit
expression for TK in the weak-coupling regime JK ≪ D:

TK = De−1/JKρ0(ǫF)
√

1 − (ǫF/D)2FK(nc), (3)

FK(nc) = exp

(

∫ D−ǫF

−(D+ǫF)

dω

|ω|

ρ0(ǫF + ω) − ρ0(ǫF)

2ρ0(ǫF)

)

, (4)

where ǫF is the non-interacting Fermi level (given by
nc/2 =

∫ ǫF
−D

dǫρ0(ǫ)). This expression is valid for an even
d.o.s ρ0(−ǫ) = ρ0(ǫ) which vanishes outside the interval
−D < ǫ < +D. The factor FK , equal to unity for a con-
stant density of states, varies smoothly with nc (or ǫF ).
In contrast, the prefactor [1−(ǫF/D)2]1/2 vanishes in the
low-density limit nc → 0, and suppresses TK .

We now consider the low-temperature limit T ≪ TK ,
in which the large-N approach leads to an extremely
simple Fermi liquid picture [10] . It is somewhat over-
simplified in that the conduction electron self-energy
Σc(k, ω) = r2/(ω + λ) is purely real (finite lifetime ef-
fects are absent at N = ∞) and momentum indepen-
dent. Even so, it captures some of the most impor-
tant features of the problem. The zero-frequency shift
Σc(ω = 0, T = 0) = r(T = 0)2/λ(T = 0) is precisely
such that the Fermi surface has a large volume contain-
ing both conduction electrons and local spins. Indeed,
adding the last two saddle point equations in (2), one
obtains: µ − Σc(ω = 0, T = 0) = ǫ>

F where ǫ>
F is the

non-interacting value of the Fermi-level corresponding to
(nc +1)/2 fermions per spin color. As detailed below, all
physical quantities at T = 0 are directly related to a sin-
gle energy scale, proportional to the boson condensation
amplitude T ⋆ = r2(T = 0)/D. It is possible to derive an
analytical expression for T ⋆ in the weak coupling limit,
which is valid for a general (bounded) density of states
and arbitrary density nc. This expression, which has ap-
parently not been reported before, reads:

T ⋆ = De−1/JKρ0(ǫF) (1 + ǫF/D)
∆ǫF
D

F ⋆(nc), (5)

F ⋆(nc) = exp

(

∫ ∆ǫF

−(D+ǫF)

dω

|ω|

ρ0(ǫF + ω) − ρ0(ǫF)

ρ0(ǫF)

)

, (6)

where ∆ǫF = ǫ>
F − ǫF. As FK , F ⋆ varies smoothly with

nc [17]. The total density of states at the Fermi level
ρ(ω = 0) = ρcc(0)+ρff(0) is given by: ρ(0) = ρ0(ǫ

>
F )/Zc,

with Zc the conduction electron quasiparticle residue
1/Zc ≡ 1 − ∂Σc(ω)/∂ω|ω=0 = 1 + (ǫ>

F − ǫF)2/r2
0. In

the weak coupling limit, all physical quantities at T = 0
are directly related to ρ(0) ≃ ρ0(ǫ

>
F )(∆ǫF)2/(T ⋆D), and

are thus renormalized by the ratio T ⋆/D. For instance,
the f -electron susceptibility and the specific heat coef-
ficient (per spin color), are given by χf ∝ ρ(0) and
γ = π2ρ(0)/3. The Drude weight may also be computed
with the result DR ∝ T ⋆Dρ0(ǫ

>
F )/(∆ǫF)2.

The physical content of these expressions and of
Eqs.(3-6) is that two different energy scales are rele-
vant for the Kondo lattice model: one (TK) is associ-
ated with the onset of local Kondo screening; the other
(T ⋆) with Fermi liquid coherence and the behaviour of
physical quantities at T = 0. These two scales have the

same exponential dependence on JK/D at weak coupling,
but very different dependence on the conduction elec-
tron density in the “exhaustion” limit nc ≪ 1, in which
T ⋆ ≪ TK . This is in qualitative agreement with Nozières
proposal in [2], but not with his estimate T ⋆/TK ∝ TK/D
(which would thus depend on the coupling). We find
that the ratio T ⋆/TK depends only on nc in this limit,
in a manner which reflects the behavior of the bare d.o.s
ρ0(ǫ) at the bottom of the band. For a d.o.s vanishing as

(ǫ + D)α, Eqs.(3-6) yield T ⋆/TK ∝ n
1/[2(1+α)]
c .

Fig. 1 displays the nc-dependence of TK and of the in-
verse of the f -electron susceptibility, obtained by solving
the large-N equations, both for a single-impurity and for
the lattice. It is seen that TK and 1/χf(T = 0) are iden-
tical energy scales for the single impurity case, but have
very different density dependence for the lattice model

(T ⋆/TK ∝ n
1/3
c at low density for the semi-circular d.o.s

used here). Near nc = 1, TK falls below 1/χ reflecting
the vanishing χ for the Kondo insulator. These curves
are remarkably similar to those obtained by Tahvildar-
Zadeh et al. in their Quantum Monte Carlo studies of
the periodic Anderson model in infinite dimensions [5]
(see also [5]- [8]). In the inset of Fig. 1, we plot the di-
mensionless number TKχf (0) as a function of lnTK/D.
This number goes to a universal value at weak coupling
in the single-impurity case, while it has intrinsic density
dependence for the lattice. This shows that TK is not the
appropriate low-temperature scale, especially for nc → 0.
The inset in Fig. 2 shows the effective mass ratio m/m⋆

(computed from the specific heat) and the Drude weight,
as a function of nc. This vanishes in the limits nc → 0
and nc → 1. The effective mass m⋆ is proportional to
e+1/JKρ0(ǫF ), with a density dependent prefactor which
diverges as nc → 0 and vanishes at half filling.

2



-3 -2 -1
0.2

0.3

0.4

log(T
K
/D)

T
K
  χ

(0
) 

(I
m

p)

0.0

0.5

1.0

1.5

T
K  χ(0) (latt)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

n
c

T
K
/D

0.0

0.1

0.2

1/(4 χ (0) D
)

FIG. 1. Solid line: density-dependence of TK (defined
as the slave boson condensation temperature). Squares:
1/4χf (T=0) for a single impurity. Dashed line: 1/4χf (T=0)
for the lattice. JK/D=0.75. Inset: TK-dependence of
TKχf (0) for the impurity (left scale, solid symbols) and the
lattice (right scale, open symbols) for nc=0.1, 1.0 (impurity)
and nc=0.1, 0.5, 0.9 (lattice) from top to bottom. All plots
are for a semi-circular d.o.s.

We have also studied the behavior of several physical
quantities as a function of temperature, by solving nu-
merically Eqs.(2). Fig. 2 shows the product TKχ(T ) for
the Kondo lattice, for several values of nc, as a function
of T/TK . All the curves merge at T/TK = 1, where the
boson decondenses and χf reaches the free spin value
(χf (T ) = 1/4T for T > TK). No universal scaling func-
tion of T/TK describes the temperature dependence in
Fig. 2, in contrast to the single-impurity case. Plotting
χ(T )/χ(T = 0) does not restore scaling, since qualitative
differences in the T-dependence are seen for different den-
sities. Fig. 3(a) shows the T -dependence of the entropy.
A linear behavior S(T ) = γT is found at low tempera-
ture for all densities nc 6= 1. The slope γ ∝ ρ(0) decreases
with increasing density as does the temperature scale T ⋆

F

up to which S(T ) is linear. T ⋆
F is of the order of T ⋆

(≪ TK) at low nc, while it can be estimated by compar-
ing γT to e−TK/T as T ⋆

F ≃ TK/| ln(1 − nc)| ≪ TK ≃ T ⋆

for nc → 1. For nc ≃ 1, T ⋆
F is a better estimate of the

coherence scale than T ⋆ itself.
At low densities, after a steep initial rise, S(T ) re-

mains close to ln 2 up to TK . This can be interpreted
in terms of the strong-coupling picture discussed below.
At higher densities, most of the variation takes place
in the range T ⋆

F < T < TK . The specific heat C(T ),
shown in Fig. 3(b), has a two-peak structure [18]: the
peak at TK signals the onset of Kondo screening and
appears in this mean-field description as a discontinu-
ity of C(T ). The second peak, at T ⋆

F , signals the Fermi
liquid heavy-fermion regime. As nc increases, weight is
gradually transferred to the high-temperature peak until
the low temperature peak disappears completely in the
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FIG. 2. T -dependence of the f -electron susceptibility for
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FIG. 3. Entropy (a) and specific heat (b) for the lattice

model for several values of the density. JK/D=0.75.

Kondo insulator limit.
In the strong coupling limit JK/D ≫ 1, the large-N

results support the physical picture proposed by Lacroix
[19] and further discussed in [2]. In this picture, the con-
duction electrons bind to nc spins, forming singlets be-
low T ∼ JK ∼ TK , the binding energy of a singlet. The
remaining 1 − nc “bachelor spins” behave as itinerant
fermions subject to a constraint of no double occupancy.
The hopping integral of the resulting effective infinite-U
Hubbard model is teff = −t/2. The (hole-like) sign of this
matrix element implies that these 1 − nc fermions have
a Fermi surface volume corresponding precisely to nc +1
particles. In the exhaustion limit nc ≪ 1, one has effec-
tively a weakly doped U = ∞ Hubbard model. Solving
Eqs.(2) at strong-coupling yields a quasiparticle residue
Zc ∝ nc, and hence a coherence scale T ⋆ ∼ ncD cor-
responding to a Brinkman-Rice estimate for this doped
Mott insulator [2]. Notice, however, that at finite N
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for clarity. nc=0.2. In all plots JK/D=0.75.

this uniform solution may become unstable to magnetism
or phase separation of localized singlets and unscreened
spins. This picture sheds some light on the T -dependence
of the entropy and specific heat in the exhaustion limit
reported above. As the system goes through TK , it looses
the magnetic entropy (∼ nc ln 2) of the nc bound spins.
The remaining entropy (∼ (1 − nc) ln 2), is lost below
T ⋆. The two peaks of unequal weight in the specific heat
reflect these processes [20].

We display in Fig. 4 the distribution function of the
conduction electrons nc(ǫk) ≡ 〈c+

k ck〉. Very close to
TK , nc(ǫk) has the shape of a Fermi function centered
around the non-interacting Fermi level ǫF, with a small
thermal broadening of order TK (≪ D in weak cou-
pling). As T is reduced below TK , weight is transferred
to scales of order ǫ>

F , the interacting Fermi level asso-
ciated with the large Fermi surface. The feature at ǫF
broadens as T is decreased. When Fermi liquid coher-
ence establishes at T ≃ T ⋆

F , a discontinuity (of ampli-
tude Zc) develops at ǫ = ǫ>

F . Finally we note that, in the
large-N approach, the Kondo lattice model can be exactly
mapped onto an effective single-impurity model coupled
to a self-consistent bath of electrons. This mapping holds
more generally for any approach in which the conduc-
tion electron self-energy depends only on frequency, such
as dynamical mean-field theory [9]. For a semi-circular
d.o.s, the Green’s function of the self-consistent bath is
G0(iωn) = [iωn +µ−D2Gc(iωn)/4]−1. The inset of Fig. 4
displays the continuous evolution of the spectral density
Γ(ω) = −ImG0(ω + i0+)/π as T is reduced below TK .
Above TK , it coincides with the non-interacting d.o.s ρ0,
while the bath is split into two bands below TK . The
width of the lower band depends on nc and is small for
nc ≪ 1, leading to the low coherence scale. The existence
of a sharp gap separating the two bands is an artifact of

the large-N limit (except at nc = 1). In more realistic
treatments it is replaced by a pseudo-gap [5,7,8].

In conclusion, we have reconsidered the time-honored
large-N approach to the Kondo lattice model, with spe-
cial emphasis on the “exhaustion” limit of low electron
density. We showed that two energy scales appear for
which we have obtained explicit analytic expressions :
the Kondo scale associated with the onset of local Kondo
screening and a much lower scale associated with Fermi
liquid coherence. Physical quantities reflect the crucial
role played by these two scales. In this approach, mag-
netic ordering is suppressed by quantum fluctuations :
more elaborate treatments such as DMFT must be used
to assess whether the coherence scale can actually be
reached or magnetic ordering sets in at a higher tem-
perature.
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