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ABSTRACT

Equations for the wave-averaged three-dimensional momentum equations have been published in this

journal. It appears that these equations are not consistent with the known depth-integrated momentum

balance, especially over a sloping bottom. These equations should thus be considered with caution, because

they can produce erroneous flows, particularly outside of the surf zone. It is suggested that the inconsistency

in the equations may arise from the different averaging operators applied to the different terms of the mo-

mentum equation. It is concluded that other forms of the momentum equations, expressed in terms of the

quasi-Eulerian velocity, are better suited for three-dimensional modeling of wave–current interactions.

1. Introduction

The wave-averaged conservation of momentum can

take essentially two forms, one for the total momentum,

which includes the wave pseudomomentum (hereafter

‘‘wave momentum’’; see McIntyre 1981), and the other

for the mean flow momentum only. In terms of veloci-

ties, the first is associated with the Lagrangian velocity,

whereas the second is associated with a quasi-Eulerian

velocity introduced by Jenkins (1986). This is well known

for depth-integrated equations (Longuet-Higgins and

Stewart 1964; Garrett 1976; Smith 2006), but the vertical

profiles of the mass and momentum balances are more

complex. The pioneering effort of Mellor (2003, hereafter

M03) produced practical wave-averaged equations for the

total momentum that, in principle, may be used in prim-

itive equation models to investigate coastal flows, such as

the wave-driven circulations observed by Lentz et al.

(2008). The first formulation (M03) was slightly incon-

sistent because of the improper approximation of wave

motion with Airy wave theory. Indeed Airy theory is

appropriate for most applications, but, for the expres-

sion of radiation stresses in three dimensions, it pro-

duces errors at the leading order, however small the

slope may be. This question was discussed by Ardhuin

et al. (2008b, hereafter ARB08), and a correction was

given and verified. These authors acknowledged that

the corrected equations, using the proper approxima-

tion, are not well suited for practical applications be-

cause very complex wave models are required for the

correct estimation of the vertical fluxes of wave mo-

mentum, which are part of the fluxes of total momen-

tum. Indeed, going beyond Airy theory requires solving

Laplace’s equation, which usually entails using phase-

resolving models that couple various modes of motion

(Athanassoulis and Belibassakis 1999; Chandrasekera

and Cheung 2001). Such a model was used for wave

propagation only over a 20 km2 area around a submarine

canyon with only five modes (Magne et al. 2007), which

was already very costly in calculation time. Whereas the

number of modes could be limited with the different

choice of the vertical structure of the modes, ARB08

showed that the same model may need at least 10 modes

to converge close enough to the solution.
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Although M03 gave correct wave-forcing expressions—

in terms of velocity, pressure, and wave-induced dis-

placement, before any approximation—Mellor (2008,

hereafter M08) derived a new and different solution

from scratch. The two theories may be consistent over

a flat bottom, but they differ at their lowest order over

sloping bottoms, so that the M08 equations are likely to

be flawed, given the analysis of M03 by ARB08 and the

fact that their consistency was not verified numerically

over sloping bottoms.

Instead, M08 asserted that the equations are consis-

tent with the depth-integrated equations of Phillips

(1977). Further, about the test case proposed by ARB08,

M08 stated that the wave energy was unchanged along

the wave propagation and that the resulting wave forc-

ing should be uniform over the depth. Here, we show

that the M08 equations do not yield the known depth-

integrated equations (Phillips 1977) with a difference

that produces very different mean sea level variations

when waves propagate over a sloping bottom. As for the

test case proposed by ARB08, we show that a consistent

analysis should take into account the small but signifi-

cant change in wave energy due to shoaling. In the ab-

sence of dissipative processes, the M08 equations can

produce spurious velocities of at least 30 cm s21, with

1-m-high waves over a bottom slope on the order of 1%

in 4-m water depth.

2. Depth integration of the M08 equations

For simplicity we consider motions limited to a ver-

tical plane (x, z) with constant water density and no

Coriolis force, wind stress, or bottom friction. The wave-

averaged momentum equation in M08 takes the form

›U

›t
1

›U2

›x
1

›UW

›z
5 2g

›ĥ

›x
1 F, (1)

and the continuity equation is

›U

›x
1

›W

›z
5 0, (2)

where U and W are the Lagrangian mean velocity com-

ponents, which contain the current and Stokes drift ve-

locities; g is the acceleration due to gravity; and ĥ is the

time-averaged water level at the horizontal position x.

The correctness of Eq. (2) crucially depends on the

unity of the Jacobian of the averaging operator, which

is the case for M03 [for a discussion of this with the

generalized Lagrangian mean, see McIntyre (1981) and

Ardhuin et al. (2008a)]. The force given by M08 on the

right-hand side of (1) can be written as the sum

F 5 FM08
px 1 Fuu (3)

of a wave-induced pressure gradient,

FM08
px 5 2

›SM08
px

›x
5 2

›

›x
(ED 2 ~w2) (4)

’ 2
›

›x
(ED 2 kEFSCFSS), (5)

and the divergences of the horizontal flux of wave mo-

mentum,

Fuu 5 2
›Suu

›x
5 2

›~u2

›x
(6)

’2
›

›x
(kEFCCFCS), (7)

where E is the wave energy; k is the wavenumber; and

~u and ~w are the horizontal and vertical wave-induced

(orbital) velocities, respectively. Here, ED is defined by

a delta function, ED 5 d(z 2 ĥ)E/2: namely,

ED 5 0 if z 6¼ ĥ and

ðĥ 1

2h
ED dz 5

E

2
. (8)

Using the bottom elevation 2h and mean water depth

D 5 ĥ 1 h, the nondimensional functions FCC, FSS, and

FSC of kz and kD are

FCC 5
cosh(kz 1 kh)

cosh(kD)
, (9)

FSS 5
sinh(kz 1 kh)

sinh(kD)
, and (10)

FSC 5
sinh(kz 1 kh)

cosh(kD)
. (11)

Using the notations of Smith (2006), the depth-averaged

mass transport velocity is MT /D 5 1/D
Ð ĥ

2hU dz. The total

momentum MT, as defined by Phillips (1977), contains, by

definition, all the momentum in the water column, and

the vertical coordinate transform by M03 is a nice way

of distributing that momentum over the vertical to

obtain U. This momentum can be expressed as the sum

of a mean flow momentum Mm and a wave momentum

Mw, as further discussed by Garrett (1976) and Smith

(2006).

M08 correctly noted that

ðĥ

2h
(SM08

px 1 Suu)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
SM08

xx

dz 5 SP77
xx , (12)
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with SP77
xx given by Phillips [1977, Eq. (3.6.27)]. However,

for a depth-uniform U, the depth-integrated momentum

equation in Phillips [1977, Eq. (3.6.11)] is

›MT

›t
1

›

›x

MTMT

D

� �
5 2gD

›ĥ

›x
1

›

›x
SP77

xx . (13)

This is also discussed at length by Smith (2006). The

exact place of term MwMw/D inside or outside of the

radiation stresses is irrelevant for our discussion; fol-

lowing M03, we shall neglect it on the grounds that is

a fourth-order quantity, although this is not always a

good reason, as discussed by Smith (2006).

The forcing in the depth integration of (1) differs

from the forcing in (13), because the gradient is in-

side of the integral. We note that SM08
px (2h) 5 0, and,

in order to apply Leibniz’ rule, which is only valid for

continuous functions, we first approximate the delta

function by

ED 5 lim
K/‘

K

1 2 exp(2KD)

E

2
exp[K(z 2 ĥ)] (14)

and properly take the limit K / ‘ after computing the

integral. This function gives the expected integral E/2

when integrated from z 5 2h to z 5 ĥ, where D 5 h 1 ĥ,

and develops a singularity at z 5 2ĥ as K goes to in-

finity. For large enough K, we can take the approxima-

tion K/[1 2 exp(2KD)] ’ K.

We thus isolate the delta function,

ðĥ

2h

›SM08
xx

›x
dz 5

ðĥ

2h

›

›x
(SM08

xx 2 ED) dz 1

ðĥ

2h

›ED

›x
dz.

(15)

For the first term, we use Eq. (12) and Leibniz’s rule; for

the second term, we must be careful that ED is a function

of the x coordinate, not only via the wave energy E but

also via the mean sea level ĥ in eq. (14), hence,

ðĥ

2h

›SM08
xx

›x
dz 5

›

›x
SP77

xx 2
E

2

� �
2 SM08

uu (z 5 2h)
›h

›x

2 (SM08
xx 2 ED)jz5ĥ

›ĥ

›x
1

›

›x

E

2

� �

2

ðĥ

2h

E

2
K2›ĥ

›x
exp[K(z 2 ĥ)] dz, (16)

where the first line comes from the first term in the right-

hand side of Eq. (15) and the second line comes from the

second term. Collecting terms this gives

ðĥ

2h

›SM08
xx

›x
dz 5

›SP77
xx

›x
2 SM08

uu (z 5 2h)
›h

›x

2 (SM08
xx 2 ED)jz5ĥ

�

1 K
E

2
[1 2 exp(2KD)]

�
›ĥ

›x
. (17)

We thus have two extra terms compared to the Phillips

(1977) expression.

Because of the last term, this integral clearly goes to

infinity as K becomes very large, showing that the

equations are not well defined. We could stop there,

but this last term can be removed by redefining ED as

a delta function in sigma coordinates, which we shall

do here. In that case, the only significant extra term

is SM08
xx (z 52h)›h/›x 5 22kE(›h/›x)/sinh(2kD), which

can be dominant over a sloping bottom. As a result, the

momentum balance in M08, unlike M03, does not produce

the known setdown and setup. This is illustrated in Fig. 1.

We take the case proposed by ARB08 with steady

monochromatic waves shoaling on a slope without

breaking or bottom friction and for an inviscid fluid, con-

ditions in which exact numerical solutions are known.

The bottom shoals smoothly from a depth of D 5 6 m to

D 5 4 m. We added a symmetric slope back down to 6 m

to allow periodic boundary conditions if needed. For a

wave period of 5.24 s, the group velocity varies little from

4.89 to 4.64 m s21, giving a 2.7% increase of wave ampli-

tude on the shoal. Contrary to statements in M08, ›E/›x is

significant, with a 5.4% change of E over a few wavelengths.

FIG. 1. Mean sea surface elevation induced by monochromatic

waves propagating over the smooth bottom shown in Fig. 2, with

amplitude Hs 5 0.34 m and period T 5 5.24 s. The extra forcing

terms in Eq. (17) lead to an overestimation of the setdown by more

than 50% for this case.
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From the Eulerian analysis of that situation (e.g.,

Longuet-Higgins 1967), the mean water level should be

0.32 mm lower on the shoal (Fig. 1). Rivero and Arcilla

(1995) established that there is no other dynamical ef-

fect: a steady Eulerian mean current develops, compen-

sating for the divergence of the wave-induced mass

transport (see also ARB08).

3. Flows produced by the M08 equations

In the correct solution, because the relative variation

in phase speed is important, from 6.54 to 5.65 m s21, the

Stokes drift accelerates on the shoal. The Eulerian ve-

locity û is irrotational and thus nearly depth uniform, and

it compensates the Stokes drift divergence by a conver-

gence. The Lagrangian velocity U, shown in Fig. 2, is the

sum of the two steady velocity fields.

We now solve for the equations derived by M08.

The numerical solution is obtained by coupling the

WAVEWATCH III wave model (Tolman 2009), solv-

ing the phase-averaged wave action equation, and the

circulation Model for Applications at Regional Scales

(MARS3D, Lazure and Dumas 2008). This coupling

uses the generic coupler PALM (Buis et al. 2008). The

feedback from flow to waves is negligible here and was

thus turned off. MARS3D was implemented with 100

sigma levels regularly spaced and 5 active points in the

transversal y direction, with 2 extra wall points and 2

ghost points needed to define finite differences; it is thus

a real three-dimensional calculation, although the physi-

cal situation is two dimensional. There are 78 active

points in the x direction. The time step was set to 0.05 s

for tests with Hs 5 1.02 m (1 s for Hs 5 0.34 m). For

simplicity, the wave model forcing is updated at each time

step. We use Eq. (1) transformed to § coordinates, with §

defined by z 5 s(x, §, t) 5 ĥ 1 §D 1 ~s (M03),

›U

›t
1 U

›U

›x
1

W

D

›U

›§
5 F 2 g

›ĥ

›x
, (18)

where the advection terms are obtained by using Eq. (2).

The flow boundary conditions are open. The mono-

chromatic wave amplitude a 5 0.12 m translates into

a significant wave height Hs of 0.34 m for random waves

with the same energy. We also test the model with a 5

0.36 m (i.e., Hs 5 1.02 m), still far from the breaking

limit in 4-m depth.

The discontinuity of the vertical profile in the forcing

F, due to the ED term, is not easily ingested by the

numerical model and generates a strongly oscillating

velocity profile (Fig. 3). These oscillations are absent

at depths larger than 0.8 m, which is consistent with

the zero values of F below the surface. A realistic

constant viscosity Kz 5 2.8 � 1023 m2 s21 removes the

oscillations and stabilizes the numerical calculations.

However, this mixing only diffuses the negative term

2
Ð
›ED/›x dz 5 20:5›E/›x over the vertical. That term

is a source of momentum that produces velocities one

order of magnitude larger than the Stokes drift Us, with

an opposite sign (Fig. 3). Thus, the problem is not just

a question of delta function but one of a relatively large

and spurious source of momentum.

The spurious velocities given by M08 with a realistic

mixing are less for longer period waves: namely for

kD , 1 (Table 1). They are comparable with those

given by the M03 equations without mixing.

FIG. 2. Lagrangian velocity U for the inviscid sloping bottom case

with Hs 5 1.02 m and T 5 5.24 s, obtained from the quasi-Eulerian

analysis as U 5 û 1 Us. Contours are equally spaced from 20.01 to

0.025 m s21. The thick black line is the bottom elevation.

FIG. 3. Comparison of vertical profiles of U at x 5 200 m given

by different models: M08 without mixing (solid black line), M08

with mixing (dashed green line), and the exact solution (dashed

red line). The wave parameters are Hs 5 1.02 m and T 5 5.26 s.

All profiles are plotted after 6 min of time integration. The x axis

was clipped, and the maximum velocities with M08 reached

0.8 m s21.
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4. Conclusions

We showed that the equations derived by M08 are

inconsistent with the known depth-integrated momen-

tum balances in the presence of a sloping bottom. In the

absence of dissipation, a numerical integration of these

equation produce unrealistic surface elevations and cur-

rents. The currents may reach significant values for very

moderate waves, exceeding the expected results by one

order of magnitude. Although we did not discuss the

origin of the inconsistency, it appears that M08 used

a different averaging for the pressure gradient term and

for the advection terms of the same equation. We be-

lieve that this is the original reason for the problems

discussed here. The spurious velocities produced by M08

are likely to be dwarfed by the strong forcing imposed by

breaking waves in the surf zone. Nevertheless, we expect

that the M08 equations can produce large errors for

continental shelf applications, such as the investigation

of cross-shore transports outside of the surf zone. Al-

ternatively, equations for the quasi-Eulerian velocity as

derived by McWilliams et al. (2004) and ARB08 can be

used, which do not have such problems (Uchiyama et al.

2009). We thus encourage modelers of the coastal ocean

to turn to this other form of the momentum equation.
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TABLE 1. Model results with M08: surface velocity at x 5 200 m

(on the upslope) for different model settings. The settings corre-

sponding to the test in ARB08 are given in the second line. The

surface velocity values are given for the time t 5 900 s, except for

the case without mixing (t 5 360 s), which goes unstable earlier.

Hs (m) Tp (s) Kz (m2 s21) U (m s21)

1.02 5.6 0 0.6116

0.34 5.6 0 0.2127

0.34 13 0 0.3164

1.02 5.6 2.8 3 1023 20.1594

0.34 5.6 2.8 3 1023 20.0256

0.34 13 2.8 3 1023 20.0007
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