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Abstract. We study the novel interference mechanism of the long-range proximity effect in
superconductor/ferromagnet/superconductor (SFS) structures in the ballistic regime. Even a
small non-collinear magnetic domain near the center of a ferromagnetic weak link is shown
to restore the singlet supercurrent inherent to the normal metal. The underlying physics of
the effect is the magnetic scattering of the Cooper pair by the domain, which reverses total
momentum of the pair in the ferromagnet and thus compensates the phase gain before and after
the spin-flip scattering. The above phenomenon opens a way to easily control the properties of
SFS junctions and, inversely, to manipulate the magnetic moment via the Josephson current.

1. Introduction
Josephson junctions with a ferromagnetic (F) metal weak link is known to reveal a very strong
decrease of the critical current compared to a normal metal weak link (see Refs. [1, 2] for
review). This behavior is induced by the destructive effect of the exchange field h which leads
to phase difference γ ∼ L/ξh accumulated between the electron- and hole- like parts of the total
wave function while propagating along a path of the length L in the ferromagnet [3, 4]. Here
ξh = h̄VF /2h is a characteristic length determined by the exchange field, and VF is the Fermi
velocity. Measurable quantities should be calculated as the superpositions of fast oscillating
contributions eiγ from different trajectories and, thus, rapidly vanish with the increasing distance
L and displays a short-range (∼ ξh) behavior. It should be noted though, that a simple domain
structure consisting of two F layers with opposite orientations of exchange field cancels the phase
gain γ and suppresses the destructive effect of an exchange field [3, 5]. Another way to produce
long-range proximity effect in SFS (superconductor-ferromagnet-superconductor) weak links is a
composite F layers comprising three non-collinear domains, was suggested theoretically [6, 7, 8]
and realized in recent experiments [9, 10]. In such a case the triplet Cooper pairs of electrons
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with aligned spins (with equal-spin pairs) are generated by a thin ferromagnetic domain [11, 12],
located between superconducting lead and a thick central non-collinear domain. Since these
triplet pairs bind electrons with exactly the same de-Broglie wave length, they do not dephase,
thereby leading to long-range proximity effect.

Figure 1. The schematic sketch of the
SFS Josephson junction containing three
ferromagnetic layers (domains) with a
stepwise profile of the exchange field (1).
Linear quasiparticle trajectory is shown
by the red dashed line.

Here we suggest a new way of manipulating the Cooper pairs flow through a clean
ferromagnet, which consists in using the composite F layer with a thin non-collinear domain
d2 ∼ ξh ≪ d1, d3, located near the center of the F barrier (d1 ≃ d3), as shown in Fig. 1. In
contrast with the situation d1, d3 ∼ ξh ≪ d2 analyzed in Refs. [6, 7, 8], this setup does not
support the long-range triplet superconducting current. The thin central domain induces a
special scattering of Cooper pairs which corresponds to exchange spins of two electrons forming
a singlet Cooper pair (spin-flip scattering). Since modulus of the Fermi wave-vector for electrons
with a spin polarized along the field is larger |k↑| > |k↓| due to the ferromagnetic spin-splitting
effect, the pair have a non-zero total momentum h̄q = h̄k↑ − h̄k↓ (|q| ∼ 1/ξh). The spin-flip
scattering by the domain changes spin arrangement of a pair so that the new total momentum of
the Cooper pair h̄q′ is reversed: h̄q′ = −h̄q. At a symmetric position of the scatterer (d1 ≃ d3)
the total phase gain γ ∼ (d1 − d3)/ξh for a singlet Cooper pair should be cancelled and the
long-range singlet superconducting proximity in SFS link becomes possible.

The paper is organized as follows. In Sec. 2, we briefly discuss the basic equations and
methods used in calculations and calculate the long-range component of the Josephson current
at the first harmonics of the current–phase relation. We discuss our results in Sec. 4.

2. Model and Methods
Let us consider the Josephson transport through a ballistic SFS junction containing three
ferromagnetic layers (domains) with a stepwise profile of the exchange field

h(z) =

{
hx0, in domains d1, d3

h (x0 cosα+ y0 sinα) , in domain d2 ,
(1)

where α is the angle of the exchange field rotation in the central domain d2 (see Fig. 1). The
total length of the constriction d = d1+d2+d3 is assumed to be large compared to the magnetic
coherence length ξh = h̄VF /2h: d ≫ ξh. Here we consider the limit of the short junction d ≪ ξn,
where ξn = h̄VF /Tc is the coherence length of normal metal and Tc is the critical temperature
of the S layer.

The current–phase relation of SFS Josephson junction is determined by the quasiclassical
relation [4, 5]

I =
∑
n

In =
∑
n

an sinnφ
⟨(n,nF ) cosnγ⟩

⟨(n,nF )⟩
, (2)

where n is the unit vector normal to the junction plane, nF is the unit vector along the
trajectory, and an are the coefficients of the Fourier expansion for the current–phase relation for
superconductor–normal metal junction of the same geometry. The angular brackets denote the
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averaging over different quasiclassical trajectories characterized by a given angle θ and a certain
starting point at the superconductor surface, and for 3D constriction looks as

⟨(n,nF ) cos(nγ)⟩
⟨(n,nF )⟩

= 2

π/2∫
0

dθ sin θ cos θ cos(nγ) , (3)

where cos θ = (n,nF ). At temperatures T close to Tc the current–phase relation (2) is sinusoidal,
and the coefficient a1 is determined by the following simple relations [5]:

a1 =
eTc

8 h̄
N

(
∆

Tc

)2

. (4)

Here ∆ is the temperature dependent superconducting gap, The factor N is determined by the
number of transverse modes in the junction: N = s−1

0

∫
ds
∫
dnF (nF ,n) ∼ S/s0, where S is the

junction cross–section area, and s−1
0 = (kF /2π)

2, where kF is the Fermi momentum.

2.1. Transfer–matrix formalism for Eilenberger Equations
The phase gain γ(θ) along a trajectory s = snF (see Fig. 1) is determined by the singlet part fs
of the anomalous quasiclassical Green function f = fs + ftσ̂ taken at the right superconducting
electrode (s = sR = d/cosθ) [5]: cos γ = fs(sR). Here σ̂ is a Pauli matrix vector in the spin
space. The singlet (triplet) parts fs, (ft) of the Green function f satisfy the linearized Eilenberger
equations [6] written for zero Matsubara frequencies

−ih̄VF∂sfs + 2hft = 0 , −ih̄VF∂sft + 2fsh = 0 , (5)

with the boundary conditions fs(sL) = 1, ft(sL) = 0 at the left superconducting electrode
(s = sL = 0).

To consider the Josephson transport through ferromagnetic layer with an arbitrary non-
collinear distribution of the magnetizations M and the exchange field h it is convenient to
utilize the transfer–matrix formalism. For this, we need to solve the equations (5) for the
case when the quantization axis is taken arbitrarily in the ferromagnetic layer of a thickness
di = zi − zi−1. We assume that a quasiclassical trajectory s is characterized by a given angle θ
with respect to the z-axis and exchange field h = h (x0 cosαi + y0 sinαi) lie in the plane (x, y),
as shown in Fig. 1. The triplet part ft consists of two nonzero components and can be written
as ft = ftxx0 + ftyz0. Defining the transfer–matrix T̂αi(di, θ) that relates the components of

the Green function f̂(s) = {fs(s), ftx(s), fty(s)} at the left (s = si−1 = zi−1/ cos θ) and right
(s = si = zi/ cos θ) boundaries of the F layer,

f̂(si) = T̂αi(di, θ) f̂(si−1) . (6)

we get the following expression:

T̂αi(di, θ) =

 cos(qsdi) −i cosαi sin(qsdi) −i sinαi sin(qsdi)
−i cosαi sin(qsdi) sin2 αi + cos2 αi cos(qsdi) sinαi cosαi (cos(qsdi)− 1)
−i sinαi sin(qsdi) sinαi cosα (cos(qsdi)− 1) cos2 αi + sin2 αi cos(qsdi)

 ,

(7)
where q ≡ 1/ξh = 2h/h̄VF and sdi = di/ cos θ.
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2.2. The long-range phase gain
Solving the equations (5) by the transfer matrix method for the stepwise profile of the exchange

field (1), the anomalous quasiclassical Green function f̂(sR) = {fs(sR), ftx(sR), fty(sR)} at the
right superconducting electrode (s = sR = d/ cos θ) can be easily expressed via the boundary

conditions f̂(0) = (1, 0, 0) at the left superconducting electrode (s = 0) as follows:

f̂(sR) = T̂0(d3, θ) T̂α(d2, θ) T̂0(d1, θ)f̂(0) , (8)

where d = d1+d2+d3 is the total thickness of the ferromagnetic barrier, and the transfer–matrix
T̂α(di, θ) is determined by the expression (7). As a result, the singlet part fs(sR) responsible for
the Josephson current through the junction, can be written in the form:

cos γ = cos δ2 cos(δ1 + δ3)− cosα sin δ2 sin(δ1 + δ3)

− sin2 α sin δ1 sin δ3(1− cos δ2) , (9)

where cos θ = (n,nF ) and δi = di/ξh cos θ (i = 1, 2, 3). Introducing the shift z0 = (d1 − d3)/2 of
the central domain with respect to the weak link center it is convenient to rewrite the expression
(9) in the following equivalent form:

cos γ(θ) = b1 cos δd + b2 sin δd − b3 cos 2δz , (10)

where δd = d/ξh cos θ, δz = z0/ξh cos θ, and the coefficients bn (n = 1, 2, 3) don’t depend on the
total length of the junction d = d1 + d2 + d3:

b1 = cos2 δ2 + cosα sin2 δ2 + b3 cos δ2 ,

b2 = cos δ2 sin δ2 − cosα cos δ2 sin δ2 + b3 sin δ2 ,

b3 = sin2 α (1− cos δ2)/2 .

Averaging the expression (10) over the trajectory direction θ and neglecting the first two terms
proportional to ξh/d ≪ 1, which decrease just as for the case of homogeneous ballistic 3D SFS
junction, one arrives at the following expression

(cos γ)LR = −1

2
sin2 α(1− cos δ2) cos 2δz , (11)

3. Results
The long-range component of the Josephson current at the first harmonic is determined by the
relation:

ILR = ILRc sinφ = a1T
LR
1 sinφ , TLR

1 = 2

π/2∫
0

dθ sin θ cos θ (cos γ)LR . (12)

For a very thin central domain d2 ≪ ξh in the center of the NW (z0 = 0) one can easily estimate
from (11, 12) the critical current of the SFS junction

ILRc ≈ I0
2
sin2 α

(
d2
ξh

)2

ln
ξh
d2

, (13)

where I0 = (eTcN/8h̄) (∆/Tc)
2 – is the critical current of the SNS junction for zero exchange

field (γ = 0). Figure 2a shows the dependence of the maximal Josephson current ILRc = a1T
LR
1
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Figure 2. (a) The dependence of ILRc on the thickness d2 of the 90o domain (α = π/2) for
different values of the shift of the domain z0: z0 = 0 - red solid line; z0 = ξh - blue dashed line;
z0 = 3ξh - green dash-dotted line. Dotted line shows the value of Ic = max{I1} in absence of
domain d2. (b) The dependence of maximal Josephson current ILRc on the shift of the central
domain z0 for different values of the d2: d2 = ξh - blue dashed line; d2 = 2ξh - red solid line;
d2 = 4ξh - green dash-dotted line. We have set T = 0.9Tc; d = 50ξh [ I0 = (eTcN/8h̄) (∆/Tc)

2 ].

on the thickness d2 of the 90o domain (α = π/2) for different positions of the domain with
respect to the weak link center. The amplitude of ILR oscillates with varying the thickness
of the central domain d2 and has the first maximum at d2 ≃ 2.5ξh. Naturally, when the
central domain disappears (d2 → 0), the long-range effect vanishes. Comparison of the long-
range Josephson current ILR with the total supercurrent across the junction (2) shows that the
difference is negligible until the outer domains are long enough: d1, d3 ≫ ξh [13]. Figure 2b
shows the dependences of the maximal Josephson current ILRc on the position of the central
domain z0 for different values of the domain d2 thickness. We may see that the critical current
is very sensitive to the position of the central domain and the first zero of I1 occurs already
at z0 ≃ 0.5ξh. Interestingly, that the long-range supercurrent ILR is negative at a symmetric
position (z0 = 0) of the domain d2. This means that the spin-flip scatterer produces the π shift
effect and generates a π junction. With a displacement of the central domain the SFS junction
can be switched from π to 0 state.

3.1. Arbitrary ferromagnetic barrier
The transfer–matrix formalism can be easily generalized for a layered ferromagnetic barrier
with an arbitrary non-collinear distribution of the exchange field h which is described by the
dependence α(z). Splitting the barrier on N thin layers of the thickness di = zi−zi−1 (i = 1÷N)
one consider the exchange field to be constant inside each layer i. Application of the transfer–
matrix T̂αi(di, θ) (7) ”layer by layer” results in the following relation between the components of
the Green function f(0) and f(sR) at the left and right superconducting electrodes, respectively:

f̂(sR) = T̂αN (dN , θ) . . . T̂α2(d2, θ) T̂α1(d1, θ) f̂(0) . (14)

We apply the described transfer–matrix formalism to study the effect of smooth in the SFS
constriction shown in Fig. 1a of the Letter. As the dependence α(z) we use a draft model of
90o−domain described by Gaussian function:

α(z) =
π

2
exp

(
−(z − z0)

2

2w2

)
, (15)
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Figure 3. The dependence of ILRc on the shift z0 of the 90
o−domain (15) (α = π/2) for different

values of the width of the transition region w (solid red line): (a) w = 1; (b) w = 5. The blue
dashed line shows the dependence of ILRc on the shift z0 of stepwise 90

o−domain for comparison.
The dotted line shows the critical current Ic in the absence of the domain (d2 = 0). Inset shows
the coordinate dependence of the rotation angle α (15) (red solid line) and the in the relevant
stepwise domain (blue dashed line). We have set d = 20ξh; T = 0.9Tc [ I0 = (4eTcN/h̄) (∆/Tc)

2 ].

where z0 is the shift of the domain with respect to the weak link center, and w describes the width
of the domain. Figure 3 shows the dependences of the critical current of the SFS junction on
position z0 of the 90o−domain (15) for different values of the domain width w. We may see that
the long-range effect seems to be completely disappeared if w ≫ ξh (see Fig. 3c), but it is quite
robust for the domain width smaller than 2 − 3ξh and only weakly depends on the exact form
of the transition region. So, the smooth (on the scale ξh) profile of the magnetization decreases
the long-range effect and the proposed mechanism occurs to be most efficient for d2 ∼ ξh.

Certainly, the above long-range effect in the first harmonic describes the properties of the
SFS constriction if the contribution of higher harmonics in the current–phase relation (2) is
negligible. This approach is usually applicable everywhere, except very close to the 0 − π
transition (T1 = 0), because |an| (n ≥ 2) ≪ |a1| at T ≈ Tc. At this 0 − π transition the
contribution of the second harmonic I2 becomes dominant. For all considered cases we obtained
the positive amplitude of the second harmonic in the vicinity of these transitions, which means
that they occur discontiguously by a jump between 0 and π phase states [13].

4. Discussion
In order to elucidate the peculiarities of the Cooper pairs scattering with a spin-flop transition of
electrons it is convenient to introduce the new functions f± = fs± ftx which describes the pairs
with zero spin projection and a reversed spin arrangement. The equations (5) can be drastically
simplified if the direction of the exchange field coincides with a spin quantisation axis x:

∓ih̄VF∂sf± + 2hf± = 0 . (16)

In this case f±(sR) = e∓iqsRf±(0), fty(sR) = fty(0) = 0, ftz(sR) = ftz(0) = 0.
Calculating the superconducting current at the right electrode sR we readily see that it results
from the interference with the singlet component coming from the left electrode fs(sR) =
(f+(sR) + f−(sR)) /2 (triplet components are absent and irrelevant because the right electrode
provides only the singlet component). The oscillating factors e∓iqsR in f±(sR) produce, after
the averaging over the trajectories directions ( angle θ ), a strong damping of the critical current
compared to the normal metal (where these factors are absent).
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Now we may easily understand the mechanism of the singlet long-range proximity effect in the
presence of a small region with a non-collinear magnetization near the center of a ferromagnetic
weak link. Indeed after coming through the first F layer d1 an extra phase factor appears in
f± functions: f±(sd1) = e∓iqsd1fs(0). In the absence the middle layer d2, the f± at the right

electrode would be f±(sd1 + sd3) = e∓iq(sd1+sd3 )fs(0) and the oscillating factors will strongly
damp critical current. The additional non-collinear middle layer d2 (spin-flip scatterer) will mix
up the components f+ and f− so that

f±(sd1 + sd2) = a± e−iqsd1 + b± e+iqsd1 .

Then the resulting f± functions at the right electrode should be

f±(sd1 + sd2 + sd3) = a± e−iq(sd1±sd3 ) + b± e+iq(sd1∓sd3 )

and for d1 = d3 the oscillating factor at the first (second) term vanishes. This means the
emergence of the long-range singlet proximity effect discussed in the present paper. Note that
the additional noncollinear F layer d2 may strongly increase the critical current, provided that
it is placed at the center of the structure.

The very important property of the discussed system is that it provides a direct mechanism
of the coupling between supercurrent and magnetic moment, similar to the situation discussed
in Refs. [14, 15]. Since the long-range critical current ILRc depends on the profile of the
magnetization, the superconducting current acts as a direct driving force on the magnetic
moment and can change its orientation. Inversely, the precession of the magnetic moment
shall modulate the critical current.

To summarize, we studied the interference phenomena and long-range proximity effect
originated by the spin-exchange scattering in ferromagnetic ballistic weak link. In contrast
to the widely discussed triplet long-range proximity effect we elucidate a new singlet long-range
proximity effect. We demonstrated that this phenomenon provides an efficient way to control the
Josephson current and to couple it with a magnetic moment. This offers the means for spintronic
manipulation of superconducting weak links by external magnetic inhomogeneity located on a
submicron length scale [13].
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