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On principal curves with a length constraint

Sylvain Delattre & Aurélie Fischer∗

July 4, 2017

Abstract

Principal curves are defined as parametric curves passing through the “middle” of a proba-
bility distribution in Rd. In addition to the original definition based on self-consistency, several
points of view have been considered among which a least square type constrained minimization
problem. In this paper, we are interested in theoretical properties satisfied by a constrained
principal curve associated to a probability distribution with second-order moment. We study
open and closed principal curves f : [0, 1] → Rd with length at most L and show in particular
that they have finite curvature whenever the probability distribution is not supported on the
range of a curve with length L.

We derive from the order 1 condition, expressing that a curve is a critical point for the
criterion, an equation involving the curve, its curvature, as well as a random variable playing
the role of the curve parameter. This equation allows to show that a constrained principal
curve in dimension 2 has no multiple point.

Keywords – Principal curves, quantization of probability measures, length constraint, finite
curvature.

2000 Mathematics Subject Classification: Primary 60E99; Secondary 35B38, 49Q10, 49Q20.

1 Introduction

1.1 Motivation and context
Principal curves are parametric curves passing through the “middle” of a probability distribution
in Rd, d ≥ 1. In short, they provide a one-dimensional summary of the distribution. The original
definition, based on the so-called self-consistency property, was introduced by Hastie and Stuetzle
(1989). A parametric curve f is said to be self-consistent for a random vector X with finite second
moment if it satisfies,

f(tf (X)) = E[X|tf (X)] a.s.,

where the projection index tf is given by

tf (x) = max arg min
t
‖x− f(t)‖2.

In the principal curve definition, some regularity assumptions are made in addition: the curve is
required to be smooth (C∞), it does not intersect itself, and has finite length inside any ball in Rd.

Subsequently, several principal curve definitions, more or less related to the original one, as
well as algorithms, were proposed in the literature (Tibshirani (1992),Kégl et al. (2000),Verbeek
et al. (2001), Delicado (2001),Sandilya and Kulkarni (2002), Einbeck et al. (2005a),Ozertem and
Erdogmus (2011),Gerber and Whitaker (2013)). Note also that principal curves, in their empirical
version, that is in the statistical framework, when the random vector is replaced by a data cloud,
have many applications in various areas (see for example Hastie and Stuetzle (1989), Friedsam and
Oren (1989) for applications in physics, Kégl and Krzyżak (2002), Reinhard and Niranjan (1999)
in character and speech recognition, Brunsdon (2007), Stanford and Raftery (2000), Banfield and
Raftery (1992), Einbeck et al. (2005a,b) in mapping and geology, De’ath (1999), Corkeron et al.
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Figure 1: Two examples of principal curves with length constraint: (a) Uniform distribution over
the square [0, 1]2. (b) Gaussian distribution N (0, I).

(2004), Einbeck et al. (2005a) in natural sciences, Caffo et al. (2008) in pharmacology, and Wong
and Chung (2008), Drier et al. (2013) in medicine, for the study of cardiovascular disease or cancer).

Let us focus on the definition given by Kégl et al. (2000), who consider constrained principal
curves. More precisely, principal curves in this case are obtained as solutions of a least-square
minimization problem under length constraint. A motivation for introducing this definition, which
is more amenable to analysis, is the fact that the existence of principal curves could not be proven
in general (see Duchamp and Stuetzle (1996a), Duchamp and Stuetzle (1996b) for results obtained
in the case of some particular distributions in two dimensions). More formally, Kégl et al. (2000)
propose to minimize the quantity E

[
mint ‖X − f(t)‖2

]
over all curves whose length is not greater

than a certain prespecified value and show that there exists a minimizer for this criterion whenever
X is square integrable. Contrary to the original definition, the curves are not assumed to be
differentiable any more, which allows in particular to consider polygonal lines. These basic curves
actually play a significant role in Kégl et al. (2000) research work, especially in the computational
aspect.

Observe that such a length constraint makes perfectly sense in the empirical case. Indeed,
from a practical point of view, it is essential to appropriately tune some parameter reflecting the
complexity of the curve, in order to achieve a trade-off between a curve passing through all data
points and a too rough one. The parameter selection issue was addressed in this statistical context
for instance in Biau and Fischer (2012), Fischer (2013) and Gerber and Whitaker (2013).

This kind of framework is closely related to the question known as “average-distance problem”
in a part of the mathematical community (see the survey Lemenant (2012), and the references
therein). It was studied for instance very recently in Lu and Slepc̆ev (2016) in the penalized form,
that is the case where the length is not constrained directly, but through a penalty term added to
the principal curve criterion. Considering a compactly supported distribution, the authors show
existence of a minimizer of the penalized criterion, study its curvature, and they prove that, in two
dimensions, a minimizing curve is injective.

1.2 Contents and organization of the paper
We adopt the length-constrained point of view as introduced by Kégl et al. (2000). We consider
general distributions, assuming only a second order moment, and search for an open or closed
principal curve among parametric curves from [0, 1] to Rd with length at most L.

To illustrate our framework, two examples of length-constrained principal curves, fitted via a
stochastic gradient descent algorithm, are presented in Figure 1.
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Our document is organized as follows. Section 2 introduces relevant notation and recalls some
basic facts about length-constrained principal curves. In our main result, stated in his complete
form in Theorem 3.1 in Section 3, we prove that such a principal curve is right- and left-differentiable
everywhere and has bounded curvature. Moreover, when the support of X is not the range of a
curve with length less than L, we show that there exists λ > 0 and a random variable t̂ taking its
values in [0, 1] such that ‖X − f(t̂)‖ = mint∈[0,1] ‖X − f(t)‖ a.s. and

E
[
X − f(t̂)|t̂ = t

]
νt̂(dt) = −λf ′′(dt), (1)

where νt̂ stands for the distribution of t̂.
In Section 4, formula (1) allows us to propose in dimension d = 2 a proof of the injectivity of

a open principal curve as well as of a closed principal curve restricted to [0, 1). Finally, we give in
Section 5 an example where there exists a unique curve, which is explicit.

2 Definitions and notation
For d ≥ 1, the space Rd is equipped with the standard Euclidean norm, denoted by ‖ · ‖. The
associated inner product between two elements u and v is denoted by 〈u, v〉.

For every x ∈ Rd, let xj be its j-th component, for j = 1, . . . , d, that is x = (x1, . . . , xd). For
every x = (x1, . . . , xd) ∈ Rd, we set ‖x‖∞ = max1≤i≤d |xj |. Let (Ω,F ,P) be a probability space
and X a random vector on (Ω,F ,P) with values in Rd, such that E[‖X‖2] < +∞.

We will consider curves, that are continuous functions

f : [0, 1]→ Rd

t 7→ (f1(t), . . . , fd(t)).

For such a curve f : [0, 1]→ Rd, let L (f) denote its length, defined by

L (f) = sup

n∑
i=1

‖f(ti)− f(ti−1)‖,

where the supremum is taken over all possible subdivisions 0 = t0 ≤ · · · ≤ tn = 1, n ≥ 1 (see, e.g.,
Alexandrov and Reshetnyak (1989)).

Let
∆(f) = E

[
min
t∈[0,1]

‖X − f(t)‖2
]
,

and, for L ≥ 0,
G(L) = min{∆(f), f ∈ CL},

where, in the sequel, CL will denote either one of the following set of curves:

{f ∈ [0, 1]→ Rd,L (f) ≤ L},
{f ∈ [0, 1]→ Rd,L (f) ≤ L, f(0) = f(1)}.

Curves belonging to the latter set are closed curves. Note that G is well-defined. Indeed, Kégl
et al. (2000) have shown the existence of an open curve f with L (f) ≤ L achieving the infimum
of the criterion ∆(f), and the same proof applies for closed curves.

It will be useful to rewrite G(L), for every L ≥ 0, as the minimum of the quantity

E[‖X − X̂‖2]

over all possible random vectors X̂ taking their values in the range f([0, 1]) of a curve f ∈ CL.
Remark 1. If the curve f : [0, 1] → Rd has length L (f) ≤ L, then there exists a curve with the
same range, which is Lipschitz with constant L. Conversely, if f : [0, 1] → Rd is Lipschitz with
constant L, its length is at most L.
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Remark 2. Let L ≥ 0. Suppose that X̂ satisfies G(L) = E[‖X − X̂]‖2]. Writing

E[‖X − X̂‖2] = E[‖X − X̂ − E[X − X̂]‖2] + ‖E[X]− E[X̂]‖2,

we see that, necessarily,
E[X] = E[X̂], (2)

since, otherwise, the criterion could be made strictly smaller by replacing X̂ by the translated
variable X̂ + E[X]− E[X̂], which contradicts the optimality of X̂.

3 Main results and proofs

3.1 Uniqueness of projection random vector
Given a curve f ∈ CL such that ∆(f) = G(L), let X̂ be a random vector with values in f([0, 1])
such that ‖X − X̂‖ = mint∈[0,1] ‖X − f(t)‖ a.s. Thanks to property (2), this projection random
vector X̂ can be shown to be unique almost surely.

For every x ∈ Rd, let d(x, f([0, 1])) denote the distance from the point x to the range of the
curve f . Consider the set

P(x) = {y ∈ f([0, 1]), ‖x− y‖ = d(x, f([0, 1]))} = B̄(x, d(x, f([0, 1]))) ∩ f([0, 1]).

If P(x) has cardinality at least 2, x is called an ambiguity point in the literature (see Hastie and
Stuetzle (1989)). The next result is proved in Section 3.3 below.

Proposition 3.1. 1. The set A = {x ∈ Rd,Card(P(x)) ≥ 2} of ambiguity points is measurable.

2. The set A is negligible for the distribution of X.

3.2 Main theorem and comments
For an Rd-valued signed-measure ν on [0, 1], that is ν = (ν1, . . . , νd), where each νj is a signed-
measure, and for g : [0, 1] → Rd a measurable function, we will use the following notation:∫
〈g(t), ν(dt)〉 =

∑d
j=1

∫
gj(t)νj(dt).

Theorem 3.1. Let L > 0 such that G(L) > 0 and let f ∈ CL such that ∆(f) = G(L). Then,
L (f) = L. Assuming that f is L-Lipschitz, we obtain that

• f is right-differentiable on [0, 1), ‖f ′r(t)‖ = L for all t ∈ [0, 1),

• f is left-differentiable on (0, 1], ‖f ′`(t)‖ = L for all t ∈ (0, 1],

and there exists a unique signed measure f ′′ on [0, 1] (with values in Rd) such that

• f ′′((s, t]) = f ′r(t)− f ′r(s) for all 0 ≤ s ≤ t < 1,

• f ′′([0, 1]) = 0.

In the case CL = {f : [0, 1]→ Rd,L (f) ≤ L}, we also have

• f ′′({0}) = f ′r(0),

• f ′′({1}) = −f ′`(1).

Moreover, there exists a unique λ > 0 and, up to consider an extension of the probability space
(Ω,F ,P), there exists a random variable t̂ taking its values in [0, 1] such that

• ‖X − f(t̂)‖ = mint∈[0,1] ‖X − f(t)‖ a.s.,

• for every bounded Borel function g : [0, 1]→ Rd,

E
[
〈X − f(t̂), g(t̂)〉

]
= −λ

∫
[0,1]

〈g(t), f ′′(dt)〉. (3)
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Remark 3. Whenever the function g is absolutely continuous, an integration by parts shows that
Equation (3) may also be written

E
[
〈X − f(t̂), g(t̂)〉

]
= λ

∫ 1

0

〈g′(t), f ′r(t)〉dt. (4)

To see this, let us write

f ′′([0, 1])g(1) = f ′′({0})g(0) +

∫
(0,1]

〈g(t), f ′′(dt)〉+

∫
(0,1]

〈g′(s), f ′′([0, s])〉ds.

Since f ′′([0, 1]) = 0, we have

0 =

∫
[0,1]

〈g(t), f ′′(dt)〉+

∫
(0,1]

〈g′(s), f ′r(s)〉ds,

which, combined with (3), implies the announced formula (4).
Remark 4. If the curve f has an angle at t, which means that f ′r(t) 6= f ′`(t), we see that

E[(X − f(t̂))1{t̂=t}] = −λf ′′({t}) = λ(f ′`(t)− f ′r(t)) 6= 0.

So, at an angle, P(t̂ = t) > 0.
Besides, when CL = {f : [0, 1]→ Rd,L (f) ≤ L}, we have

E[(X − f(t̂))1{t̂=0}] = −λf ′′({0}) = −λf ′r(0),

which cannot be zero, since f ′r(0) has norm L > 0. This implies that P(t̂ = 0) > 0.

Remark 5. Regarding the random variable t̂, let us mention that t̂ is unique almost surely whenever
the curve is injective since X̂ is unique almost surely (it is the case in dimension d ≤ 2 ; see Section
4). In general, it is worth pointing out that the theorem does not ensure that it is a function of
X, as (X, t̂) is, in fact, obtained as a limit in distribution of (X, t̂n) for some sequence (t̂n)n≥1.
Besides, note that we do not know whether λ depends on the curve f .
Remark 6. Let CL = {f : [0, 1] → Rd,L (f) ≤ L}. It may be of interest to consider the simplest
case of dimension 1, where the problem may be solve entirely and explicitly Assume that X is a
real-valued random variable, and that, for some length L > 0, G(L) > 0. Consider an optimal curve
f with length L (f) ≤ L. Using Remark 7 below, we have that, in fact, L (f) = L, so that the
range of f is given by an interval [a, a+L]. In this context, solving directly the length-constrained
principal curve problem in dimension 1 leads to minimizing in a the quantity

∆(a) := E
[

min
t∈[0,1]

(X − f(t))2
]

= E[(X − a)21{X<a}] + E[(X − a− L)21{X>a+L}].

The function ∆ is differentiable in a, with derivative given by

∆′(a) = 2E[(a−X)1{X<a}] + 2E[(a+ L−X)1{X>a+L}].

Moreover, ∆′ admits a right-derivative ∆′′r (a) = 2(P(X < a) + P(X > a + L)), which is positive
since G(L) > 0 implies that we do not have X ∈ [a, a + L] almost surely. Hence, ∆ is strictly
convex, which shows that the minimizing a is unique, so that the range of the principal curve f is
also uniquely defined.

Besides, observe that Equation (3) from Theorem 3.1, takes the following form in dimension 1:
for every bounded Borel function g : [0, 1]→ Rd,

E[(X − a)1{X<a}g(0)] + E[(X − a− L)1{X>a+L}g(1)] = λL(g(1)− g(0)).

In particular, we get

E[(X − a)1{X<a}] = −λL,
E[(X − a− L)1{X>a+L}] = λL,

which characterizes λ. Let us stress that we directly see in this case that λ > 0, since, otherwise
X ∈ [a, a+ L] almost surely, which contradicts the fact that G(L) > 0.
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3.3 Proof of Proposition 3.1
For u ∈ Rd and r > 0, let B(u, r) and B̄(u, r) denote, respectively, the open and the closed balls
with center u and radius r. For a subset S ⊂ Rd, let diam(S) = supx,y∈A ‖x− y‖ be its diameter.

1. Note that

A = {x ∈ Rd,Card(B̄(x, d(x, f([0, 1]))) ∩ f([0, 1])) ≥ 2}
= {x ∈ Rd, diam(B̄(x, d(x, f([0, 1]))) ∩ f([0, 1])) > 0}
= Rd \ {x ∈ Rd, diam(B̄(x, d(x, f([0, 1]))) ∩ f([0, 1])) = 0}.

For every x ∈ Rd, we may write

diam(B̄(x, d(x, f([0, 1]))) ∩ f([0, 1])) = lim
n→∞

diam(B(x, d(x, f([0, 1])) + 1/n) ∩ f([0, 1])).

Since f is continuous, f([0, 1] ∩ Q) is dense in f([0, 1]). For every n ≥ 1, the countable set
B(x, d(x, f([0, 1])) + 1/n) ∩ f([0, 1] ∩ Q) is dense in B(x, d(x, f([0, 1])) + 1/n) ∩ f([0, 1]), so
that both sets have the same diameter. Yet, it can be easily checked that the diameter of
a countable set is measurable, and finally, we obtain that the set A of ambiguity points is
measurable.

2. To begin with, we prove that, for every j = 1, . . . , d, it is possible to construct a projection
random vector X̂ such that

X̂j = maxπj(B̄(X, d(X, f([0, 1]))) ∩ f([0, 1])).

Here, πj stands for the projection onto direction j, that is, for x = (x1, . . . , xd) ∈ Rd,
πj(x) = xj . Let {t1, t2, . . . } be an enumeration of the countable set [0, 1] ∩ Q. Let ε > 0,
x ∈ Rd. First, note that the set {t ∈ [0, 1], ‖f(t) − x‖ < d(x, f([0, 1])) + ε} is open. It is
nonempty since the distance from x to the closed set f([0, 1]) is attained. We deduce from
this that Card({t ∈ [0, 1]∩Q, ‖f(t)−x‖ ≤ d(x, f([0, 1]))+ε}) =∞. Let us define the sequence
(knε (x))m∈N by

k1ε(x) = min{k : ‖f(tk)− x‖ ≤ d(x, f([0, 1])) + ε}
km+1
ε (x) = min{k > kmε (x) : ‖f(tk)− x‖ ≤ d(x, f([0, 1])) + ε}, m ∈ N.

Let j ∈ {1, . . . , d}. We set

p∗(x) = min{p ≥ 1, f j(tkpε (x)) ≥ sup
m∈N

f j(tkmε (x))− ε}.

We define X̂ε(x) = f(t
k
p∗(x)
ε (x)

), which is a measurable choice. Notice that, since {f j(tkmε (x)),m ∈
N} = πj(B̄(x, d(x, f([0, 1]))+ε)∩f([0, 1]∩Q)) is dense in πj(B̄(x, d(x, f([0, 1]))+ε)∩f([0, 1])),
both sets have the same supremum.

Let

Πε(x) = πj(B̄(x, d(x, f([0, 1])) + ε) ∩ f([0, 1])), Π(x) = πj(B̄(x, d(x, f([0, 1]))) ∩ f([0, 1])).

The limit of X̂j
ε (x) is given by limε→0 max Πε(x). Yet, note that, for every ε, Π(x) ⊂ Πε(x)

so that
max Π(x) ≤ max Πε(x). (5)

Moreover, if ε is small enough, then for all y ∈ Πε(x), d(y,Π(x)) ≤ η(ε), where η tends to 0
with ε, and, thus,

max Πε(x) ≤ max Π(x) + η(ε). (6)

Combining inequalities 5 and 6, we obtain that limε→0 max Πε(x) = max Π(x).
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Set εn = 1/n. Up to an extraction, we may assume that (X̂εn(X), X) converges in distri-
bution to (X̂,X) as n → ∞. The random vector X̂ satisfies ‖X − X̂‖ = d(X, f([0, 1])) and
X̂j = max Π(X).

Similarly, as may be seen for instance by replacingX by −X, there exists a projection random
vector Ŷ such that

Ŷ j = minπj(B̄(X, d(X, f([0, 1]))) ∩ f([0, 1])).

Now, we use this result to show that A is negligible for the distribution of X. Assume that
P(Card(P(X)) ≥ 2) > 0. There exists a first coordinate j such that P(Card(πj(P(X))) ≥
2) > 0. Then, it is possible to construct X̂j and Ŷ j such that P(X̂j ≥ Ŷ j) = 1 and P(X̂j >
Ŷ j) > 0. Yet, by property (2), E[X̂] = E[X] = E[Ŷ ] = E[X], and, in particular, E[X̂j ] =
E[Ŷ j ], which leads to a contradiction. Thus, P(Card(P(X)) = 1) = 1.

In the next sections, we present two lemmas, which are important both independently and for
obtaining the main result Theorem 3.1.

3.4 Properties of the function G

The first lemma is about the monotony and continuity properties of the function G. Observe that G
is nonincreasing since increasing the maximum length L always leads to perform the minimization
over a set containing the initial one.

Lemma 3.1. 1. The function G is continuous.

2. The function G is decreasing over [0, L0), where L0 = inf{L ≥ 0, G(L) = 0} ∈ R+ ∪ {+∞}.

In particular, Lemma 3.1 admits the next useful corollary.

Remark 7. For L > 0, if G(L) > 0 and f ∈ CL is such that ∆(f) = G(L), then L (f) = L.
Indeed, if L (f) < L, then Lemma 3.1 would imply G(L (f)) > G(L) = ∆(f), which contradicts
the definition of G.

Proof of Lemma 3.1. 1. Set L ≥ 0. Let us show that G is continuous at the point L. Let
(Lk)k∈N be a sequence in R+ converging to L, with Lk 6= L for all k ∈ N. Let f ∈ CL be such
that ∆(f) = G(L), and let X̂ stands for a random vector taking its values in f([0, 1]) such that
‖X − X̂‖ = mint∈[0,1] ‖X − f(t)‖ a.s. For every k ∈ N, let fk : [0, 1] → Rd be a curve such that
L (fk) ≤ Lk, ∆(fk) = G(Lk) and ‖fk(t)− fk(t′)‖ ≤ Lk|t− t′| for t, t′ ∈ [0, 1].

Observe that the sequence (G(Lk))k∈N is bounded since E[‖X‖2] < +∞. Let us show that
G(L) is the unique sublimit of this sequence. Let γ : N → N be any increasing function. Our
purpose is to show that the sequence (G(Lγ(k)))k∈N converges to G(L).

Let us check that the fk are equi-uniformly continuous and uniformly bounded. Since the
sequence (Lk)k∈N is bounded, say by L′, the fk are Lipschitz with common Lipschitz constant L′,
and, thus, they are equi-uniformly continuous. For every k ∈ N, t ∈ [0, 1], we have ‖fk(t)‖ ≤
‖fk(0)‖+ ‖fk(t)− fk(0)‖. Yet, ‖fk(t)− fk(0)‖ ≤ L′|t| ≤ L′. Moreover, the sequence (fk(0))k∈N is
bounded: otherwise, since the sequence of lengths (Lk)k∈N is bounded, the whole curve would be
located at infinity, which cannot be optimal given that E[‖X‖2] < +∞. So, the sequence (fk)k∈N
is uniformly bounded.

Consequently, there exists an increasing function σ : N → N such that the subsequence
(fσ◦γ(k))k∈N converges uniformly to some function ϕ : [0, 1] → Rd. (Remark: the curve ϕ is L
Lipschitz, since for all t, t′,

‖ϕ(t)− ϕ(t′)‖ ≤ ‖ϕ(t)− fσ◦γ(k)(t)‖+ ‖fσ◦γ(k)(t)− fσ◦γ(k)(t′)‖ − ‖fσ◦γ(k)(t′)− ϕ(t′)‖
≤ ‖ϕ(t)− fσ◦γ(k)(t)‖+ Lσ◦γ(k)|t− t′| − ‖fσ◦γ(k)(t′)− ϕ(t′)‖,
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which implies, taking the limit as k →∞, ‖ϕ(t)−ϕ(t′)‖ ≤ L|t−t′|.) We have L (ϕ) ≤ limk→∞ Lk =
L. Now, observe that

min
t
‖X − fσ◦γ(k)(t)‖2 −min

t
‖X − ϕ(t)‖2

=
(

min
t
‖X − fσ◦γ(k)(t)‖ −min

t
‖X − ϕ(t)‖

)(
min
t
‖X − fσ◦γ(k)(t)‖+ min

t
‖X − ϕ(t)‖

)
≤ ‖ϕ(t∗)− fσ◦γ(k)(t∗)‖(‖X − fσ◦γ(k)(t∗)‖+ ‖X − ϕ(t∗)‖),

where ‖X − ϕ(t∗)‖ = mint ‖X − ϕ(t)‖. Since E[‖X‖2] <∞ and fσ◦γ(k) converges uniformly to ϕ,
this shows that ∆(fσ◦γ(k)) converges to ∆(ϕ).

Finally, let us check that ∆(ϕ) = G(L). If L = 0, then for every k, Lk ≥ L, thus ∆(fσ◦γ(k)) =
G(fσ◦γ(k)) ≤ G(0) for every k. Consequently, ∆(ϕ) ≤ G(0), which implies ∆(ϕ) = G(0) since ϕ
has length 0. If L > 0, note that, for every k, LkL X̂ is a random vector with values in Lk

L f([0, 1])

and Lk
L f has length at most Lk since X̂ is taking its values in f([0, 1]) where f has length L. Thus,

for every k,

E

[∥∥∥∥X − Lσ◦γ(k)

L
X̂

∥∥∥∥2
]
≥ G(Lσ◦γ(k)) = ∆(fσ◦γ(k)).

taking the limit as k →∞, we obtain

E
[
‖X − X̂‖2

]
≥ ∆(ϕ),

which means that ∆(ϕ) = G(L) since L (ϕ) ≤ L.
2. We have to show that G is decreasing as long as the length constraint is effective (that

is G(L) > 0). Let us prove that for 0 ≤ L1 < L2, we have G(L2) < G(L1) if G(L1) > 0. Let
f : [0, 1]→ Rd such that L (f) ≤ L1 and ∆(f) = G(L1). For t0 ∈ [0, 1] and r > 0, we define Ẑt0,r
by 

ẐJt0,r = fJ(t0) + r ∧ (XJ − fJ(t0))1{XJ≥fJ (t0)} + (−r) ∨ (XJ − fJ(t0))1{XJ<fJ (t0)},

where J = min{i : |Xi − f i(t0)| = ‖X − f(t0)‖∞}
Ẑit0,r = f i(t0) if i 6= J, i = 1, . . . , d.

Observe that Ẑt0,r takes its values in

C(t0, r) =

d⋃
j=1

{x ∈ Rd : xi = f i(t0) for i 6= j, |xj − f j(t0)| ≤ r}.

Indeed, all coordinates of Ẑt0,r are equal to the corresponding coordinate of f(t0) apart from the
J-th coordinate, that is the first coordinate for which the distance between X and f(t0) is the
largest one. Let us check that |ẐJt0,r − f

J(t0)| ≤ r.
If XJ ≥ fJ(t0), either ẐJt0,r − f

J(t0) = r, or ẐJt0,r − f
J(t0) = XJ − fJ(t0) ≤ r.

If XJ < fJ(t0), either fJ(t0)− ẐJt0,r = r, or fJ(t0)− ẐJt0,r = fJ(t0)−XJ ≤ r.
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Figure 2: Example illustrating the definition of Ẑt0,r in R2.

Then, letting again X̂ be a random vector with values in f([0, 1]) such that ‖X − X̂‖ =
mint∈[0,1] ‖X − f(t)‖ a.s., we set

X̂t0,r = X̂1{‖X−X̂‖≤‖X−Ẑt0,r‖}
+ Ẑt0,r1{‖X−X̂‖>‖X−Ẑt0,r‖}

.

Since ‖X − Ẑt0,r‖2 = ‖X − f(t0)‖2 − ‖X − f(t0)‖2∞ + (‖X − f(t0)‖∞ − r)2+,

‖X − X̂‖2 − ‖X − X̂t0,r‖2

=
[
‖X − X̂‖2 − ‖X − Ẑt0,r‖2

]
+

=
[
‖X − X̂‖2 − ‖X − f(t0)‖2 + ‖X − f(t0)‖2∞ − (‖X − f(t0)‖∞ − r)2+

]
+

≥
[
‖X − X̂‖2 − ‖X − f(t0)‖2 + ‖X − f(t0)‖2∞ − (‖X − f(t0)‖∞ − r)2

]
+

=
[
‖X − X̂‖2 − ‖X − f(t0)‖2 + 2r‖X − f(t0)‖∞ − r2

]
+

=
[
‖f(t0)− X̂‖2 + 2〈X − f(t0), f(t0)− X̂〉+ 2r‖X − f(t0)‖∞ − r2

]
+

=
[
−‖f(t0)− X̂‖2 + 2〈X − X̂, f(t0)− X̂〉+ 2r‖X − f(t0)‖∞ − r2

]
+

≥
[
−‖f(t0)− X̂‖2 + 2〈X − X̂, f(t0)− X̂〉+

2r√
d
‖X − f(t0)‖ − r2

]
+

since for every x ∈ Rd, ‖x‖ ≤
√
d‖x‖∞

≥
[
−‖f(t0)− X̂‖2 + 2〈X − X̂, f(t0)− X̂〉+

2r√
d
‖X − X̂‖ − r2

]
+

since ‖X − X̂‖ ≤ ‖X − f(t0)‖.

Besides, X̂t0,r takes its values in f([0, 1]) ∪ C(t0, r), which is the range of a parametric curve
with length at most L1 + 4dr, so that E[‖X − X̂t0,r‖2] ≥ G(L1 + 4dr).

Thus,

G(L1) ≥ G(L1 + 4dr)

+ E

[[
−‖f(t0)− X̂‖2 + 2〈X − X̂, f(t0)− X̂〉+

2r√
d
‖X − X̂‖ − r2

]
+

]
. (7)
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Since G(L1) > 0, P(‖X − X̂‖ > 0) > 0, thus there exist δ > 0 and K < ∞ such that
η := P (K ≥ ‖X − X̂‖ ≥ δ) > 0.

Recall that, for all (t, t′), we have ‖f(t)− f(t′)‖ ≤ L1|t− t′|. Then, for every p ≥ 1, there exists
k, 1 ≤ k ≤ p, such that ‖X̂ − f(kp )‖ ≤ L1

p and so, we have

p∑
k=1

1{‖X̂−f( kp )‖≤L1
p } ≥ 1.

Thus,
p∑
k=1

P
(
K ≥ ‖X − X̂‖ ≥ δ,

∥∥∥∥X̂ − f (kp
)∥∥∥∥ ≤ L1

p

)
≥ η.

Consequently, for every p ≥ 1, there exists tp ∈ [0, 1] such that

P
(
K ≥ ‖X − X̂‖ ≥ δ, ‖X̂ − f(tp)‖ ≤

L1

p

)
≥ η

p
> 0.

According to (7), we obtain

G(L1) ≥ G(L1 + 4dr) + E
[
−‖f(tp)− X̂‖2 + 2〈X − X̂, f(tp)− X̂〉+

2r√
d
‖X − X̂‖ − r2

]
+

≥ G(L1 + 4dr) + E
[
1{K≥‖X−X̂‖≥δ,‖X̂−f(tp)‖≤L1

p }

(
−L

2
1

p2
− 2KL1

p
+

2rδ√
d
− r2

)]
≥ G(L1 + 4dr) +

η

p

(
−L

2
1

p2
− 2KL1

p
+

2rδ√
d
− r2

)
.

Now, choosing r > 0 such that 2rδ√
d
− r2 > 0 and L1 + 4dr ≤ L2, we finally obtain, taking p large

enough,
G(L1) > G(L1 + 4dr) ≥ G(L2).

3.5 Lack of self-consistency
The next result, which is crucial for proving that λ 6= 0 in Theorem 3.1, shows that the prop-
erty E[X|X̂] = X̂ cannot be satisfied almost surely in our constrained setting. So, whenever
the constraint is active, a length-constrained principal curve does not satisfy the self-consistency
property.

Lemma 3.2. Let L > 0 such that G(L) > 0, and let f ∈ CL be such that ∆(f) = G(L). If X̂
is a random vector with values in f([0, 1]) such that ‖X − X̂‖ = mint∈[0,1] ‖X − f(t)‖ a.s., then
P(E[X|X̂] 6= X̂) > 0.

Proof. First of all, observe that L (f) = L since G(L) > 0, according to Remark 7. Assume that
E[X|X̂] = X̂ a.s..

For ε ∈ [0, 1], we set X̂ε = (1− ε)X̂. Then,

‖X − X̂ε‖2 = ‖X − X̂ + εX̂‖2 = ‖X − X̂‖2 + ε2‖X̂‖2 + 2ε〈X − X̂, X̂〉.

Since E[X|X̂] = X̂ a.s., E[X − X̂|X̂] = 0 a.s., and thus, E[〈X − X̂, X̂〉] = E[〈E[X − X̂|X̂], X̂〉] = 0,
so that

E[‖X − X̂ε‖2] = E[‖X − X̂‖2] + ε2E[‖X̂‖2]. (8)

The random vector X̂ε is taking its values in the range of (1 − ε)f , which has length (1 − ε)L.
Observe that

E[‖X̂‖2] < +∞, (9)
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since E[‖X‖2] <∞ and

E[‖X̂‖2] ≤ 2E[‖X − X̂‖2] + 2E[‖X‖2]

≤ 2E[‖X − f(0)‖2] + 2E[‖X‖2]

≤ 6E[‖X‖2] + 4‖f(0)‖2.

We will show that, adding to (1 − ε)f a curve with length εL, it is possible to build Ŷε with
E[‖X − Ŷε‖2] < E[‖X − X̂‖2], which contradicts the optimality of f .

For ε ∈ [0, 1], let fε = (1 − ε)f. We then define X̂ε,t0,r as the variable X̂t0,r corresponding to
fε. More precisely, similarly as in the proof of Lemma 3.1, we define, for t0 ∈ [0, 1] and r > 0, the
random vector Ẑε,t0,r, with values in

C(t0, r) =

d⋃
j=1

{x ∈ Rd : xi = f iε(t0) for i 6= j, |xj − f jε (t0)| ≤ r},

by 
ẐJε,t0,r = fJε (t0) + r ∧ (XJ − fJε (t0))1{XJ≥fJε (t0)} + (−r) ∨ (XJ − fJε (t0))1{XJ<fJε (t0)},

where J = min{i : |Xi − f iε(t0)| = ‖X − fε(t0)‖∞}
Ẑiε,t0,r = f iε(t0) if i 6= J, i = 1, . . . , d.

We set
X̂ε,t0,r = X̂1{‖X−X̂ε‖≤‖X−Ẑε,t0,r‖}

+ Ẑε,t0,r1{‖X−X̂ε‖>‖X−Ẑε,t0,r‖}
.

By the same calculation as in the proof of Lemma 3.1, we obtain

‖X−X̂ε‖2−‖X−X̂ε,t0,r‖2 ≥
[
−‖fε(t0)− X̂ε‖2 + 2〈X − X̂ε, fε(t0)− X̂ε〉+

2r√
d
‖X − fε(t0)‖ − r2

]
+

.

Since ‖X − fε(t0)‖ ≥ ‖X − f(t0)‖ − ε‖f(t0)‖ ≥ ‖X − X̂‖ − ε‖f(t0)‖, we get

‖X − X̂ε‖2 − ‖X − X̂ε,t0,r‖2 ≥
[
−(1− ε)2‖f(t0)− X̂‖2 + 2(1− ε)〈X − X̂ε, f(t0)− X̂〉

+
2r√
d
‖X − X̂‖ − 2r√

d
ε‖f(t0)‖ − r2

]
+

.

Thus,

E
[
‖X − X̂ε‖2 − ‖X − X̂ε,t0,r‖2

∣∣∣X̂]
≥
[
−‖f(t0)− X̂‖2 + 2(1− ε)〈E[X|X̂]− X̂ε, f(t0)− X̂〉+

2r√
d
E
[
‖X − X̂‖

∣∣∣X̂]− 2r√
d
ε‖f(t0)‖ − r2

]
+

=

[
−‖f(t0)− X̂‖2 + 2(1− ε)〈εX̂, f(t0)− X̂〉+

2r√
d
E
[
‖X − X̂‖

∣∣∣X̂]− 2r√
d
ε‖f(t0)‖ − r2

]
+

≥
[
−‖f(t0)− X̂‖2 − 2ε‖X̂‖‖f(t0)− X̂‖+

2r√
d
E
[
‖X − X̂‖

∣∣∣X̂]− 2r√
d
ε‖f(t0)‖ − r2

]
+

. (10)

Besides, since G(L) > 0, there exist δ > 0, K < +∞, such that

η = P
(
‖X̂‖ ≤ K,E

[
‖X − X̂‖

∣∣∣X̂] ≥ δ) > 0.

Moreover, for every p ≥ 1,
∑p
k=1 1{‖X̂−f( kp )‖≤Lp }

≥ 1 since f is L-Lipschitz. Consequently,

p∑
k=1

P
(
‖X̂‖ ≤ K,E

[
‖X − X̂‖

∣∣∣X̂] ≥ δ, ∥∥∥∥X̂ − f (kp
)∥∥∥∥ ≤ L

p

)
≥ η.
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Hence, setting

Ap =

{
‖X̂‖ ≤ K,E

[
‖X − X̂‖

∣∣∣X̂] ≥ δ, ∥∥∥∥X̂ − f (kp
)∥∥∥∥ ≤ L

p

}
,

we see that there exists tp ∈ [0, 1] such that P(Ap) ≥ η
p . From (10), we get

E
[
‖X − X̂ε‖2 − ‖X − X̂ε,tp,r‖2

]
≥ E

[
1Ap

[
−‖f(tp)− X̂‖2 − 2ε‖X̂‖‖f(tp)− X̂‖+

2r√
d
E
[
‖X − X̂‖

∣∣∣X̂]− 2r√
d
ε‖f(tp)‖ − r2

]
+

]

≥ P(Ap)

[
−L

2

p2
− 2εKL

p
+

2rδ√
d
− 2rεM√

d
− r2

]
,

where M = supt∈[0,1] ‖f(t)‖. Since X̂ε,tp,r takes its values in fε([0, 1]) ∪ C(ε, tp, r), which is the
range of a curve with length at most (1− ε)L+ 4dr, then choosing r such that 4dr = εL, we have

E
[∥∥∥X − X̂ε,tp,

εL
4d

∥∥∥2] ≤ E
[
‖X − X̂ε‖2

]
− η

p

(
−L

2

p2
− 2KLε

p
+

Lδε

2d3/2
− MLε2

2d3/2
− L2ε2

16d2

)
= E[‖X − X̂‖2] + ε2E[‖X̂‖2] +

ηL2

p3
+

2ηKLε

p2
− ηLδε

2d3/2p
+
ηMLε2

2d3/2p
− ηL2ε2

16d2p
,

using (8). Then, taking ε = ρ
p , we get

E
[∥∥∥X − X̂ ρ

p ,tp,
ρL
4dp

∥∥∥2] ≤ E[‖X−X̂‖2]+
ρ2

p2
E[‖X̂‖2]+

ηL2

p3
+

2ηKLρ

p3
− ηLδρ

2d3/2p2
+
ηMLρ2

2d3/2p3
− ηL2ρ2

16d2p3
.

If ρ is small enough, then ρ2E[‖X̂‖2] − ηLδρ
2d3/2

< 0. Then, taking p large enough, this leads to a
random vector Ŷ , with values in the range of a curve with length at most L, such that E[‖X−Ŷ ‖2] <
E[‖X − X̂‖2].

Equipped with lemmas 3.1 and 3.2, we can present the proof of the main result.

3.6 Proof of Theorem 3.1
To obtain a length-constrained principal curve, we have to minimize a function which is not dif-
ferentiable. The main idea in the proof below is to a build a discrete approximation of a principal
curve using a sequence of points in Rd (linking the points to get a polygonal curve).

This sequence of points may be obtained by minimizing a differentiable criterion, which is
based on the distances from the random vector X to each of these points (and not to the segments
corresponding to the pairs of points). The properties of the principal curve are shown by passing
to the limit.

We have chosen to present the proof for open curves. It adapts straightforwardly to the case
of closed curves, which turns out to be even simpler since there are no endpoints and so all points
of the curve play the same role. Note that the normalization factor “n− 1” below becomes “n” in
the closed curve context.

Discrete approximation Let Z ∼ N (0, Id), independent of X. Let (ζn), (ηn) and (εn) be
sequences of positive real numbers such that

ζn = O(1/n), ηn = O(1/n), nεn →∞, εn → 0.

For n ≥ 1, we set Xn = X + ζnZ. Observe that Xn has a density. We also introduce i.i.d. random
vectors ξn1 , . . . , ξnn , independent of X and Z, with same distribution as a centered random vector ξ
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with continuously differentiable density with compact support, such that ‖ξ‖ ≤ ηn. For n ≥ 1 and
(x1, . . . , xn) ∈ (Rd)n, we set

Fn(x1, . . . , xn) = E
[

min
1≤i≤n

‖Xn − xi − ξni ‖2
]

+ εn

n∑
i=1

‖xi − f(tni )‖2,

where tni := i−1
n−1 , for 1 ≤ i ≤ n.

Let us introduce (vn1 , . . . , v
n
n) ∈ (Rd)n satisfying

(n− 1)

n∑
i=2

‖vni − vni−1‖2 ≤ L2 (11)

and

Fn(vn1 , . . . , v
n
n) = min

{
Fn(x1, . . . , xn); (n− 1)

n∑
i=2

‖xi − xi−1‖2 ≤ L2

}
.

Let X̂x
n be such that X̂x

n ∈ {x1 + ξn1 , . . . , xn + ξnn} and

‖Xn − X̂x
n‖ = min

1≤i≤n
‖Xn − xi − ξni ‖ (12)

almost surely. In the sequel, X̂n will stand for X̂(vn1 ,...,v
n
n)

n .
Let us first check that

sup
n≥1

Fn(vn1 , . . . , v
n
n) <∞. (13)

Recall that, for all t, t′ ∈ [0, 1], ‖f(t)− f(t′)‖ ≤ L|t− t′|. Hence, we have

(n− 1)

n∑
i=2

‖f(tni )− f(tni−1)‖2 ≤ L2, (14)

and consequently, we may consider (x1, . . . , xn) =
(
f
(
tni
))

1≤i≤n
. We see that

Fn(vn1 , . . . , v
n
n) ≤ E

[
‖Xn − f(0)− ξn1 ‖2

]
≤ 2E

[
‖Xn − ξn1 ‖2

]
+ 2‖f(0)‖2

≤ 2E
[
‖X‖2

]
+ 2dζ2n + 2η2n + 2‖f(0)‖2.

We define fn : [0, 1]→ Rd by

fn(t) = vni + (n− 1) (t− tni ) (vni+1 − vni ),
i− 1

n− 1
≤ t ≤ i

n− 1
, 1 ≤ i ≤ n− 1.

This function fn is absolutely continuous and we have f ′n(t) = (n−1)(vni+1−vni ) for t ∈
(
i−1
n−1 ,

i
n−1

)
,

so that∫ 1

0

‖f ′n(t)‖2dt =

n−1∑
i=1

(n− 1)2‖vni+1 − vni ‖2 ×
1

n− 1
= (n− 1)

n−1∑
i=1

‖vni+1 − vni ‖2 ≤ L2,

according to (11). Hence, for all t, t′ ∈ [0, 1],

‖fn(t)− fn(t′)‖ =
∥∥∥ ∫ 1

0

1[t∧t′,t∨t′]f
′
n(u)du

∥∥∥ ≤ L√|t− t′| (15)

and

L (fn) ≤
(∫ 1

0

‖f ′n(t)‖2dt
)1/2

≤ L. (16)
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Upper bound for the penalty term We will now show that there exists c ≥ 0 such that, for
all n ≥ 1,

εn

n∑
i=1

‖vni − f(tni )‖2 ≤ c

n
. (17)

The following upper bound will be useful:∣∣∣∣ min
1≤i≤n

‖Xn − f(tni )− ξni ‖ − min
1≤i≤n

‖X − f(tni )‖
∣∣∣∣ ≤ ζn‖Z‖+ ηn. (18)

By definition of (vn1 , . . . , v
n
n), thanks to (14), we may write

Fn(vn1 , . . . , v
n
n) ≤ E

[
min

1≤i≤n
‖Xn − f(tni )− ξni ‖

2

]
.

Observe that∣∣∣∣ min
1≤i≤n

‖Xn − f(tni )− ξni ‖ − min
t∈[0,1]

‖X − f(t)‖
∣∣∣∣

≤
∣∣∣∣ min
1≤i≤n

‖Xn − f(tni )− ξni ‖ − min
1≤i≤n

‖X − f(tni )‖
∣∣∣∣+

∣∣∣∣ min
1≤i≤n

‖X − f(tni )‖ − min
t∈[0,1]

‖X − f(t)‖
∣∣∣∣

≤ ζn‖Z‖+ ηn +
L

n− 1
,

so that

min
1≤i≤n

‖Xn − f(tni )− ξni ‖
2 ≤ min

t∈[0,1]
‖X − f(t)‖2 +

(
ηn + ζn‖Z‖+

L

n− 1

)2

+ 2

(
ηn + ζn‖Z‖+

L

n− 1

)
min
t∈[0,1]

‖X − f(t)‖.

Consequently, there exists c1 ≥ 0, such that

Fn(vn1 , . . . , v
n
n) ≤ G(L) +

c1
n
. (19)

Besides,

Fn(vn1 , . . . , v
n
n) = E

[
min

1≤i≤n
‖Xn − fn(tni )− ξni ‖

2

]
+ εn

n∑
i=1

‖fn(tni )− f(tni )‖2,

and, writing∣∣∣∣ min
1≤i≤n

‖Xn − fn(tni )− ξni ‖
2 − min

1≤i≤n
‖X − fn(tni )‖2

∣∣∣∣
≤
∣∣∣∣ min
1≤i≤n

‖Xn − fn(tni )− ξni ‖ − min
1≤i≤n

‖X − fn(tni )‖
∣∣∣∣× ( min

1≤i≤n
‖Xn − fn(tni )− ξni ‖+ min

1≤i≤n
‖X − fn(tni )‖

)
≤
(
ζn‖Z‖+ ηn

)(
ζn‖Z‖+ ηn + 2 min

1≤i≤n
‖X − fn(tni )‖

)
=

(
ζn‖Z‖+ ηn

)2

+ 2

(
ζn‖Z‖+ ηn

)
min

1≤i≤n
‖X − fn(tni )‖ ,
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we obtain

Fn(vn1 , . . . , v
n
n) ≥ E

[
min

1≤i≤n
‖X − fn(tni )‖2

]
− E

[
(ζn‖Z‖+ ηn)2

]
− 2(ζnE[‖Z‖] + ηn)E

[
min

1≤i≤n
‖X − fn(tni )‖

]
+ εn

n∑
i=1

‖fn(tni )− f(tni )‖2

≥ E
[

min
t∈[0,1]

‖X − fn(t)‖2
]
− ζ2nE[‖Z‖2]− η2n − 2ηnζnE[‖Z‖]

− 2(ζnE[‖Z‖] + ηn)E
[

min
1≤i≤n

‖X − fn(tni )‖
]

+ εn

n∑
i=1

‖fn(tni )− f(tni )‖2

≥ G(L)− c2
n

+ εn

n∑
i=1

‖fn(tni )− f(tni )‖2,

for some constant c2 ≥ 0. Indeed, L (fn) ≤ L according to (16), which allows to lower bound
E
[
mint∈[0,1] ‖X − fn(t)‖2

]
by G(L), and moreover, E [min1≤i≤n ‖X − fn(tni )‖] is bounded since

(fn)n≥1 is uniformly bounded and E[‖X‖2] < ∞. Thus, there exists a constant c3 such that
G(L)− c3

n +εn
∑n
i=1

∥∥fn(tni )−f(tni )∥∥2 ≤ G(L)+ c3
n , which shows that εn

∑n
i=1

∥∥fn(tni )−f(tni )
∥∥2 ≤

2c3
n .

Construction of t̂ The upper bounds (17) and (15), together with the fact nεn → ∞, imply
that the sequence (fn)n≥1 converges uniformly to f .

Let t̂n = tni on the event {X̂n = vni + ξni }, 1 ≤ i ≤ n. Since the sequence t̂n is bounded,
there exists an increasing function σ : N → N and t̂ such that the pairs (Xσ(n), t̂σ(n)) converge in
distribution to (X, t̂).

For every n ≥ 1, almost surely,∣∣∣‖Xn − fn(t̂n)‖ − min
1≤i≤n

∥∥Xn − fn(tni )
∥∥∣∣∣

≤
∣∣∣‖Xn − fn(t̂n)‖ − min

1≤i≤n

∥∥Xn − fn
(
tni
)
− ξni

∥∥∣∣∣+

∣∣∣∣ min
1≤i≤n

∥∥Xn − fn
(
tni
)
− ξni

∥∥− min
1≤i≤n

∥∥Xn − fn
(
tni
)∥∥∣∣∣∣

≤
∣∣∣‖Xn − fn(t̂n)‖ −

n∑
i=1

‖Xn − fn(t̂n)− ξni ‖1{X̂n=fn(tni )+ξni }
∣∣∣+ ηn

≤
n∑
i=1

∣∣∣‖Xn − fn(t̂n)‖ − ‖Xn − fn(t̂n)− ξni ‖
∣∣∣1{X̂n=fn(tni )+ξni } + ηn

≤ 2ηn,

Hence, considering the extraction, we obtain

‖X − f(t̂)‖ = min
t∈[0,1]

‖X − f(t)‖ a.s.

Order 1 equations for critical points Recall that, for n ≥ 1 and x = (x1, . . . , xn) ∈ (Rd)n,

Fn(x1, . . . , xn) = E
[

min
1≤i≤n

‖Xn − xi − ξni ‖2
]

+ εn

n∑
i=1

‖xi − f(tni )‖2.

Lemma 3.3. The function (x1, . . . , xn) 7→ E
[
min1≤i≤n ‖Xn − xi − ξni ‖2

]
is differentiable, and,

for 1 ≤ i ≤ n, the gradient with respect to xi is given by

∂

∂xi
E
[

min
1≤j≤n

‖Xn − xj − ξnj ‖2
]

= −2E
[
(Xn − X̂x

n)1{X̂xn=xi+ξi}

]
,

(Recall that X̂x
n satisfies (12).)
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Proof. For x = (x1, . . . , xn) ∈ (Rd)n and ω ∈ Ω, we set

Gn(x, ω) := min
1≤i≤n

‖Xn(ω)− xi − ξni (ω)‖2.

For every x, since the distribution of Xn gives zero measure to affine hyperplanes of Rd and the
vectors xi+ ξni , 1 ≤ i ≤ n, are mutually distinct P(dω) almost surely, we have P(dω) almost surely,

Gn(x, ω) =

n∑
i=1

‖Xn(ω)− xi − ξni (ω)‖21{‖Xn(ω)−xi−ξni (ω)‖<minj 6=i ‖Xn(ω)−xj−ξnj (ω)‖}.

For every x ∈ (Rd)n, P(dω) almost surely, y 7→ Gn(y, ω) is differentiable at x and for 1 ≤ i ≤ n,

∂

∂xi
Gn(x, ω) = −2(Xn(ω)− xi − ξni (ω))1{‖Xn(ω)−xi−ξni (ω)‖<minj 6=i ‖Xn(ω)−xj−ξnj (ω)‖}.

= −2(Xn(ω)− X̂x
n(ω))1{X̂xn(ω)=xi+ξni (ω)}

.

For every u = (u1, . . . , un) ∈ (Rd)n, we set ‖u‖ = (
∑n
i=1 ‖ui‖2)1/2. Let x(k) = (x

(k)
1 , . . . , x

(k)
n ) be a

sequence tending to x = (x1, . . . , xn) ∈ (Rd)n as k tends to infinity. Then,[
Gn(x(k), ω)−Gn(x, ω)−

n∑
i=1

〈
∂

∂xi
Gn(x, ω), x

(k)
i − xi

〉]
× 1

‖x(k) − x‖

converges P(dω) almost surely to 0 as k tends to infinity. Moreover,∣∣∣Gn(x, ·)−Gn(x(k), ·)
∣∣∣

=
(

min
1≤i≤n

‖Xn − xi − ξni ‖+ min
1≤i≤n

‖Xn − x(k)i − ξ
n
i ‖
)∣∣∣ min

1≤i≤n
‖Xn − xi − ξni ‖ − min

1≤i≤n
‖Xn − x(k)i − ξ

n
i ‖
∣∣∣

≤ 2
(
‖Xn‖+ ηn + ‖x1‖+ ‖x(k)1 ‖

)
max
1≤i≤n

‖xi − x(k)i ‖,

so that ∣∣Gn(x, ·)−Gn(x(k), ·)
∣∣

‖x− x(k)‖
≤ C(‖Xn‖+ 1),

where C is a constant which does not depend on k. Similarly, we have, for 1 ≤ i ≤ n,∥∥∥∥ ∂

∂xi
Gn(x, ·)

∥∥∥∥ ≤ C ′(‖Xn‖+ 1),

where C ′ does not depend on k, and, thus,

1

‖x− x(k)‖

∣∣∣∣∣
n∑
i=1

〈
∂

∂xi
Gn(x, ), x

(k)
i − xi

〉∣∣∣∣∣ ≤ C ′(‖Xn‖+ 1)

∑n
i=1 ‖x

(k)
i − xi‖

‖x− x(k)‖

≤ C ′
√
n(‖Xn‖+ 1).

Since E[‖Xn‖] <∞, the result follows from Lebesgue’s dominated convergence theorem.

Using the lemma, we obtain that Fn is differentiable, and for 1 ≤ i ≤ n, the gradient with
respect to xi is given by

∂

∂xi
Fn(x1, . . . , xn) = −2E

[
(Xn − X̂x

n)1{X̂xn=xi+ξni }

]
+ 2εn

(
xi − f(tni )

)
, 1 ≤ i ≤ n.

Consequently, considering the constrained optimization problem, there exists a Lagrange mul-
tiplier λn ≥ 0 such that

−2E
[
(Xn − X̂n)1{X̂n=vni +ξni }

]
+ 2εn

(
vni − f(tni )

)
+ 2λn(n− 1)(vni − vni−1 − (vni+1 − vni )) = 0,

2 ≤ i ≤ n− 1,

−2E
[
(Xn − X̂n)1{X̂n=vn1 +ξn1 }

]
+ 2εn(vn1 − f(0))− 2λn(n− 1)(vn2 − vn1 ) = 0,

−2E
[
(Xn − X̂n)1{X̂n=vnn+ξnn}

]
+ 2εn(vnn − f(1)) + 2λn(n− 1)(vnn − vnn−1) = 0,
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that is,

−E
[
(Xn − X̂n)1{X̂n=vni +ξni }

]
+ εn

(
vni − f(tni )

)
+ λn(n− 1)(vni − vni−1 − (vni+1 − vni )) = 0,

2 ≤ i ≤ n− 1,

−E
[
(Xn − X̂n)1{X̂n=vn1 +ξn1 }

]
+ εn(vn1 − f(0))− λn(n− 1)(vn2 − vn1 ) = 0,

−E
[
(Xn − X̂n)1{X̂n=vnn+ξnn}

]
+ εn(vnn − f(1)) + λn(n− 1)(vnn − vnn−1) = 0.

λ is nonzero Assume that the extraction σ was chosen such that λ := limn→∞ λσ(n) ∈ R+

exists. Let us show that λ > 0. Let g : [0, 1]→ Rd be an absolutely continuous function such that∫ 1

0
‖g′(t)‖2dt <∞. For n ≥ 1, we may write

E[〈Xn − fn(t̂n), g(t̂n)〉]

=

n∑
i=1

〈
E
[
(Xn − X̂n + ξni )1{X̂n=vni +ξni }

]
, g(tni )

〉
=

n∑
i=1

〈
E
[
(Xn − X̂n)1{X̂n=vni +ξni }

]
, g(tni )

〉
+

n∑
i=1

〈
E
[
ξni 1{X̂n=vni +ξni }

]
, g(tni )

〉
=

n∑
i=1

〈
E
[
ξni 1{X̂n=vni +ξni }

]
, g(tni )

〉
+ εn

n∑
i=1

〈vni − f(tni ), g(tni )〉

+ λn(n− 1)

[
−〈vn2 − vn1 , g(0)〉+

n−1∑
i=2

〈vni − vni−1 − (vni+1 − vni ), g(tni )〉+ 〈vnn − vnn−1, g(1)〉

]

=

n∑
i=1

〈
E
[
ξni 1{X̂n=vni +ξni }

]
, g(tni )

〉
+ εn

n∑
i=1

〈vni − f(tni ), g(tni )〉

+ λn(n− 1)

[
n−2∑
i=1

〈vni+1 − vni , g(tni+1)〉 −
n−1∑
i=2

〈vni+1 − vni , g(tni )〉 − 〈vn2 − vn1 , g(0)〉

+ 〈vnn − vnn−1, g(1)〉

]

=

n∑
i=1

〈
E
[
ξni 1{X̂n=vni +ξni }

]
, g(tni )

〉
+ εn

n∑
i=1

〈vni − f(tni ), g(tni )〉+ λn(n− 1)

n−1∑
i=1

〈vni+1 − vni , g(tni+1)− g(tni )〉. (20)

Note first that ∣∣∣∣∣
n∑
i=1

〈
E
[
ξni 1{X̂n=vni +ξni }

]
, g(tni )

〉∣∣∣∣∣ ≤ ηn‖g‖∞
n∑
i=1

E
[
1{X̂n=vni +ξni }

]
= ηn‖g‖∞. (21)

Then, ∣∣∣∣∣εn
n∑
i=1

〈vni − f(tni ), g(tni )〉

∣∣∣∣∣ ≤ εn
n∑
i=1

‖vni − f(tni )‖‖g‖∞

≤ εn
( n∑
i=1

‖vni − f(tni )‖2
)1/2√

n‖g‖∞

≤
√
cεn‖g‖∞, (22)
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according to (17). Regarding the last term, we may write∣∣∣∣∣(n− 1)

n−1∑
i=1

〈vni+1 − vni , g(tni+1)− g(tni )〉

∣∣∣∣∣ ≤ (n− 1)

[
n−1∑
i=1

∥∥vni+1 − vni
∥∥2 n−1∑

i=1

∥∥g(tni+1)− g(tni )
∥∥2]1/2

≤ L
√
n− 1

[
n−1∑
i=1

∥∥∥∫ tni+1

tni

g′(t)dt
∥∥∥2]1/2

≤ L
[∫ 1

0

‖g′(t)‖2dt
]1/2

.

Thus, if h : Rd → Rd is continuously differentiable, we have

|E[〈Xn − fn(t̂n), h(fn(t̂n))〉]| ≤
√
cεn‖h‖∞ + λnL

[∫ 1

0

‖∇h(fn(t)), f ′n(t)‖2dt
]1/2

≤
√
cεn‖h‖∞ + λnL sup

t∈[0,1]
‖∇h(fn(t))‖

[∫ 1

0

‖f ′n(t)‖2dt
]1/2

≤
√
cεn‖h‖∞ + λnL

2 sup
t∈[0,1]

‖∇h(fn(t))‖.

Since εn → 0 and (fn)n≥1 is uniformly bounded, we see that λ = 0 would imply that

E[〈X − f(t̂), h(f(t̂))〉] = lim
n→∞

E[〈Xσ(n) − fσ(n)(t̂σ(n)), h(fσ(n)(t̂σ(n)))〉] = 0,

so that E[X − f(t̂)|f(t̂)] = 0 a.s. by density of continuously differentiable functions since h is an
arbitrary such function. This contradicts Lemma 3.2.

Finite curvature Let δm denote the Dirac mass at m. For every n ≥ 2, we define f ′′n on [0, 1]
by

f ′′n = (n− 1)

[
n−1∑
i=2

(vni+1 − vni − (vni − vni−1))δtni + (vn2 − vn1 )δ0 − (vnn − vnn−1)δ1

]
, (23)

which is a vector-valued signed measure. For an Rd-valued signed-measure ν = (ν1, . . . , νd) on
[0, 1], we set

‖ν‖ =
( d∑
j=1

‖νj‖2TV
)1/2

(24)

where ‖νj‖TV denotes the total variation norm of νi. We may write

λn × ‖f ′′n‖ = λn

n∑
i=1

‖f ′′n ({tni })‖

≤
n∑
i=1

∥∥∥E [(Xn − X̂n)1{X̂n=vni +ξni }

]∥∥∥+ εn

n∑
i=1

‖vni − f(tni )‖

≤ E[‖Xn − X̂n‖] + εn
√
n

(
n∑
i=1

‖vni − f(tni )‖2
)1/2

≤ Fn(vn1 , . . . , v
n
n)1/2 + εn

√
n

(
n∑
i=1

‖vni − f(tni )‖2
)1/2

Consequently, using inequalities (13) and (17), εn → 0 and limn→∞ λσ(n) = λ > 0, we obtain that
supn≥1 ‖f ′′σ(n)‖ < +∞, that is, the sequence of signed measures (f ′′σ(n))n≥1 is uniformly bounded
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in total variation norm. Hence, it is relatively compact for the topology induced by the bounded
Lipschitz norm defined for every signed measure µ by

‖µ‖BL = sup

{∥∥∥∫ g(x)µ(dx)
∥∥∥, ‖g‖∞ ≤ 1, sup

t 6=x

|g(x)− g(t)|
|x− t|

≤ 1

}
.

Let us show that the sequence (f ′′σ(n))n≥1 converges for the bounded Lipschitz norm to some
signed measure. Let ν be a limit point of (f ′′σ(n))n≥1. Up to extraction, we have, for every (s, t)

such that ν({s}) = ν({t}) = 0,

f ′′σ(n)((s, t])→ ν((s, t]), (25)

f ′′σ(n)([0, t])→ ν([0, t]), f ′′σ(n)([0, t))→ ν([0, t)). (26)

Since, for 0 ≤ s ≤ t < 1, f ′′n ((s, t]) = f ′n,r(t)− f ′n,r(s), we have, for 0 ≤ t < 1,

fn(t) = fn(0) + tf ′n,r(0) +

∫ t

0

f ′′n ((0, u])du.

Up to a proper extraction, by (25), all terms converge and we obtain, for 0 ≤ t < 1,

f(t) = f(0) + tf ′r(0) +

∫ t

0

ν((0, u])du,

Consequently, for 0 ≤ s ≤ t < 1,
ν((s, t]) = f ′r(t)− f ′r(s).

In other words, the signed measure ν is the second derivative of f , called hereafter f ′′.
Observe, on the definition (23), that f ′′n ([0, 1]) = 0, so that f ′′([0, 1]) = 0.
In the case CL = {ϕ : [0, 1] → Rd,L (ϕ) ≤ L}, for t ∈ [0, 1), f ′′n ([0, t]) = f ′n,r(t). Hence, using

(26), since t 7→ f ′′([0, t]) is right-continuous, f ′r(t) = f ′′([0, t]) for t ∈ [0, 1). Similarly, t 7→ f ′′([0, t))
is left-continuous and, for t ∈ (0, 1], f ′`(t) = f ′′([0, t)). So, we get

f ′′({0}) = f ′r(0), f ′′({1}) = −f ′`(1).

Recall that f is L-Lipschitz. Moreover, according to Remark 7, L (f) = L since G(L) > 0.
Thus, we have ‖f ′r(t)‖ = L dt−a.e., and, since f ′r is right-continuous, this implies that ‖f ′r(t)‖ = L
for all t ∈ [0, 1). Similarly, we obtain that ‖f ′`(t)‖ = L for all t ∈ (0, 1].

Finally, let us prove (3). Clearly, it suffices to consider the case where the test function g is
continuous. Using equation (20) and the upper bounds (21) and (22), we obtain, for n ≥ 2,∣∣∣∣∣E[〈Xn − fn(t̂n), g(t̂n)〉]− λn(n− 1)

n−1∑
i=1

〈vni+1 − vni , g(tni+1)− g(tni )〉

∣∣∣∣∣ ≤ (ηn + c
√
εn)‖g‖∞,

and besides

λn(n− 1)

n−1∑
i=1

〈vni+1 − vni , g(tni+1)− g(tni )〉 = −λn
∫
[0,1]

〈g(t), f ′′n (dt)〉.

Thus, passing to the limit, we see that f satisfies equation (3).
Finally, the uniqueness of λ follows from the uniqueness of X̂ (Proposition 3.1), and the fact

that

E[〈X − X̂, X̂〉] = λ

∫ 1

0

‖f ′r(s)‖2ds = λL2

obtained thanks to Equation (4) in Remark 3.
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4 An application: injectivity of f
In this section, we present an application of the formula (3) of Theorem 3.1. We will use this first
order condition to show in dimension d = 2 that an open optimal curve is injective, and a closed
optimal curve restricted to [0, 1) is injective , except in the case where its range is a segment.

Again, we consider L > 0 such that G(L) > 0 and a curve f ∈ CL such that ∆(f) = G(L), which
is L-Lipschitz. We let t̂ be defined as in Theorem 3.1. The random vector f(t̂) will sometimes be
denoted by X̂. Recall that ‖X − X̂‖ = mint∈[0,1] ‖X − f(t)‖ a.s. by Theorem 3.1.

To prove the injectivity of f , we will need several preliminary lemmas. Let us point out that
Lemma 4.1 to Lemma 4.5 below are valid for every d ≥ 1.

First of all, we state the next lemma, which will be useful in the sequel, providing a lower bound
on the curvature of any closed arc of f . Recall notation (24). For a Borel set A ⊂ [0, 1], f ′′A denotes
the vector-valued signed measure defined by f ′′A(B) = f ′′(A ∩B) for all Borel set B ⊂ [0, 1].

Lemma 4.1. If 0 ≤ a < b ≤ 1 and f(a) = f(b), then ‖f ′′(a,b]‖ ≥ L.

Proof of Lemma 4.1. Let us write

0 = f(b)− f(a) =

∫ b

a

f ′r(t)dt

=

∫ b

a

[
f ′r(0) +

∫
(0,t]

f ′′(ds)

]
dt = (b− a)f ′r(0) +

∫
(0,b]

(b− s ∨ a)f ′′(ds)

= (b− a)f ′r(0) + (b− a)f ′′((0, a]) +

∫
(a,b]

(b− s)f ′′(ds)

= (b− a)f ′r(a) +

∫
(a,b]

(b− s)f ′′(ds).

Thus,
∫
(a,b]

b−s
b−af

′′(ds) = −f ′r(a), which implies ‖f ′′(a,b]‖ ≥ ‖f
′
r(a)‖ = L.

As a first step toward injectivity, we now show that, if a point is multiple, it is only visited
finitely many times.

Lemma 4.2. For every t ∈ [0, 1], the set f−1({f(t)}) is finite.

Proof. Let t ∈ [0, 1]. Suppose that f−1({f(t)}) is infinite. Then, for all k ≥ 1, there exist
t0, t1, . . . , tk ∈ f−1({f(t)}) such that 0 ≤ t0 < t1 < · · · < tk ≤ 1. So, by Lemma 4.1, ‖f ′′‖ ≥∑k
i=1 ‖f ′′(ti−1,ti]

‖ ≥ kL, which contradicts the fact that f has finite curvature.

In the case CL = {ϕ : [0, 1]→ Rd,L (ϕ) ≤ L}, the endpoints of the curve f cannot be multiple
points.

Lemma 4.3. Let CL = {ϕ : [0, 1] → Rd,L (ϕ) ≤ L}. We have f−1({f(0)}) = {0} and
f−1({f(1)}) = {1}.

Proof. Observe that, by symmetry, we only need to prove the first statement since the second one
follows then by considering the curve t 7→ f(1−t). Assume that the set f−1({f(0)}) has cardinality
at least 2. Thanks to lemma 4.2, we may consider t0 = min{t > 0 : f(t) = f(0)}. For x ∈ f([0, 1]),
we set t̂(x) = inf{t ∈ [0, 1], f(t) = x}. For every ε ∈ (0, t0), we let

X̂ε = f
(
t̂ ∨ ε

)
1{t̂>0} + f(0)1{t̂=0}.

With this definition, the random vector X̂ε takes its values in f([ε, 1])∪ {f(0)}, that is in f([ε, 1])

since f(t0) = f(0) and ε < t0. Thus, X̂ε
1−ε takes its values in f([ε,1])

1−ε , which is the range of a curve
with length at most L. Consequently, by optimality of f , we have

E

[∥∥∥∥X − X̂ε

1− ε

∥∥∥∥2
]
≥ E[‖X − X̂‖2].
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Besides, we may write∥∥∥∥X − X̂ε

1− ε

∥∥∥∥2 =

∥∥∥∥X − X̂ + X̂ − X̂ε

1− ε

∥∥∥∥2
= ‖X − X̂‖2 +

∥∥∥∥X̂ − X̂ε

1− ε

∥∥∥∥2 + 2

〈
X − X̂, X̂ − X̂ε

1− ε

〉
= ‖X − X̂‖2 +

1

(1− ε)2
‖X̂ − X̂ε − εX̂‖2 +

2

1− ε

(
〈X − X̂, X̂ − X̂ε〉 − ε〈X − X̂, X̂〉

)
.

As ‖X̂ − X̂ε‖ ≤ Lε since f is L-Lipschitz, we get

E[‖X̂ − X̂ε − εX̂‖2] ≤ 2L2ε2 + 2ε2E[‖X̂‖2] = 2(L2 + E[‖X̂‖2])ε2.

Note that E[‖X̂‖2] < ∞ by the same argument than in (9). Moreover, thanks to Equation (4) in
Remark 3, we have

E[〈X − X̂, X̂〉] = λ

∫ 1

0

‖f ′r(s)‖2ds = λL2. (27)

Furthermore, X̂ − X̂ε = (f(t̂)− f(ε))1{0<t̂≤ε}, so that Equation (3) implies

E[〈X − X̂, X̂ − X̂ε〉] = −λ
∫
[0,1]

〈(f(t)− f(ε))1{0<t≤ε}, f
′′(dt)〉.

Hence,

|E[〈X − X̂, X̂ − X̂ε〉]| ≤ λ
d∑
j=1

∫
(0,ε]

|f j(t)− f j(ε)| |(f ′′)j |(dt)

≤ λLε
d∑
j=1

|(f ′′)j |((0, ε]),

where |(f ′′)j | stands for the total variation of the signed measure (f ′′)j . Finally, we obtain

E

[∥∥∥∥X − X̂ε

1− ε

∥∥∥∥2
]
≤ E

[
‖X − X̂‖2

]
+ 2(L2 + E[‖X̂‖2])ε2 + λLερ(ε)− 2ε

1− ε
λL2,

where ρ(ε) tends to 0 as ε→ 0. This inequality shows that, for ε small enough, E
[∥∥X − X̂ε

1−ε
∥∥2] <

E[‖X − X̂‖2], which contradicts the optimality of f .

For an open curve, there exists a multiple point which is the last multiple point.

Lemma 4.4. Let CL = {ϕ : [0, 1] → Rd,L (ϕ) ≤ L}. There exists δ > 0 such that for every
t ∈ [1− δ, 1], f−1({f(t)}) = {t}.

Proof. Otherwise, we can build sequences (tk)k≥1 and (sk)k≥1 such that tk → 1 and f(tk) = f(sk),
with sk 6= tk for all k ≥ 1. Up to extraction of a subsequence, we may assume that (sk) converges
to a limit s ∈ [0, 1]. Hence, we have f(s) = f(1), which implies s = 1 by Lemma 4.3. Up to another
extraction, we may consider that the intervals [sk∧tk, sk∨tk], k ≥ 1, are mutually disjoint. Finally,
using Lemma 4.1, we obtain

‖f ′′‖ ≥
∑
k≥1

‖f ′′(sk∧tk,sk∨tk]‖ =∞,

which yields a contradiction since we have shown that an optimal curve has finite curvature.

Now, we show that the two branches of the curve are necessarily tangent at a multiple point.
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Lemma 4.5. (i) If there exist 0 < t0 < t1 < 1 such that f(t0) = f(t1), then f ′`(t0) = f ′r(t0) =
−f ′r(t1) = −f ′`(t1).

(ii) In the case CL = {ϕ : [0, 1] → Rd,L (ϕ) ≤ L,ϕ(0) = ϕ(1)}, if there exists 0 < t < 1 such
that f(t) = f(0), then f ′`(t) = f ′r(t) = −f ′r(0) = −f ′`(1).

Proof. First, we show that point (ii) follows from point (i). Let t ∈ (0, 1) such that f(t) = f(0).
Define the curve g by g(s) = f(s + t/2) for s ∈ [0, 1 − t/2] and g(s) = f(s + t/2 − 1) for s ∈
[1 − t/2, 1]. Clearly, g is a closed curve, ∆(g) = ∆(f) and g is L-Lipschitz. Moreover, one has:
g(t/2) = g(1 − t/2), g′r(t/2) = f ′r(t), g′`(t/2) = f ′`(t), g

′
r(1 − t/2) = f ′r(0) and g′`(1 − t/2) = f ′`(1).

Consequently, if (i) holds true for g, one deduces (ii).
It remains to show point (i). Suppose that f ′`(t0) 6= f ′r(t0). Let γ ∈ (0, 1] and ε > 0. We

introduce the random vectors X̂0,γ = (1 + γ)X̂ and

X̂ε,γ = (1 + γ)
[
X̂1t̂∈[0,t0−ε)∪(t0+ε,1]∪{t0} + hε(t̂)1t̂∈[t0−ε,t0+ε]\{t0}

]
,

where hε(t) =
(
f(t0+ε)−f(t0−ε)

2ε (t− (t0 − ε)) + f(t0 − ε)
)
.

Let us write

E[‖X − X̂0,γ‖2] = E[‖X − X̂‖2] + E[‖X̂ − X̂0,γ‖2] + 2E[〈X − X̂, X̂ − X̂0,γ〉]
= E[‖X − X̂‖2] + γ2E[‖X̂‖2]− 2E[〈X − X̂, γX̂〉]
= E[‖X − X̂‖2] + γ2E[‖X̂‖2]− 2γλL2. (28)

For the last equality, we used equation (27).
Note that X̂ε,γ = X̂0,γ + (1 + γ)(hε(t̂)− f(t̂))1t̂∈[t0−ε,t0+ε]\{t0} and that ‖hε(t̂)− f(t̂)‖ ≤ 4εL. So,
we have

E[‖X − X̂ε,γ‖2] = E[‖X − X̂0,γ‖2] + (1 + γ)2E[‖hε(t̂)− f(t̂)‖21t̂∈[t0−ε,t0+ε]\{t0}]

+ 2(1 + γ)E[〈X − X̂0,γ , (hε(t̂)− f(t̂))1t̂∈[t0−ε,t0+ε]\{t0}〉]

= E[‖X − X̂0,γ‖2] +O(ε2) + o(ε). (29)

Indeed, P([t0 − ε, t0 + ε] \ {t0}) tends to 0 as ε tends to 0. Besides, the random vector X̂ε,γ is
taking its values in the range of a curve of length

Lε,γ := (1 + γ)(L(1− 2ε) + ‖f(t0 + ε)− f(t0 − ε)‖).

Yet, since f ′`(t0) 6= f ′r(t0), if ε is small enough, there exists α ∈ [0, 1) such that

‖f(t0 + ε)− f(t0 − ε)‖2 = ‖f(t0 + ε)− f(t0) + f(t0)− f(t0 − ε)‖2

= ε2
[∥∥∥f(t0 + ε)− f(t0)

ε

∥∥∥2 +
∥∥∥f(t0)− f(t0 − ε)

ε

∥∥∥2
+ 2
〈f(t0 + ε)− f(t0)

ε
,
f(t0)− f(t0 − ε)

ε

〉]
.

≤ ε2(2L2 + 2L2α).

Hence, ‖f(t0 + ε)− f(t0 − ε)‖ < εL
√

2(1 + α), and, thus,

Lε,γ ≤ (1 + γ)(L− 2εL+ εL
√

2(1 + α)) = (1 + γ)(L− ηε),

where η > 0. Let γ = ηε
L . Then, for ε small enough, we get Lε,γ ≤ L − (ηε)2

L < L and, using
equations (28) and (29), we have E[‖X − X̂ε,γ‖2] < E[‖X − X̂‖2]. This contradicts the optimality
of f . So, f ′`(t0) = f ′r(t0). Similarly, we obtain that f ′`(t1) = f ′r(t1). Finally, consider the curve g,
defined by

g(t) =

{
f(t) if t ∈ [0, t0] ∪ [t1, 1]

f(t0 + t1 − t) if t ∈ (t0, t1).
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This definition means that g has the same range as f but the arc between t0 and t1 is traveled
along in the reverse direction. Since g, having the same range and length as f , is an optimal curve,
which satisfies g(t0) = g(t1), we have g′`(t0) = g′r(t0) and g′`(t1) = g′r(t1). On the other hand, by
the definition of g, we know that f ′(t0) = g′`(t0) = −g′`(t1) and f ′(t1) = g′r(t1) = −g′r(t0). Hence,
f ′(t0) = −f ′(t1).

We introduce the set

D =
{
t ∈ [0, 1) | Card

(
f−1({f(t)}) ∩ [0, 1)

)
≥ 2
}
.

Lemma 4.6. If f(t), t ∈ (0, 1), is a multiple point of f : [0, 1] → R2, then t cannot be right- or
left-isolated:
for all t ∈ D ∩ (0, 1), for all ε > 0, (t, t+ ε) ∩D 6= ∅ and (t− ε, t) ∩D 6= ∅.

Proof. Let t0 ∈ D ∩ (0, 1). Assume that there exists ε > 0 such that (t0, t0 + ε) ∩ D = ∅ or
(t0− ε, t0)∩D = ∅. We will show that this leads to a contradiction. Without loss of generality, up
to considering t 7→ f(1− t), we assume that (t0 − ε, t0) ∩D = ∅. Let t1 ∈ [0, 1) such that t0 6= t1
and f(t0) = f(t1). By Lemma 4.5, one has f ′`(t0) = −f ′r(t1).

Let
y =

f ′r(t1)

L

and define the functions α and β by

α(t) = 〈f(t)− f(t1), y〉 for t ∈ [t1, t1 + ε)

β(t) = 〈f(t)− f(t0), y〉 for t ∈ (t0 − ε, t0].

Notice, since f(t0) = f(t1), that α and β are restrictions, to [t1, t1 + ε) and (t0− ε, t0] respectively,
of the same function. Nevertheless, this notation α, β were chosen for readability.

The functions α and β satisfy the following properties:

• α is right-differentiable and α′r(t) = 〈f ′r(t), y〉 for every t ∈ [t1, t1 + ε). Since α′r(t1) = L > 0
and α′r is right-continuous, there exists δ ∈ (0, ε), such that α′r(t) ≥ δL for every t ∈ [t1, t1+δ].

• β is left-differentiable and β′`(t) = 〈f ′`(t), y〉 for every t ∈ (t0−ε, t0]. Since β′`(t0) = −L < 0 and
β′` is left-continuous, there exists δ′ ∈ (0, ε) such that β′`(t) ≤ −δ′L for every t ∈ [t0 − δ′, t0].

Without loss of generality, we may assume that δ′ = δ, since it suffices to pick the smallest of
both values to have the properties on α′r and β′`. In particular, we see that

• α is a bijection from [t1, t1 + δ] onto its range α([t1, t1 + δ]) = [0, a], where a := α(t1 + δ) > 0,

• β is a bijection from [t0− δ, t0] onto its range β([t0− δ, t0]) = [0, b], where b := β(t0− δ) > 0.

We denote by α−1 and β−1 their inverse functions.
Let z ∈ R2 be such that ‖z‖ = 1 and 〈z, y〉 = 0. For every t ∈ (t1, α

−1(b)], we have 〈f(t) −
f(β−1(α(t))), y〉 = 0. Then, we may write f(t)− f(β−1(α(t))) = 〈f(t)− f(β−1(α(t))), z〉z. More-
over, for t ∈ (t1, α

−1(b)], since there are no further multiple point before t0, f(t)−f(β−1(α(t))) 6= 0.
Thus, there exists σ ∈ {−1, 1} such that

f(t)− f(β−1(α(t)))

‖f(t)− f(β−1(α(t)))‖
= σz.

We suppose, without loss of generality, that the vector z was chosen such that σ = 1. Now, let us
show that, for t ∈ (t1, α

−1(b)],

〈z, f ′r(t)〉 ≤
1

2λ
sup

t1≤s≤t
‖f(s)− f(β−1(α(s)))‖.

23



Since 〈z, f ′r(t1)〉 = 0, we have, according to Theorem 3.1,

〈z, f ′r(t)〉 = 〈z, f ′r(t)− f ′r(t1)〉

=

∫
(t1,t]

〈z, f ′′(ds)〉

= − 1

λ
E
[
〈X − f(t̂), z〉1{t1<t̂≤t}

]
= − 1

λ
E
[〈
X − f(t̂),

f(t̂)− f(β−1(α(t̂)))

‖f(t̂)− f(β−1(α(t̂)))‖

〉
1{t1<t̂≤t}

]
Besides, for t ∈ [0, 1], starting from

‖X − f(t)‖2 = ‖X − f(t̂)‖2 + ‖f(t̂)− f(t)‖2 + 2〈X − f(t̂), f(t̂)− f(t)〉,

we deduce, by optimality of t̂, the inequality

−〈X − f(t̂), f(t̂)− f(t)〉 ≤ 1

2
‖f(t̂)− f(t)‖2 a.s.

Hence, we obtain

〈z, f ′r(t)〉 ≤
1

2λ
E
[
‖f(t̂)− f(β−1(α(t̂)))‖1{t1<t̂≤t}

]
≤ 1

2λ
sup

t1<s≤t
‖f(s)− f(β−1(α(s)))‖. (30)

Similarly, we get, for every t ∈ [β−1(a), t0),

〈z, f ′`(t)〉 ≤
1

2λ
sup

t≤s<t0
‖f(s)− f(α−1(β(s)))‖. (31)

This may be seen for instance by considering the optimal curve parameterized in the reverse
direction t 7→ f(1 − t). For x ∈ [0, a ∧ b), let D(x) = f(α−1(x)) − f(β−1(x)). This function D is
right-differentiable and

D′r(x) =
f ′r(α

−1(x))

α′r(α
−1(x))

− f ′`(β
−1(x))

β′`(β
−1(x))

.

Moreover, α′r(α−1(x)) ≥ δL and −β′`(β−1(x)) ≥ δL, so that

〈D′r(x), z〉 ≤ 1

δL
(〈z, f ′r(α−1(x))〉+ 〈z, f ′`(β−1(x))〉)

≤ 1

δLλ
sup
u≤x
‖D(u)‖.

For the last inequality, we used the upper bounds (30) and (31) together with the monotony of α
and β. Observe, since z = D(x)

‖D(x)‖ , that 〈D
′
r(x), z〉 is the right-derivative of ‖D(x)‖. As D(0) = 0,

the Gronwall Lemma implies that D(x) = 0 for all x ∈ [0, a∧b), which yields a contradiction, since
the considered multiple point is supposed to be left-isolated.

We may now state the injectivity result in dimension 2, for open and closed curves.

Proposition 4.1. (i) If CL = {ϕ ∈ [0, 1]→ R2,L (ϕ) ≤ L}, then f is injective.

(ii) If CL = {ϕ ∈ [0, 1] → R2,L (ϕ) ≤ L,ϕ(0) = ϕ(1)}, then either f restricted to [0, 1) is
injective or f([0, 1]) is a segment.

Proof. (i) CL = {ϕ ∈ [0, 1]→ R2,L (ϕ) ≤ L}.
Thanks to Lemma 4.4, if f has multiple points, there exists a last multiple point. As such, this
multiple point is right-isolated. However, by Lemma 4.6, this cannot happen. So, f is injective.
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(ii) CL = {ϕ ∈ [0, 1]→ R2,L (ϕ) ≤ L,ϕ(0) = ϕ(1)}.
We assume that f restricted to [0, 1) is not injective. So, our aim is to prove that f([0, 1]) is a
segment. As f is supposed not to be injective, the set D = {t ∈ [0, 1) | Card([0, 1)∩f−1({f(t)})) ≥
2} is non-empty. Without loss of generality, we can assume that D∩(0, 1) 6= ∅. Indeed, if D = {0},
we can replace f by the curve t 7→ f((t+ 1/2) mod 1) for which D = {1/2}.

Let us show that D is dense in (0, 1). Proceeding by contradiction, we assume that there exists
a non-empty open interval (a, b) ⊂ (0, 1) such that D ∩ (a, b) = ∅. Since D ∩ (0, 1) 6= ∅, one has
D ∩ (0, a] 6= ∅ or D ∩ [b, 1) 6= ∅. Consider the case where D ∩ [b, 1) 6= ∅. Define β = inf(D ∩ [b, 1)).
There exist two sequences (tk)k≥1 ⊂ D and (sk)k≥1 ⊂ D such that tk ↓ β, f(tk) = f(sk) and
sk 6= tk for all k ≥ 1. Up to an extraction, sk converges to a limit s ∈ [0, 1]. If β 6= s then β ∈ D
is left-isolated which is impossible by Lemma 4.6. Thus s = β and consequently sk ≥ β for k
large enough. This yields f ′r(sk) → f ′r(β). Besides, for all k, f ′r(tk) → f ′r(β) and, by Lemma 4.5,
f ′r(tk) = −f ′r(sk), which contradicts the fact that f has speed L. The case where D ∩ (0, a] 6= ∅ is
similar.

The next step is to prove that the set [0, 1) \D is finite. Let t ∈ (0, 1) \D. Since D is dense,
there exists a sequence (tk)k≥1 ∈ D such that tk ↓ t. For every k ≥ 1, there exists sk 6= tk such
that f(tk) = f(sk). If s ∈ [0, 1] is a limit point of (sk), then f(t) = f(s) which implies t = s
since t /∈ D and t 6= 0. Therefore limk→∞ sk = t. Up to an extraction, we may assume that (sk)
converges increasingly or decreasingly to t. By Lemma 4.5, one has f ′(tk) = −f ′(sk) for k large
enough. If sk ↓ t, one obtains a contradiction: f ′r(t) = limk f

′
r(tk) = − limk f

′
r(sk) = −f ′r(t). Thus

sk ↑ t and one gets f ′r(t) = −f ′`(t). This means that f(t) is a cusp. Since ‖f ′′‖([0, 1]) < ∞, there
are only a finite number of such points.

Observe that, as a consequence of Lemma 4.5, for every t ∈ [0, 1), Card([0, 1)∩f−1({f(t)})) < 3.
Indeed, if a point has multiplicity at least 3, that is there exist 0 ≤ t1 < t2 < t3 < 1 such that
f(t1) = f(t2) = f(t3), then, on the one hand, f ′r(t1) = −f ′(t2) = −f ′(t3), and on the other hand,
f ′(t2) = −f ′(t3). Thus, one obtains again a contradiction: f ′r(t1) = f ′(t2) = f ′(t3) = 0. In other
words, D = {t ∈ [0, 1) | Card([0, 1) ∩ f−1({f(t)})) = 2}.

We introduce the function ϕ : [0, 1) → [0, 1), defined as follows: for t ∈ [0, 1) \D, set ϕ(t) = t
and for t ∈ D, set ϕ(t) = t′ where t′ ∈ f−1({f(t)}) and t′ /∈ t. Note that ϕ is an involution.

Let us show that the function ϕ is continuous on (0, 1)\{ϕ(0)}. First, observe that f is derivable
on D∩ (0, 1) by Lemma 4.5, and that f ′ is continuous on D∩ (0, 1) since f ′r is right-continuous and
f ′` is left-continuous. Let t ∈ (0, 1) such that t 6= ϕ(0) and let (tk)k≥1 be a sequence converging
to t. Let s ∈ [0, 1] be a limit point of (ϕ(tk)). Since f(tk) = f(ϕ(tk)), for all k ≥ 1, one has
f(s) = f(t). Necessarily, s ∈ (0, 1) since t 6= ϕ(0). If t /∈ D, one has s = t = ϕ(t). If t ∈ D, then
s ∈ {t, ϕ(t)}. Since D ∩ (0, 1) is open, tk ∈ D for k large enough, hence f ′(ϕ(tk)) = −f ′(tk) for k
large enough. Thus f ′(s) = −f ′(t) and consequently s = ϕ(t).

Let us show that ϕ is derivable on D∩(0, 1)\{ϕ(0)} and ϕ′(t) = −1 for all t ∈ D∩(0, 1)\{ϕ(0)}.
Let t ∈ D ∩ (0, 1), t 6= ϕ(0). For all h ∈ R such that |h| < t ∧ (1− t), we have

f(t+ h)− f(t) = f(ϕ(t+ h))− f(ϕ(t))

=

∫ ϕ(t+h)

ϕ(t)

f ′(s)ds

=
(
ϕ(t+ h)− ϕ(t)

) ∫ 1

0

f ′
(
ϕ(t) + u(ϕ(t+ h)− ϕ(t))

)
du.

Besides, since f ′ is continuous at the point ϕ(t) ∈ D ∩ (0, 1) and ϕ is continuous at the point
t, one has limh→0

∫ 1

0
f ′
(
ϕ(t) + u(ϕ(t + h) − ϕ(t))

)
du = f ′(ϕ(t)) = −f ′(t). One deduces that

limh→0

(
ϕ(t+ h)− ϕ(t)

)
/h = −1.

Let us prove that ϕ(ϕ(0)/2+ t) = ϕ(0)/2+1− t mod 1 for all t ∈ [−ϕ(0)/2, 1−ϕ(0)/2). From
the two previous steps, one deduces that if ϕ(0) = 0, ϕ(t) = 1 − t for all t ∈ (0, 1), as desired,
while, if ϕ(0) ∈ (0, 1), there exist two constants c1 and c2 such that

ϕ(t) = c1 − t ∀t ∈ (0, ϕ(0)), ϕ(t) = c2 − t ∀t ∈ (ϕ(0), 1).

It remains to prove that c1 = ϕ(0) and c2 = 1 + ϕ(0). As ϕ takes its values in [0, 1), one has
ϕ(0) ≤ c1 ≤ 1 and 1 ≤ c2 ≤ 1 + ϕ(0). Moreover, since ϕ is a bijection, c2 − t ≥ c1 for t ≥ ϕ(0) or
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c2 − t ≤ c1 − ϕ(0) for t ≥ ϕ(0), that is c2 − 1 ≥ c1 or c2 ≤ c1. In the first case, one gets c1 = ϕ(0)
and c2 = 1 + ϕ(0). In the second case, one gets c1 = c2 = 1, which is not possible: necessarily,
ϕ(0) = 1/2, since otherwise ϕ(1 − ϕ(0)) = ϕ(0) which yields 1 − ϕ(0) = 0, and we see that the
restriction of f to [0, 1/2] is a closed curve with the same range as f , hence f is not optimal.

Finally, define the curve f̃ by

f̃(t) = f
(
(ϕ(0)/2 + t) mod 1

)
.

This curve f̃ has the same range as f and, from the last step, f̃(t) = f̃(1− t) for all t ∈ [0, 1]. Let
us show that f([0, 1]) is a segment. Otherwise, the curve g defined by

g(t) = f̃(t) if t ∈ [0, 1/2], g(t) = f̃(1/2) + 2(t− 1/2)
(
f̃(1)− f̃(1/2)

)
if t ∈ [1/2, 1]

satisfies L (g) < L (f) and ∆(g) ≤ ∆(f), since f([0, 1]) = f̃([0, 1/2]), thus f cannot be optimal.

5 A particular case
In this section, we investigate the principal curve problem for a particular distribution, the uniform
distribution on a circle.

Proposition 5.1. Consider the unit circle centered at the origin with parameterization given by

g(t) = (cos(2πt), sin(2πt))

for t ∈ [0, 1]. Let U be a uniform random variable on [0, 1] and let X = g(U). Then, for every

L < 2π, the circle centered at the origin with radius
L

2π
is the unique closed principal curve with

length L for X.

Proof. Let f : [0, 1] → R2 be an optimal closed curve with length L. We denote by K the
convex hull of f([0, 1]). Since f([0, 1]) is compact, K is a compact convex set (consequence of
Caratheodory’s theorem; see, e.g., Hiriart-Urruty and Lemaréchal (2012)). Notice that f([0, 1])
is included in the unit disk: indeed, if not, since f is a closed curve, with L (f) < 2π, there
exist u1 and u2, such that f(u1) and f(u2) belong to the unit circle and the arc t ∈ (u1, u2) is
outside the disk, which is not optimal since replacing this arc by the corresponding unit circle arc
yields a better and shorter curve. In turn, the convex hull K is also included in the unit disk,
by convexity of the latter. Let πK : R2 → K denote the projection onto K et define the curve h
by h(t) = πK(g(t)) for t ∈ [0, 1]. By this definition of h as projection of the unit circle on a set
included in the unit disk containing f([0, 1]), we have

∆(h) ≤ ∆(f).

• Let us prove that h has length at most L. First, note that h has finite length, since πK is
Lipschitz. By properties of the projection on a closed convex set, we know that the set of
points of R2 projecting onto a given element of the boundary ∂K of K is a cone. This ensures
that h : [0, 1] → ∂K is onto, because a cone with vertex in the unit disk intersects the unit
circle g([0, 1]) at least once. More specifically, if the cone reduces to a half-line (degenerated
case), then it intersects g([0, 1]) exactly once. Otherwise, the cone is the region delimited
by two distinct half-lines with common origin in the disk, and, thus, contains an infinity of
such distinct half-lines, each of them intersecting g([0, 1]) once. Hence, for every element of
v ∈ h([0, 1]), there is either one t such that v = h(t), or an infinity.

We will use Cauchy-Crofton’s formula on the length of a parametric curve (for a proof, see,
e.g., Ayari and Dubuc (1997)). Let dr,θ denote the line with equation x cos θ + y sin θ = r.
For every parametric curve ϕ = (ϕ1, ϕ2), if

Nϕ(r, θ) = {t ∈ [0, 1], ϕ(t) ∈ dr,θ} = {t ∈ [0, 1], ϕ1(t) cos θ + ϕ2(t) sin θ = r},

26



then the length of ϕ is given by

1

4

∫ 2π

0

∫ ∞
−∞

Nϕ(r, θ)drdθ.

Let us compare Nh(r, θ) and Nf (r, θ) for (r, θ) ∈ R × [0, 2π]. To begin with, note that
Nh(r, θ) is finite almost everywhere since h has finite length. So, we need only consider
the cases where Nh(r, θ) is finite. This allows to exclude the points v ∈ h([0, 1]) such that
h−1({v}) is infinite, as well as the cases where a line dr,θ and h([0, 1]) have a whole segment in
common. Observing that, if the line dr,θ does not intersect h([0, 1]), then it does not intersect
f([0, 1]) either, since h([0, 1]) is the boundary of the convex hull of f([0, 1]), it remains to
look at the two following cases for comparing Nh(r, θ) and Nf (r, θ).

– If the line dr,θ intersects h([0, 1]) at a single point, then this point belongs to f([0, 1]).
– If the line dr,θ intersects h([0, 1]) at exactly two points, then f([0, 1]) crosses the line. If
f([0, 1]) were located on one side of the line, K were not the convex hull. Since f is a
closed curve, f([0, 1]) crosses the line at least twice.

So, Nh(r, θ) ≤ Nf (r, θ) almost everywhere, that is L (h) ≤ L (f) = L.

• Now, observe that h([0, 1]) ⊂ f([0, 1]). Indeed, otherwise, there exists t ∈ [0, 1] such that
h(t) /∈ f([0, 1]), which means that d(g(t), f([0, 1])) > d(g(t),K). By continuity this implies
that d(g(s), f([0, 1])) > d(g(s),K) for all s in a non-empty open set and one obtains that
∆(h) < ∆(f). By optimality of f , this is not possible since L (h) ≤ L.

• Since h([0, 1]) ⊂ f([0, 1]) and L (f) = L, to obtain that f([0, 1]) is the circle with center (0, 0)
and radius L/2π, it remains to show that h([0, 1]) is the circle with center (0, 0) and radius
L/2π. Let θ ∈ [0, 1] and let Aθ : R2 → R2 denote the rotation with center (0, 0) and angle
2πθ. We set hθ(t) = πAθ(K)(g(t)), for every t ∈ [0, 1]. Since hθ(t) = Aθ ◦ πK(A−1θ (g(t))) =
Aθ ◦ πK(g(t − θ)), hθ is a curve with same length as h. Moreover, Aθ(X) has the same
distribution as X, so that

E
[
‖X − πAθ(K)(X)‖2

]
= E

[
‖Aθ(X)− πAθ(K)(Aθ(X))‖2

]
= E

[
‖Aθ(X)−Aθ(πK(X))‖2

]
= E

[
‖X − πK(X)‖2

]
.

By strict convexity, we deduce from this equality that, if P
(
πAθ(K)(X) 6= πK(X)

)
> 0, then

E
[
‖X − (πK(X) + πAθ(K)(X))/2‖2

]
< ∆(h).

Since the random variable (πK(X) + πAθ(K)(X))/2 takes its values in the range of the
curve (h + hθ)/2 with length smaller than L (h) ≤ L, that is not possible. Consequently,
πAθ(K)(X) = πK(X) almost surely. In other words, πAθ(K)(g(t)) = h(t) for almost every
t ∈ [0, 1], and, thus, by continuity, hθ(t) = h(t) for every t ∈ [0, 1]. For t ∈ [0, 1], let θ = t.
We have h(t) = ht(t) = At ◦ πK(g(0)) = At(h(0)). Since ∆(f) = ∆(h) and L (h) ≤ L,
L (h) = L. Hence, h([0, 1]) is the circle with center (0, 0) and radius L/2π.

Remark 8. Observe that radial symmetry of a distribution is not sufficient to guarantee that a given
circle will be a constrained principal curve for this distribution. Let us exhibit two counterexamples.

• Let p > 0 and let U denote the uniform distribution on the unit circle. Consider a random
variable X taking its values in R2, distributed according to the mixture distribution

pδ(0,0) + (1− p)U ,

where δ(0,0) stands for the Dirac mass at the origin (0, 0). Then, for every circle with center
(0, 0) and radius r ∈ (0, 1], because of the atom at the origin, the projection of X on the
circle is not unique almost surely, which implies, thanks to Proposition 3.1 than none of these
circles may be a constrained principal curve for X.
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• We consider the case where X is a standard Gaussian random vector in R2. Lemma 3.2
ensures that the circle with center (0, 0) and radius E[‖X‖] =

√
π/2 cannot be a constrained

principal curve for X because it is self-consistent.
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