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Abstract. Water Distribution Systems (WDSs) are constantly exposed to deliberate or accidental contaminations or may 

undergo a partially or full system collapse. In this paper we present the goals and preliminary results of the French-German 

project ResiWater (2016).  The project ResiWater aims to develop tools to prepare water utilities for crisis management and 

enhance their resilience with regards to three specific case studies: collapse of WDS, water quality deterioration and cascade 

effects between water, energy and IT infrastructures. 

1 Introduction 

Water Distribution Systems (WDSs) are critical infrastructures that may fail to distribute drinking water of adequate quantity 

and quality.  Given their distributed topology and interconnectivity with other infrastructure systems, such as power supply 

and telecommunication, WDSs are exposed to a variety of risks including terrorist attacks, natural hazards and widespread 

technical failures that may be caused by cascade effects. ResiWater aims to develop tools to prepare water utilities for crisis 

management and enhance their resilience with regards to three realistic case studies: collapse of WDS, water quality 

deterioration and cascade effects between water, energy and IT infrastructures. For its realization, four main objectives have 

been defined:  

1.1 Innovative water quality and flow sensors and secure sensor networks 

Possible improvements will be studied by the extended usage of low cost flow and water quality sensors. Innovative and 

more sophisticated sensor systems will be also investigated in terms of their potential to increase the resilience of WDS. 

1.2 Enhanced self-learning Monitoring and Event Detection Methods 

Enhanced self-learning monitoring and event detection methods, which can be applied to a large number of sensors in the 

network, will be developed.  The module will be able to recognize and adapt to changing operation modes (short-term and 

long-term) of the WDS. 
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1.3 Robust hydraulic Simulation Methods and Training Simulator 

Dealing with extreme situations and their impact on technical infrastructure requires the use of simulation and planning 

software solutions that are much more robust and reliable than available hydraulic modelling packages.  Existing hydraulic 

simulation models often fail to give realistic solutions and model uncertainty is not considered. Therefore, one main 

objective of the project is the improvement of existing simulation models that focuses on robust calculation of systems under 

abnormal, extreme operational conditions. 

1.4 Tools for Assessing WDS Vulnerability, Resilience and Robustness and Decision Support for Design 

Tools for the assessment of global vulnerability and resilience will be developed. The new developments will be investigated 

and evaluated by means of real-world use cases.  The use cases are structured with respect to (1) partial system collapse, (2) 

water quality deterioration and (3) cascade effects by manipulation and accidental failures of IT and/or power supply.  The 

specific threats are defined by the partner water utilities Berliner Wasserbetriebe (Germany), EMS (Strasbourg, France) and 

Veolia Eau d’Ile de France (around Paris, France).  Additionally, experiments will be conducted at TZW (Dresden, 

Germany) with test platform facilities and also on the private water network at CEA/DAM (Gramat, France).  The R&D work 

is accompanied by socio-economic studies ensuring, amongst others, that the privacy and the freedom of the citizens are not 

compromised.  

In the following, we develop further each of the four work packages that were defined in the project and the relevance for 

reaching the increased resilience for the project case studies.  

2 Water quality sensors and flow measurements 

For a better management of networks for the routine status as well as for accidents or CBRN attacks, online information of 

water quantity and quality of the whole WDS is needed, i.e. a higher number of sensors has to be installed (Aisopou et al., 

2012). To overcome the limitation of sensor placement through monetary restrictions low cost products are available. 

However, the performance of such low cost products for an online and long term running is unknown. In this project, non-

specific multi-probe sensors are used together with spectroscopic sensors, biosensors and accurate flow metering systems. 

2.1 Spectroscopic sensors 

Spectroscopic sensors become more relevant due to their ability to detect a broad range of contaminants (see Table 1). 

Routine and test equipment is available for UV-VIS1 absorption and fluorescence, the mid and near infrared including 

Raman-spectroscopy as well as flow cytometry (Wagner, 2014). NMR2 techniques are in designing phase (Maiwald, 2011). 

These spectrometers are small, robust and produce colossal data sets (in frequency spectrum). However, the assessment and 

interpretation of this spectrum data is a challenge up to now. With the appropriate interpretation, chemical-structural 

knowledge can be obtained, see e.g. the detection of single compounds as pesticides and pharmaceuticals as well as algal-

like toxins (Weingartner et al., 2010). A decisive higher quality level can be reached by combination of “classical” 

physicochemical sensors with spectroscopic sensors (Whittle et al., 2013). 

                                                             
1 Ultraviolet–visible spectroscopy or ultraviolet-visible spectrophotometry (UV-Vis or UV/Vis) refers to absorption spectroscopy or 
reflectance spectroscopy in the ultraviolet-visible spectral region. 
2 Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy, is a research technique that exploits the 
magnetic properties of certain atomic nuclei. This type of spectroscopy determines the physical and chemical properties of atoms or the 
molecules in which they are contained. 
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2.2 Biological Sensors 

Biological Sensors (biosensors) use organisms (e.g. bacteria, daphnia) and evaluate characteristic properties of the organisms 

(e.g. fluorescence or motion pattern). Changes of these properties indicate a change in water quality. The benefit of 

biosensors is that they detect a broad range of hazardous changes in the water quality in a very short time (some systems 

within a few minutes). Currently, there are worldwide only a few biological sensors available that are capable to measure a 

broad spectrum of toxic components in drinking water online (e.g. DaphToxII of bbe moldaenke, MicroTox CTM of 

ModernWater, iToxControl of microLAN). All these systems have the drawback that the maintenance effort is very high and 

consequently, the systems are not well suited for an operation in the drinking water network. 

The partners Fraunhofer IOSB and IGB have developed a prototype of a biological sensor system (Bernard et al., 2012), see 

Figure 1, which has the potential for a fully automated system and hence can be installed even directly in the water supply 

network. The sensitivity of the AquaBioTox for a wide spectrum of substances and concentrations has been proved (Bernard 

et al., 2011, see also Table 1). During the project, the AquaBioTox prototype shall be fully automated, enabling its 

installation in the pipe network. 

Table 1: Capability of different sensors for the detection of different classes of substances in drinking water 

 
 

 
Figure 1: Prototype of biosensor AquaBioTox. 

 

2.3 Flow Measurement 

The most currently monitoring parameter is the flow rate and several devices end technologies are available and the 

uncertainties well known (Furuichi, 2013). For economic reasons, mostly simple devices are installed, e.g. electromagnetic 

insertion flow meters. The accuracy depends on the precise knowledge of the pipe diameter, which is needed for calculation 

of the volume flow. However, the inner pipe diameter is very often not precisely known. Currently, no method exists to 

obtain the wet section from the inside of the flow, giving the best way to minimize uncertainties on flow.  
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Sensors, sensor data as well as the communication network of WDS have become an increased target from the cyber space in 

recent years. Thus, the project investigates the impact and the risk of cyber incidences and develops new concepts for 

security and authentication of sensor networks in water supply. 

3 Monitoring and event detection in WDSs 

Monitoring of the dynamic state of WDSs is mainly based on sensor data of the hydraulic state (pressure and flow velocity). 

In contrary, water quality is mainly monitored at the waterworks. This is done by enhanced online sensors (e.g. Fish 

toximeter, spectroscopic sensors) as well as by a set of physicochemical sensors. Due to the availability of new low cost 

sensors, actually more and more water quality sensors are installed in WDSs. However, up to now at the water utilities, 

alarms are generated mostly based on simple threshold algorithms.  

Since several years, data-driven approaches are available for the alarm generation based on physicochemical water quality 

sensors. However, these approaches are focused on the evaluation of sensors at single stations in the WDS: e.g. Murray et al. 

(2010) proposed the event detection software CANARY. Other academic approaches exist (e.g. Arad et al., 2012, Oliker and 

Ostfeld, 2012). Still, all proposed approaches have not been widely applied in water distribution networks. This is mainly 

caused by the fact that the parameterization and launch of these tools is very complex and time consuming. Therefore, within 

the project SMaRT-OnlineWDN (Bernard et al., 2013) the partner IOSB has developed a new, easy-to-parameterize event 

detection module (Kühnert et al., 2014).  

Another issue, which is not addressed sufficiently in existing event detection tools (but is addressed in the project), is the 

adaptation to changing operation modes of WDSs. Both, short-term changes due to operational measures and long-term 

changes and drifts occur in WDSs. Obviously, for a self-learning approach, it is necessary to cope with these short-term and 

long-term changes. The paper proposed by Rafika et al. (2016) is a practical methodology designed as a preprocessing step 

for early warning systems. This approach aims automatically to extract operational profiles revealing distinct states of a 

hydraulic behavior into a WDN. Experimental results are provided by Veolia Eau d’Ile de France. Alternative machine-

learning algorithms are available from academic research to address this issue (e.g. Banko et al., 2011, Vieira and Nehmzow, 

2005).  

4. Robust hydraulic simulation models and training simulator 

Robustness of hydraulic simulation models includes stable convergence of the iterative solution for all kind of loading and 

operational conditions. Existing software is developed for simulation of “normal” operational conditions resulting in a well-

posed system of nonlinear equations. However, failure of one or more important components of the supply system may result 

in decomposition of the network and ill-posedness of the system of equations leading to non-convergence of the iterative 

calculation. Examples are reported in literature (e.g. Deuerlein et al., 2012) and can be easily reviewed by using the open 

source software EPANET. Especially, pressure deficient conditions and the consideration of pumps and control devices such 

as flow and pressure controlling valves still cause solvers to fail to converge (Braun et al., 2016a). Although there are 

promising approaches for tackling that problem (Deuerlein et al., 2009; Piller and van Zyl, 2014), when the system differs 

greatly from the normal operational state, existing software packages are not applicable. In this project, an optimisation 

framework was developed that enables the fast and robust solving of a range of algorithms for the pressure-driven modelling 

(PDM) system of equations (see: Elhay et al., 2015). It is being extended for incorporation of control valves. 

Network parameters that are used in hydraulic and transport models are often rough estimates because there is a significant 

uncertainty in nodal demand, leakage, pipe roughness, valve statuses and diameter input parameters. The measurement 

values (pressure, flow, tank level, concentration, conductivity, etc.) may be used to calibrate the parameters of both the 
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hydraulic and the transport models, and to estimate the unknown state of the network (Piller et al., 2010). The proper choice 

of the sensor system must ensure observability of the network but also prevent small errors in measurement resulting in 

incorrect estimations of the parameters (Piller et al., 1999). There exist methods to calibrate the parameters, but no tool exists 

that gives as an output the uncertainty of prediction. The model uncertainty issue has been addressed in the project (Braun et 

al., 2016b; Piller et al., 2016) by use of polynomial chaos and sensitivities. 

5 Vulnerability and resilience analysis of WDS 

5.1 Vulnerability 

Vulnerability analysis permits assessing the criticality of a system to a potential threat. Action can concern prevention 

(reduction of the probability of occurrence) or the protection (reduction of the seriousness or impact). The definition of 

hydraulic reliability may be found in Bao and Mays (1990), or early-warning detection vulnerability indexes are given in 

Ostfeld et al. (2008). New vulnerability indices, which are more robust and allow evaluation of contamination mitigation, 

have been proposed in SecurEau (2016) and SMaRT-OnlineWDN (2016), such as the average number of contaminated 

connections and the contaminated inner surface of pipes following a targeted contamination event set. Partner CEA/DAM is 

involved in global vulnerability assessment methodologies through various projects (FR ANR DEMOCRITE, EU FP7 

CIPRNet and PRECDICT), including the description of network vulnerability depending on the definition of network loss-

of-functions and vulnerability of interdependent critical infrastructures. These tools are designed to be used with GIS 

(Geographic Information System) data, such as population density or network service areas.  

External vulnerability on consumers but also on the natural environment and human activities are also taken into account and 

will be implemented within a cost benefit analysis on resilience scenarios, using accountancy and economic approaches. 

5.2 Resilience 

Infrastructure Resilience is the ability to gracefully degrade and subsequently recover from a potentially catastrophic 

disturbance that is internal or external in origin (Lansey, 2012). Mechanical or pipe failures, power outage, catastrophic 

natural events are examples of abnormal disturbances of a WDS. In literature, system functionality was mainly addressed in 

term of hydraulic capability (supplying a given desired flow rate). Water quality resilience still has to be developed. 

Resilience may also be perceived as a more general concept that includes Robustness, Redundancy, Resourcefulness and 

Rapidity (the four R’s of resilience and multi-hazard engineering, Bruneau et al. 2003). Moreover, this is a multi-disciplinary 

approach and comprises technical, organizational, social and economic aspects. 

 

In the project and for vulnerability, four components have been defined (physical, functional, system and external) and the 

approach is bottom-up and scenario-focused.  Resilience relies on three distinct capacities: absorptive, adaptive and 

restorative as in Francis and Bekera (2013). Sensors, sensor data as well as the communication network of WDS have 

become an increased target from the cyber space in recent years. Thus, the project investigates the impact and the risk of 

cyber incidences for security and authentication of sensor networks in water supply. 

Conclusion 

The project ResiWater will increase the resilience of water infrastructures by means of enhanced sensors and secure sensor 

networks, self-learning monitoring tools, robust simulation models and training simulator, vulnerability and resilience 

assessment tools. This includes the interdependencies between energy and communication infrastructure and the WDS. Thus 

the proposal takes into account: 
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ü New risks and solutions for increasing the resilience of water supply with a special focus on interoperability of 

smart networks in Germany and France; 

ü Solutions for the protection of water infrastructures, decentralized or remote sites for the production and distribution 

of water; 

ü Concepts and solutions for crisis management, taking into account societal, technical and organisational aspects, 

including enhanced preparedness and operational procedures, recovery from the outage and resulting cascading 

effects.  
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