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HETEROGENEOUS DIELECTRIC PROPERTIES IN MEMS MODELS

PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

ABSTRACT. An idealized electrostatically actuated microelectromechanical system (MEMS) involving an

elastic plate with a heterogeneous dielectric material is considered. Starting from the electrostatic and me-

chanical energies, the governing evolution equations for the electrostatic potential and the plate deflection are

derived from the corresponding energy balance. This leads to a free boundary transmission problem due to a

jump of the dielectric permittivity across the interface separating elastic plate and free space. Reduced models

retaining the influence of the heterogeneity of the elastic plate under suitable assumptions are obtained when

either the elastic’s plate thickness or the aspect ratio of the device vanishes.

1. INTRODUCTION

Microelectromechanical systems (MEMS) are important parts in modern technology [31, 33]. In an

idealized setting, a electrostatically actuated MEMS device consists of a rigid conducting ground plate

above which an elastic plate, coated with a thin dielectric layer, is suspended. Holding the two plates at

different electrostatic potentials induces a Coulomb force across the device deforming the elastic plate,

thereby modifying the shape of the device and transforming electrostatic energy into mechanical energy.

The modeling of such an idealized MEMS involves in general the vertical deflection u of the elastic plate

and the electrostatic potential ψ in the device. More specifically, let us consider a rigid ground plate of

shape D ⊂ R
2 and an elastic plate with the same shape D at rest and uniform thickness d > 0 and being

made of a possibly non-uniform dielectric material. Denoting the vertical deflection of the bottom of the

elastic plate at a point x = (x1, x2) ∈ D by u = u(x), the deformed elastic plate is given by

Ω2(u) := {(x, z) ∈ D × R ; u(x) < z < u(x) + d} ,

so that its top surface is located at height z = u(x) + d, x ∈ D. The elastic plate being suspended at its

boundary has zero deflection there, that is, u(x) = 0 for x ∈ ∂D. As for the rigid ground plate of shape D,

it is located at z = −H and it is held at zero potential while the elastic plate is held at a constant potential

V > 0.

The region between the two plates is described by

Ω1(u) := {(x, z) ∈ D × R ; −H < z < u(x)} ,
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and separated from the elastic plate by the interface

Σ(u) := {(x, z) ∈ D × R ; z = u(x)} .

Due to the above described geometry of the MEMS under study, the electrostatic potential ψu in the device

is defined in a non-homogeneous medium which is endowed with the following properties: the medium or

vacuum filling the region Ω1(u) between the plates is assumed to have constant permittivityσ1 > 0 while the

dielectric properties are allowed to vary across the elastic plate material, a fact which is reflected by a non-

constant permittivity σ2 = σ2(x) (though independent of the vertical direction at this stage for simplicity).

Introducing the electrostatic potentials between the plates ψu,1 = ψu,1(x, z), (x, z) ∈ Ω1(u), and within the

elastic plate ψu,2 = ψu,2(x, z), (x, z) ∈ Ω2(u), the electrostatic potential ψu and the permittivity σ in the

device are given by

ψu :=

{

ψu,1 in Ω1(u) ,
ψu,2 in Ω2(u) ,

σ :=

{

σ1 in Ω1(u) ,
σ2 in Ω2(u) .

Since the electrostatic potential ψu is defined in the domain

Ω(u) := {(x, z) ∈ D × R ; −H < z < u(x) + d} = Ω1(u) ∪ Ω2(u) ∪ Σ(u) ,

which varies according to the deformation u, the definition of the former is obviously strongly sensitive

to the geometry of the latter. In particular, the permittivity σ features a jump at the interface Σ(u) that

changes its location with u. Moreover, the region Ω1(u) between the two plates is connected only when

the two plates remain separate, that is, as long as u(x) > −H for all x ∈ D. This corresponds to a

stable operating condition of the MEMS device. However, it is expected that there is a critical threshold

value for the applied voltage difference V above which the restoring elastic forces can no longer balance

the attractive electrostatic forces and the top plate “pulls in”, that is, sticks onto the ground plate. This

touchdown phenomenon manifests itself in a situation in which u(x) = −H for some x ∈ D. When the

thickness of the elastic plate is neglected, a touchdown leads to a breakdown of the model (or, alternatively,

in a singularity from a mathematical viewpoint) [4, 13, 17, 30, 31]. This, however, need not be the case for

plates with positive thickness as it then corresponds to a zipped state with the elastic plate lying directly on

the ground plate [16].

The first purpose of this work is to derive a mathematical model for the dynamics of the above described

MEMS device when the thickness of the elastic plate and hence its dielectric properties are explicitly taken

into account. The approach adopted herein is in accordance with [3, 7, 10, 18] and prescribes the dynamics

of u as the gradient flow of the total energy E(u) = Em(u) + Ee(u). It includes the mechanical energy

Em(u) :=
B

2

∫

D

|∆u|2 dx+
T

2

∫

D

|∇u|2 dx ,

where the first term accounts for plate bending with coefficient B ≥ 0, and the second term accounts for

stretching with coefficient T ≥ 0. For simplicity we restrict ourselves to vertical deflections and consider

only linear bending by neglecting curvature effects from the outset. Moreover, we refrain at this point
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from modeling the above mentioned zipped states and refer to the subsequent sections for this issue. The

electrostatic energy is given by

Ee(u) := −
1

2

∫

Ω(u)

σ|∇ψu|
2 d(x, z) ,

where the electrostatic potential ψu is the maximizer of the Dirichlet integral

−
1

2

∫

Ω(u)

σ|∇ϑ|2 d(x, z)

among functions ϑ ∈ H1(Ω(u)) satisfying appropriate boundary conditions (see Section 2) on ∂Ω(u).
The electrostatic energy Ee(u) then clearly depends on the deflection u not only through the domain of

integration Ω(u) but also through the implicit dependence of the electrostatic potential ψu on u. Since

the derivation of the corresponding mathematical model is based on the energy balance, it requires the

computation of the first variation δuE(u) = δuEm(u) + δuEe(u) of the total energy E(u) with respect to u.

The computation of δuEe(u) turns out to be quite involved as we shall see in Section 2 below. It yields the

electrostatic force Fe(u) exerted on the elastic plate in the form

Fe(u) := δuEe(u) = Fe,1(u) + Fe,2(u) (1.1a)

where

Fe,1(u)(x) := −
1

2

σ1 − σ2(x)

1 + |∇u(x)|2
F̃e,1(u)(x) , (1.1b)

with

F̃e,1(u)(x) :=
∣

∣

∣
∂zψu,2(x, u(x))∇u(x) +∇′ψu,2(x, u(x))

∣

∣

∣

2

+
(

∇′ψu,2(x, u(x)) · ∇
⊥u(x)

)2

+
σ2(x)

σ1

(

∂zψu,2(x, u(x))−∇u(x) · ∇′ψu,2(x, u(x))
)2

and

Fe,2(u)(x) :=
1

2
σ2(x) |∇ψu,2(x, u(x) + d)|2 , (1.1c)

where ∇′ := (∂x1
, ∂x2

), ∇⊥ := (∂x2
,−∂x1

). Let us point out here again that, besides the complexity of

the formula (1.1) giving the electrostatic force in terms of u and ψu, the electrostatic potential ψu itself

depends in an implicit and intricate way on the deflection u as it solves a transmission elliptic boundary

value problem on a domain which varies with respect to u. The precise equations are stated in the next

section, see (2.5).

If the thickness of the plate is neglected, that is, if d = 0, then ψu = ψu,1 and the corresponding

electrostatic force reduces to

Fe(u)(x) :=
1

2
σ1 |∇ψu(x, u(x))|

2
(1.2)

as already derived in [10, 21].
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A somewhat different approach is pursued in [30] where the electrostatic force Fe(u) is a priori assumed

to be proportional to the square of the gradient trace of the electrostatic potential on the elastic plate. More

precisely, if d > 0, then the electrostatic force is taken to be

Fe(u) := Fe,2(u) , (1.3)

where Fe,2(u) is defined in (1.1c), and if d = 0, then it is given by (1.2). Interestingly, both approaches give

rise to the same electrostatic force (1.2) when the thickness d of the elastic plate is neglected and taken to

be equal to zero. However, when the thickness is positive, the electrostatic force (1.1) includes additional

terms compared to (1.2), which are gathered in Fe,1(u) and stem from the discontinuity of the permittivity

across the interface Σ(u). Observe that Fe,1(u) is nonnegative in the physically relevant situation where

σ2 ≥ σ1.

Having the electrostatic force Fe(u) from (1.1) at hand we are in a position to write the force balance

which yields the evolution of the deflection u = u(t, x) in the form

α0∂
2
t u+ r∂tu+B∆2u− T∆u = −Fe(u) , x ∈ D , t > 0 . (1.4)

Here, α0∂
2
t u accounts for inertia forces, r∂tu is a damping force, and

B∆2u− T∆u = δuEm(u) . (1.5)

Consequently, the evolution of the elastic plate deflection u is given by a semilinear damped wave equation

(1.4) with a nonlocal source term involving, in particular, the square of the trace of the gradient of the

electrostatic potential, the latter being a solution to an elliptic transmission problem (see (2.5) below) on

a domain depending on u. Thus, in addition to a complicated expression for the electrostatic force Fe(u),
there is a strong coupling between the deflection u and the electrostatic potential ψu. To get a better insight

into the dynamics it is therefore of utmost importance to derive reduced models, which are more tractable

from an analytical point of view. A first step in this direction is to investigate the limiting behavior of

the model as the plate thickness d vanishes. In Section 3.1 we first consider the case where the dielectric

permittivity σ2 is of order 1 with respect to d. Amazingly, no influence of the permittivity σ2 is retained in

this limit. The model we end up with is just (1.4) with electrostatic force given by (1.2). This is in sharp

contrast to the second situation that we consider in Section 3.2 in which σ2 is of order d. If σ2 = dσ∗, we

find that the electrostatic force is then given by

Fe(u)(x) =
σ1
2
|∇ψu(x, u(x))|

2 − div
(

σ∗(x)(ψu(x, u(x))− V )2∇u(x)
)

+ σ∗(x)(1 + |∇u(x)|2)(ψu(x, u(x))− V )∂zψu(x, u(x)) .

In addition, the boundary value problem for the electrostatic potential ψu is of a different nature (see (3.17)

below for details). In both cases the models obtained in the limit d→ 0 are still rather complex.

Section 4 is then devoted to the classical vanishing aspect ratio limit which amounts to let H/diam(D)
go to zero [30]. This procedure allows one to express ψu as well as the electrostatic force Fe(u) explicitly

in terms of u. The vanishing aspect ratio model we thus obtain reads (after a suitable rescaling)

γ2∂2t u+ ∂tu+ β∆2u− τ∆u = −
λ

2(1 + u+ σ−1
2 )2

, x ∈ D , t > 0 . (1.6)
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In this situation, the pull-in instability occurs if u reaches the value −1 which is the vertical position of

the ground plate in rescaled variables. It is worth pointing out that this instability does not correspond to a

singularity in the electrostatic force when σ−1
2 > 0. This is consistent with the original model (1.4), where

the positive thickness of the plate prevents the occurrence of a singularity. Touchdown singularities can only

occur at points where the elastic plate is a perfect conductor meaning that σ2(x)
−1 = 0. This is contrary to

the widely used model derived in [30], where touchdown singularities may occur only at dielectric points.

2. MODEL

In this section we provide a detailed derivation of the equation (1.4) with electrostatic force given in (1.1)

and first recall the description of the device. We assume that the elastic plate is made of a dielectric material

and has a uniform thickness d > 0. Its shape is an open bounded domain D ⊂ R
2 with sufficiently smooth

boundary.1 The rigid ground plate is located at z = −H , while the elastic plate is

Ω2(u) := {(x, z) ∈ D × R ; u(x) < z < u(x) + d} ,

where u = u(x) denotes the deflection of the bottom of the elastic plate at a point x = (x1, x2) ∈ D. For

consistency of the model, we presuppose that u(x) > −H for x ∈ D. Since the elastic plate is suspended

above the ground plate, there is zero deflection

u(x) = 0 , x ∈ ∂D ,

at the boundary of D. If the plate is assumed to be clamped, then one requires in addition a vanishing

normal derivative

∂νu(x) = 0 , x ∈ ∂D ,

with ν denoting the outward unit normal on ∂D. The interface

Σ(u) := {(x, z) ∈ D × R ; z = u(x)}

separates the elastic plate Ω2(u) from the region Ω1(u) between the two plates, given by

Ω1(u) := {(x, z) ∈ D × R ; −H < z < u(x)} .

We set

Ω(u) := {(x, z) ∈ D × R ; −H < z < u(x) + d} = Ω1(u) ∪ Ω2(u) ∪ Σ(u)

and let

nΣ(u)(x) =
(−∇u(x), 1)
√

1 + |∇u(x)|2
, x ∈ D , (2.1)

denote the unit normal on the interface Σ(u) pointing into Ω2(u).
The top surface of the elastic plate is kept at a constant positive voltage value V while the ground plate

is kept at zero voltage. Let σ1 be the constant permittivity of the medium (or vacuum) filling the region

between the plates, and let σ2 be the permittivity of the plate material which we do not assume to be

1
D can also be an interval in R in the following and then x is a scalar.
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homogeneous in this paper. In fact, we assume that the dependence on the vertical direction (if any) involves

the relative position of the plate with respect to its deflection u, that is,

σ2(x, z) := σ∗(x, z − u(x)) , (x, z) ∈ Ω2(u) , (2.2)

where σ∗ is a function defined on D̄ × [0, d]. Given a pair of real-valued functions (ϑ1, ϑ2) with ϑj defined

on Ωj(u), j = 1, 2, we put

ϑ :=

{

ϑ1 in Ω1(u)
ϑ2 in Ω2(u)

, σ :=

{

σ1 in Ω1(u) ,
σ2 in Ω2(u) .

Also, for a function f = f(x, z) we slightly abuse notation by writing f [·] whenever the x-variable is

omitted, that is, for example f [u] = f(x, u(x)) and σ∗[z − u] = σ∗(x, z − u(x)).
To define the boundary conditions for the electrostatic potential we fix a smooth function

h : D̄ × (−H,∞)× (−H,∞) → R with h(x, w, w) = V , h(x,−H,w) = 0 (2.3a)

for (x, w) ∈ D̄ × (−H,∞) and define

hv(x, z) := h(x, z, v(x)) , (x, z) ∈ D̄ × (−H,∞) , (2.3b)

for a given function v : D̄ → (−H,∞).

2.1. Electrostatic Potential. We now introduce the functional

E(u, ϑ) := −
1

2

∫

Ω(u)

σ|∇ϑ|2 d(x, z)

for a sufficiently smooth deflection u : D̄ → (−H,∞) and ϑ ∈ hu+d + H1
0 (Ω(u)), where H1

0 (Ω(u))
denotes the subspace of the Sobolev space H1(Ω(u)) consisting of those functions with zero trace on the

boundary of Ω(u). The electrostatic potential ψu in Ω(u) is the maximizer of this functional with respect to

ϑ ∈ hu+d +H1
0 (Ω(u)). Then the electrostatic energy of the device is given by

Ee(u) := E(u, ψu) = −
1

2

∫

Ω(u)

σ|∇ψu|
2 d(x, z) . (2.4)

To derive the equations for the electrostatic potential ψu depending on the given deflection u, we use the

fact that it is a critical point of E(u, ϑ) with respect to ϑ. Letting φ ∈ C1
c (Ω(u)), we obtain from Gauss’

theorem

∂ϑE(u, ϑ)φ = −

∫

Ω(u)

σ∇ϑ · ∇φ d(x, z)

=

∫

Ω(u)

φ div (σ∇ϑ) d(x, z)−

∫

Σ(u)

φ Jσ∇ϑK · nΣ(u) dS ,

where JfK := f1−f2 stands for the jump across the interface Σ(u) of a function f defined in Ω1(u)∪Ω2(u).
Consequently, the electrostatic potential ψu for a given deflection u satisfies

div (σ∇ψu) = 0 in Ω(u) (2.5a)
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with transmission conditions on the interface Σ(u)

JψuK = Jσ∇ψuK · nΣ(u) = 0 on Σ(u) , (2.5b)

along with the boundary conditions

ψu = hu+d , (x, z) ∈ ∂Ω(u) , (2.5c)

with hu+d being defined in (2.3).

2.2. Electrostatic Force. We now derive the electrostatic force exerted on the elastic plate by computing

the first variation δuEe(u). Let a (smooth) deflection u : D̄ → R be fixed, vanishing on ∂D with u > −H
in D. Let ψu be the corresponding solution to (2.5) in Ω(u) and note that ψu depends non-locally on the

deflection u. Let v ∈ C∞
0 (D) and put us := u+ sv for s ∈ (−σ0, σ0), where σ0 is chosen small enough so

that us > −H in D for all s ∈ (−σ0, σ0). The goal is to compute

δuEe(u)v =
d

ds
Ee(u+ sv)|s=0 .

Since u is fixed throughout this section, we simply write ψ, Ω, Ω1, Ω2, and Σ instead of ψu, Ω(u), Ω1(u),
Ω2(u), and Σ(u), respectively. For s ∈ (−σ0, σ0), we introduce the transformation Φ(s) := (Φ1(s),Φ2(s))
with

Φ1(s)(x, z) :=

(

x, z + sv(x)
H + z

H + u(x)

)

, (x, z) ∈ Ω1 ,

Φ2(s)(x, z) := (x, z + sv(x)) , (x, z) ∈ Ω2 .

Note that

Ωℓ(us) = Φℓ(s)(Ωℓ) , ℓ = 1, 2 ,

and

det(∇Φ1(s)) = 1 +
sv

H + u
> 0 , det(∇Φ2(s)) = 1 .

Moreover,

∂sΦ1(0)(x, z) =

(

0,
v(x)(H + z)

H + u(x)

)

, (x, z) ∈ Ω1 , (2.6)

∂sΦ2(0)(x, z) = (0, v(x)) , (x, z) ∈ Ω2 . (2.7)

Let now ψ(s) be the solution to (2.5) in Ω(us), that is,

div (σ(s)∇ψ(s)) = 0 in Ω(us) , (2.8a)

Jψ(s)K = Jσ(s)∇ψ(s)K · nΣ(us) = 0 on Σ(us) , (2.8b)

ψ(s) = hus+d , (x, z) ∈ ∂Ω(us) , (2.8c)

where

σ(s)(x, z) :=







σ1 for (x, z) ∈ Ω1(us) ,

σ∗(x, z − us(x)) for (x, z) ∈ Ω2(us) .
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Then ψ(0) = ψ and σ(0) = σ. To compute the derivative with respect to s of

Ee(us) = −
1

2

∫

Ω(us)

σ(s)|∇ψ(s)|2 d(x, z)

we use the Reynolds transport theorem (e.g. see [2, XII.Theorem 2.11]) and obtain

d

ds
Ee(us)|s=0 =−

∫

Ω

[

σ∇ψ · ∇∂sψ(0) + div
(σ

2
|∇ψ|2∂sΦ(0)

)]

d(x, z)

−
1

2

∫

Ω

∂sσ(0)|∇ψ|
2 d(x, z) .

From Gauss’ theorem, (2.5), and the definition of s 7→ σ(s) it follows that

d

ds
Ee(us)|s=0 =−

∫

∂Ω

σ

(

∂sψ(0)∇ψ +
1

2
|∇ψ|2∂sΦ(0)

)

· n∂Ω dS

−

∫

Σ

r
σ∂sψ(0)∇ψ +

σ

2
|∇ψ|2∂sΦ(0)

z
· nΣ dS

+
1

2

∫

Ω2

v∂zσ∗[z − u]|∇ψ2|
2 d(x, z) .

(2.9)

Note that (2.3) and (2.8c) entail that ∂sψ(0) = 0 on the parts ∂D × [−H < z < u + d] and D × {−H}
of the boundary ∂Ω. Also, ∂sΦ(0) = 0 on D × {−H} and on ∂D × [−H < z < u+ d] (as v vanishes on

∂D). Thus, the corresponding boundary integrals vanish and (2.9) reduces to

d

ds
Ee(us)|s=0 =−

∫

[z=u+d]

σ

(

∂sψ(0)∇ψ +
1

2
|∇ψ|2∂sΦ(0)

)

· nΣ dS

−

∫

Σ

r
σ∂sψ(0)∇ψ +

σ

2
|∇ψ|2∂sΦ(0)

z
· nΣ dS

+
1

2

∫

Ω2

v∂zσ∗[z − u]|∇ψ2|
2 d(x, z) .

(2.10)

We now compute the first integral on the right-hand side of (2.10). To that end, we recall that

ψ(s)
(

x, us(x) + d
)

= V , x ∈ D ,

according to (2.3) and (2.8c), and thus

∂sψ(0)
(

x, u(x) + d
)

= −∂zψ
(

x, u(x) + d
)

v(x) , x ∈ D , (2.11)

and

∇′ψ2(x, u(x) + d) = −∂zψ2(x, u(x) + d)∇u(x) , x ∈ D . (2.12)
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From (2.7), (2.11), and (2.12) we obtain
∫

[z=u+d]

σ

(

∂sψ(0)∇ψ +
1

2
|∇ψ|2∂sΦ(0)

)

· nΣ dS

=

∫

D

σ∗[d]

(

1

2
|∇ψ2[u+ d]|2 + ∂zψ2[u+ d]∇u · ∇′ψ2[u+ d]

)

v dx

−

∫

D

σ∗[d]|∂zψ2[u+ d]|2v dx

= −
1

2

∫

D

σ∗[d]|∇ψ2[u+ d]|2v dx .

(2.13)

We next consider the second term on the right-hand side of (2.10) which involves an integral over Σ.

First note that (2.5b) implies

Jσ∂sψ(0)∇ψK · nΣ =
1

2
J∂sψ(0)K

(

σ1∇ψ1 + σ2∇ψ2

)

· nΣ on Σ ,

while differentiating (2.8b) with respect to s gives

J∂sψ(0)K = − J∂zψK v on Σ .

Hence,

Jσ∂sψ(0)∇ψK · nΣ = −
v

2
J∂zψK

(

σ1∇ψ1 + σ2∇ψ2

)

· nΣ

=
v

2

J∂zψK
√

1 + |∇u|2

(

σ1∇
′ψ1 + σ2∇

′ψ2

)

· ∇u

−
v

2

J∂zψK
√

1 + |∇u|2

(

σ1∂zψ1 + σ2∂zψ2

)

(2.14)

on Σ. Now, since (2.5b), after differentiating it with respect to x, implies

− J∂zψK∇u = J∇′ψK on Σ , (2.15)

while (2.6)-(2.7) entail
q
σ|∇ψ|2∂sΦ(0)

y
· nΣ =

v
√

1 + |∇u|2

q
σ|∇ψ|2

y
on Σ ,

it follows from (2.14) that
r
σ∂sψ(0)∇ψ +

σ

2
|∇ψ|2∂sΦ(0)

z
· nΣ

=
1

2

v
√

1 + |∇u|2

{

−
(

σ1∇
′ψ1 + σ2∇

′ψ2

)

J∇′ψK −
(

σ1∂zψ1 + σ2∂zψ2

)

J∂zψK
}

+
1

2

v
√

1 + |∇u|2

q
σ|∇ψ|2

y
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on Σ. From this we readily deduce that

r
σ∂sψ(0)∇ψ +

σ

2
|∇ψ|2∂sΦ(0)

z
· nΣ =

1

2

v
√

1 + |∇u|2
JσK∇ψ1 · ∇ψ2 (2.16)

on Σ. We finally derive an alternative expression for ∇ψ1 · ∇ψ2 on Σ. To this end note that we can express

(2.15) in the form

∇′ψ1 + ∂zψ1∇u = ∇′ψ2 + ∂zψ2∇u on Σ , (2.17)

while (2.5b) reads

σ1∂zψ1 − σ1∇u · ∇
′ψ1 = σ2∂zψ2 − σ2∇u · ∇

′ψ2 on Σ . (2.18)

Taking the inner product of (2.17) with σ1∇u, adding (2.18) to the resulting identity, and multiplying the

outcome by ∂zψ2, one obtains

σ1
(

1 + |∇u|2
)

∂zψ1∂zψ2 = JσK∂zψ2∇u · ∇
′ψ2 +

(

σ1|∇u|
2 + σ2

)

|∂zψ2|
2 (2.19)

on Σ. Next, we take the inner product of (2.17) with σ1∇
′ψ2, multiply (2.18) by ∇u · ∇′ψ2, and subtract

the resulting identities. This yields

σ1 (∇
′ψ1 · ∇

′ψ2 + (∇u · ∇′ψ1)(∇u · ∇
′ψ2))

= σ1|∇
′ψ2|

2 + σ2 (∇u · ∇
′ψ2)

2
+ JσK∂zψ2∇u · ∇

′ψ2

(2.20)

on Σ. One then easily checks that

(∇u · ∇′ψ1)(∇u · ∇
′ψ2) = |∇u|2∇′ψ1 · ∇

′ψ2 −
(

∇′ψ1 · ∇
⊥u
)(

∇′ψ2 · ∇
⊥u
)

,

where ∇⊥ := (∂x2
,−∂x1

). Since (2.17) implies ∇′ψ1 · ∇
⊥u = ∇′ψ2 · ∇

⊥u, we derive from (2.20) that

σ1
(

1 + |∇u|2
)

∇′ψ1 · ∇
′ψ2 = σ1

(

∇′ψ2 · ∇
⊥u
)2

+ σ1|∇
′ψ2|

2

+ σ2 (∇u · ∇
′ψ2)

2
+ JσK∂zψ2∇u · ∇

′ψ2

(2.21)

on Σ. Therefore, combining (2.19) and (2.21) we deduce that

σ1
(

1 + |∇u|2
)

∇ψ1 · ∇ψ2 = σ1
(

1 + |∇u|2
) (

∇′ψ1 · ∇
′ψ2 + ∂zψ1∂zψ2

)

= 2JσK∂zψ2∇u · ∇
′ψ2 +

(

σ1|∇u|
2 + σ2

)

|∂zψ2|
2

+ σ1
(

∇′ψ2 · ∇
⊥u
)2

+ σ1|∇
′ψ2|

2 + σ2 (∇u · ∇
′ψ2)

2

= σ1

(

|∂zψ2∇u+∇′ψ2|
2 +

(

∇′ψ2 · ∇
⊥u
)2
)

+ σ2 (∂zψ2 −∇u · ∇′ψ2)
2

(2.22)
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on Σ. Gathering (2.16) and (2.22) gives

∫

Σ

r
σ∂sψ(0)∇ψ +

σ

2
|∇ψ|2∂sΦ(0)

z
· nΣ dS

=
1

2

∫

D

vJσK
1 + |∇u|2

{

|∂zψ2[u]∇u+∇′ψ2[u]|
2 +

(

∇′ψ2[u] · ∇
⊥u
)2

+
σ2[u]

σ1
(∂zψ2[u]−∇u · ∇′ψ2[u])

2
}

dx .

(2.23)

Finally observe that

∫

Ω2

∂zσ∗[z − u]|∇ψ2|
2v d(x, z) =

∫

D

v

∫ u+d

u

∂zσ∗[z − u]|∇ψ2|
2 dz dx . (2.24)

Consequently, we infer from (2.10), (2.13), (2.23), and (2.24) that the first variation of Ee reads

δuEe(u) =
1

2

∫ u+d

u

∂zσ∗[z − u]|∇ψ2[z]|
2 dz +

1

2
σ∗[d] |∇ψ2[u+ d]|2

−
1

2

JσK
1 + |∇u|2

{

∣

∣

∣
∂zψ2[u]∇u+∇′ψ2[u]

∣

∣

∣

2

+
(

∇′ψ2[u] · ∇
⊥u
)2

+
σ∗[0]

σ1

(

∂zψ2[u]−∇u · ∇′ψ2[u]
)2
}

.

(2.25)

Note that the second term of δuEe(u) is always non-negative. If the permittivity of the medium filling the

region between the plates is smaller than the permittivity of the dielectric material the plate is made of, then

the third term in δuEe(u) is also non-negative since JσK = σ1−σ2 ≤ 0. This is the case in many applications

where the region between the plates is vacuumized. Finally, the first term of δuEe(u) is nonlocal and need

not have a constant sign but we emphasize that it vanishes if the permittivity of the plate is independent

of the vertical direction as in [30]. In fact, an interesting mathematical consequence of (2.25) is that the

electrostatic energy Ee(u) is monotonically increasing with respect to the deflection u as soon as σ∗[·] is a

non-decreasing function and σ1 ≤ σ∗.

Remark 2.1. If D is a one-dimensional interval, then formula (2.25) for δuEe(u) is still valid after setting

∇⊥u := 0.

Remark 2.2. The electrostatic force Fe(u) = δuEe(u) acting on the elastic plate found in (2.25) markedly

differs from the one taken in [30], where the last term on the right-hand side of (2.25), involving the jump of

the permittivity, is missing (the first term anyway does not come into play in [30] since no vertical variation

in the permittivity is considered). The reason for this is that in the latter reference the electrostatic force is

not derived as the first variation with respect to u of the electrostatic energy Ee(u) as done above, but is

assumed to be given a priori by σ2[u] |∇ψ2[u]|
2 /2 (corresponding to the second term in (2.25)).
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2.3. Mechanical Forces. The mechanical energy Em(u) of the device includes three contributions. We

first account for plate bending and external stretching by the terms

B

2

∫

D

|∆u|2 dx+
T

2

∫

D

|∇u|2 dx ,

where B is the product of Young’s modulus with area moment of inertia of the cross section of the plate

and T is the coefficient of the axial tension force. We hence neglect nonlinear elasticity effects as well as

internal stretching effects and take into account only vertical deflections. Finally, we model the natural fact

that the upper plate cannot penetrate the ground plate by adding a constraint term which we choose to be

∫

D

I[−H,∞)(u) dx .

Here, I[−H,∞) denotes the indicator function of the closed interval [−H,∞) on which it takes the value zero

and the value ∞ on its complement. Consequently, the mechanical energy reads

Em(u) :=
B

2

∫

D

|∆u|2 dx+
T

2

∫

D

|∇u|2 dx+

∫

D

I[−H,∞)(u) dx .

It readily follows that the mechanical force is given by

δuEm(u) = B∆2u− T∆u+ ∂I[−H,∞)(u) , (2.26)

where ∂I[−H,∞)(u) is the subdifferential of the indicator function I[−H,∞). Recall that given u ∈ L2(D)
satisfying u ≥ −H a.e. in D, a function ζ ∈ L2(D) belongs to ∂I[−H,∞)(u) if and only if it satisfies the

variational inequality

0 ≥

∫

D

ζ(v − u) dx for all v ∈ L2(D) with v ≥ −H a.e. in D . (2.27)

Clearly, ζ ≡ 0 if u > −H , that is, as long as the gap between the elastic plate and the ground plate is

positive.

Remark 2.3. The unilateral side condition u ≥ −H can also be modeled by a penalty term involving the

Heaviside function which amounts to replace ∂I[−H,∞)(u) in (2.26) by −sHeav(−H−u) with a sufficiently

large number s.

2.4. Governing Equations for (u, ψu). To obtain now a complete model for the deflection u and the

electrostatic potential ψu, we include all forces and add a damping force. Thus, the evolution equation for
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the deflection u reads

α0∂
2
t u+ r∂tu+B∆2u− T∆u+ ζ

= −
1

2

∫ u+d

u

∂zσ∗[z − u]|∇ψu,2[z]|
2 dz −

1

2
σ∗[d] |∇ψu,2[u+ d]|2

+
1

2

JσK
1 + |∇u|2

{

∣

∣

∣
∂zψu,2[u]∇u+∇′ψu,2[u]

∣

∣

∣

2

+
(

∇′ψu,2[u] · ∇
⊥u
)2

(2.28a)

+
σ∗[0]

σ1

(

∂zψu,2[u]−∇u · ∇′ψu,2[u]
)2
}

,

for t > 0 and x ∈ D with ζ(t) belonging to ∂I[−H,∞)(u(t)) for t > 0 (i.e. satisfying (2.27)), supplemented

with boundary conditions

u = B ∂νu = 0 on ∂D , t > 0 , (2.28b)

and some initial conditions. The electrostatic potential ψu satisfies

div (σ∇ψu) = 0 in Ω(u) , t > 0 , (2.29a)

with transmission conditions on the interface Σ(u),

JψuK = Jσ∇ψuK · nΣ(u) = 0 on Σ(u) , t > 0 , (2.29b)

along with the boundary condition

ψu = hu+d , (x, z) ∈ ∂Ω(u) t > 0 . (2.29c)

Recall that hu+d is defined in (2.3).

3. THE THIN PLATE LIMIT d → 0

We next derive equations corresponding to (2.28), (2.29) in the limit d → 0 of a thin elastic plate, the

purpose of this derivation being twofold: besides the obvious goal of obtaining reduced models which are

likely to be more tractable for theoretical and numerical investigations, we also aim at determining how the

heterogeneity of the elastic plate – reflected through the non-constant permittivity σ2 – impacts the limit

models. The starting point is to identify the electrostatic potential in the limit d → 0. Recall that, given a

deflection u, the electrostatic potential ψu satisfying (2.29) (and thus depending on d) is a maximizer of the

energy functional

E(u, ϑ) = −
σ1
2

∫

Ω1(u)

|∇ϑ|2 d(x, z)−
1

2

∫

D

∫ u+d

u

σ2|∇ϑ|
2 dzdx

with respect to ϑ satisfying the boundary conditions (2.29c). To find the limit of this functional as d → 0,

we use Γ-convergence techniques along the lines of [1]. This then also allows us to derive the corresponding

force exerted on the thin elastic plate as in Section 2.2.

Throughout this section we fix a smooth deflection u : D̄ → (−H,M) with M > 0 satisfying

u = ∂νu = 0 on ∂D . (3.1)
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Then

Ωd(u) := Ω1(u) ∪ Σ(u) ∪ Ωd
2(u) ⊂ Ω0 := D × (−H,M + 1)

for d ≤ 1, where

Ωd
2(u) := {(x, z) ∈ D × R ; u(x) < z < u(x) + d} .

We investigate two cases: first when the permittivity of the elastic plate is independent of d and then when

it scales with the plate thickness d.

3.1. The Case σ2 = O(1). We here consider the case in which the dielectric profile of the elastic plate is

of order 1 compared to the plate’s thickness d. We thus assume that

σ2(x, z) := σ∗(x, z − u(x)) , (x, z) ∈ Ωd
2(u) , (3.2)

where σ∗ is a continuous function on D̄ × [0, 1] independent of d and satisfying σ∗ ≥ σ0 > 0 for some

constant σ0. We set

Gd(u, θ) :=
σ1
2

∫

Ω1(u)

|∇(θ + hu+d)|
2 d(x, z)

+
1

2

∫

D

∫ u+d

u

σ∗[z − u] |∇(θ + hu+d)|
2 dzdx , θ ∈ H1

0 (Ω
d(u)) ,

and

Gd(u, θ) := ∞ , θ ∈ L2(Ω0) \H
1
0 (Ω

d(u)) .

Moreover, we introduce

G0(u, θ) :=
σ1
2

∫

Ω1(u)

|∇(θ + hu)|
2 d(x, z) , θ ∈ H1

0 (Ω1(u)) ,

and

G0(u, θ) := ∞ , θ ∈ L2(Ω0) \H
1
0 (Ω

d(u)) .

3.1.1. Reduced Electrostatic Energy when σ2 = O(1). The next result on Γ-convergence of the energies

follows exactly as in [1, 6]. We omit details here but refer to the next section for a similar computation in a

more complicated situation.

Proposition 3.1. Let σ2 be given by (3.2). If θ ∈ H1
0 (Ω1(u)), then

Γ− lim
d→0

Gd(u, θ) = G0(u, θ) in L2(Ω0) .

Recalling the relation E(u, ϑ) = −Gd(u, ϑ − hu+d) for ϑ ∈ hu+d + H1
0 (Ω

d(u)) and d > 0, it follows

from Proposition 3.1 that in the limit d→ 0 the electrostatic energy Ee(u) is given by

Ee(u) = −
σ1
2

∫

Ω1(u)

|∇ψu|
2 d(x, z) ,

where ψu − hu is a critical point of G0(u, ·) in H1
0(Ω1(u)). Thus, the electrostatic potential ψu solves the

elliptic problem

∆ψu = 0 in Ω1(u) , (3.3a)
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along with the boundary condition

ψu = hu on ∂Ω1(u) . (3.3b)

One now argues as in Section 2.2 to compute the electrostatic force which reads

Fe(u) = δuEe(u) =
σ1
2
|∇ψu[u]|

2 .

Remark 3.2. It is worth pointing out that the elastic force retains no effects of the dielectric properties of

the elastic plate in the limit d → 0 when σ2 = O(1).

3.1.2. Reduced Model when σ2 = O(1). The mechanical forces being still given by (2.26), we obtain from

Section 3.1.1 that the reduced model for (u, ψu) in the thin elastic plate limit d→ 0 reads

α0∂
2
t u+ r∂tu+B∆2u− T∆u = −

σ1
2
|∇ψu[u]|

2 , x ∈ D , t > 0 , (3.4a)

supplemented with boundary conditions

u = B ∂νu = 0 on ∂D , (3.4b)

and some initial conditions, and where the electrostatic potential ψu satisfies (3.3).

The above free boundary model (3.3), (3.4) is already well-known in the existing literature and is actually

the building block in the modeling of MEMS when the thickness of the elastic plate is neglected from the

outset [4, 12, 31, 32]. Let us remark that, in (3.3), (3.4), the electrostatic potential ψu jumps from zero to

V at touchdown points x ∈ D where u(x) = −H according to the boundary condition (2.29c), see (2.3).

Consequently, a touchdown of the elastic plate on the ground plate induces a singularity in the electrostatic

force in that case. This also explains why the obstacle term vanishes. Questions regarding well-posedness

and qualitative aspects of this model were investigated in [8, 20, 23], an overview being provided in the

survey [24].

3.2. The Case σ2 = O(d). We next consider the case in which the dielectric profile of the elastic plate

scales with the plate’s thickness d. This corresponds to a highly-conducting material. More precisely, let

σ2(x, z) = d σ∗(x, z − u(x)) , (x, z) ∈ Ωd
2(u) , (3.5)

for some continuous function σ∗ on D̄ × [0, 1] independent of d satisfying σ∗ ≥ σ0 > 0 for some constant

σ0. We set

Gd(u, θ) :=
σ1
2

∫

Ω1(u)

|∇(θ + hu+d)|
2 d(x, z)

+
d

2

∫

D

∫ u+d

u

σ∗[z − u] |∇(θ + hu+d)|
2 dzdx , θ ∈ H1

0 (Ω
d(u)) ,

and

Gd(u, θ) := ∞ , θ ∈ L2(Ω0) \H
1
0 (Ω

d(u)) .

Moreover, we define

G0(u, θ) :=
σ1
2

∫

Ω1(u)

|∇(θ + hu)|
2 d(x, z) +

1

2

∫

D

σ∗[0] θ[u]
2 (1 + |∇u|2) dx
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for θ ∈ H1
B(Ω1(u)) and

G0(u, θ) := ∞ , θ ∈ L2(Ω0) \H
1
B(Ω1(u)) ,

where

H1
B(Ω1(u)) := {θ ∈ H1(Ω1(u)) ; θ = 0 on ∂Ω1(u) \ Σ(u)} .

As shown below, G0(u, ·) turns out to be the Γ-limit of the functional Gd(u, ·) as d → 0. In contrast to

the case σ2 = O(1) previously studied in Section 3.1, the functional G0(u, ·) includes a term retaining the

dielectric properties of the elastic plate.

3.2.1. Reduced Electrostatic Energy when σ2 = O(d). We first identify the Γ-limit of the functional

Gd(u, ·) as d→ 0.

Proposition 3.3. Let σ2 be given by (3.5). If θ ∈ H1
B(Ω1(u)), then

Γ− lim
d→0

Gd(u, θ) = G0(u, θ) in L2(Ω0) .

Proof. We follow the lines of [1], the main difference being that the domain Ωd
2(u) is initially not para-

metrized along the normal to Σ(u). Since u is a fixed smooth function satisfying (3.1) throughout the proof,

we omit for simplicity the dependence on u in the notation of the functionals Gd, G0, and the sets Ω1, Ωd
2,

and Ωd.

Step 1: Asymptotic lower semi-continuity. It follows from (3.1) that there is d0 > 0 such that for any

d ∈ (0, d0), there is a smooth function rd : D → (0,∞) such that the mapping

Λ : Ud → Ωd
2 , (x, s) 7→

(

x−
s∇u(x)

√

1 + |∇u(x)|2
, u(x) +

s
√

1 + |∇u(x)|2

)

defines a C1-diffeomorphism, where

Ud := {(x, s) ; x ∈ D , 0 < s < rd(x)}

and

lim
d→0

‖rd‖L∞(D) = 0 . (3.6)

The determinant of its derivative is of the form

det(DΛ(x, s)) =
√

1 + |∇u(x)|2 + sO(‖u‖W 2
∞
(D)) , (x, s) ∈ Ud . (3.7)

Let x ∈ D and d ∈ (0, d0). According to the definition of rd, there is yd ∈ D such that Λ(x, rd(x)) =
(yd, u(yd) + d), that is,

yd = x−
rd(x)∇u(x)
√

1 + |∇u(x)|2
, u(yd) + d = u(x) +

rd(x)
√

1 + |∇u(x)|2
, (3.8)

from which we obtain the implicit equation

1

−rd(x)

[

u

(

x−
rd(x)∇u(x)
√

1 + |∇u(x)|2

)

− u(x)

]

=
d

rd(x)
−

1
√

1 + |∇u(x)|2



HETEROGENEOUS DIELECTRIC PROPERTIES IN MEMS MODELS 17

for rd(x). Hence, by Taylor’s expansion,

∣

∣

∣

∣

d

rd(x)
−
√

1 + |∇u(x)|2
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

d

rd(x)
−

1
√

1 + |∇u(x)|2
−

|∇u(x)|2
√

1 + |∇u(x)|2

∣

∣

∣

∣

∣

≤ |rd(x)|
|∇u(x)|2

1 + |∇u(x)|2
‖u‖W 2

∞
(D)

≤ ‖rd‖L∞(D)‖u‖W 2
∞
(D) ,

so that, by (3.6),

lim
d→0

∥

∥

∥

∥

d

rd
−
√

1 + |∇u|2
∥

∥

∥

∥

L∞(D)

= 0 . (3.9)

Now, let θd ∈ H1
0(Ω

d) be such that θd → θ0 in L2(Ω0) as d → 0. We claim that

G0(θ0) ≤ lim inf
d→0

Gd(θd) . (3.10)

First note that we may assume without loss of generality that (Gd(θd))d≤d0 is bounded. Hence, owing to the

definition of Gd and the lower bound for σ∗, there is c0 > 0 such that, for all d ∈ (0, d0),

σ1
2

∫

Ω1

|∇(θd + hu+d)|
2 d(x, z) + d

σ0
2

∫

D

∫ u+d

u

|∇(θd + hu+d)|
2 dzdx ≤ c0 . (3.11)

In particular, since

|hu+d(x, z)− hu(x, z)| ≤ d‖Dh‖L∞(Ω0×(−H,M+1)) , (x, z) ∈ Ωd
2 , (3.12)

by (2.3) we may assume further that (θd + hu+d)d≤d0 converges weakly towards θ0 + hu in H1(Ω1). This

convergence implies not only that θ0 ∈ H1(Ω1) and satisfies

σ1
2

∫

Ω1(u)

|∇(θ0 + hu)|
2 d(x, z) ≤ lim inf

d→0

σ1
2

∫

Ω1(u)

|∇(θd + hu+d)|
2 d(x, z) , (3.13)

but also that

θd −→ θ0 in L2(∂Ω1) , (3.14)

thanks to the compact embedding of H1(Ω1) in L2(∂Ω1) and (3.12). In particular, θ0 ∈ H1
B(Ω1), so that

G0(θ0) is finite. Furthermore, due to (3.13), it suffices to show that

G0(θ0) ≤ lim inf
d→0

Gd(θd) ,

for the claim (3.10) to be true, where

Gd(θ) :=















d

2

∫

D

∫ u+d

u

σ∗[z − u] |∇(θ + hu+d)|
2 dzdx , θ ∈ H1

0 (Ω
d) ,

∞ , θ ∈ L2(Ω0) \H
1
0 (Ω

d) ,
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and

G0(θ) :=











1

2

∫

D

σ∗[0] θ[u]
2 (1 + |∇u|2) dx , θ ∈ H1

B(Ω1) ,

∞ , θ ∈ L2(Ω0) \H
1
B(Ω1) .

Since σ∗ ∈ C(D̄ × [0, 1]), there holds

lim
d→0

sup
(x,z)∈Ωd

2

|σ∗(x, z − u(x))− σ∗(x, 0)| = 0

and we infer from (3.11) that

lim inf
d→0

Gd(θd) = lim inf
d→0

d

2

∫

D

∫ u+d

u

σ∗[0] |∇(θd + hu+d)|
2 dzdx

= lim inf
d→0

d

2

∫

D

Hd(x) dx ,

where

Hd(x) :=

∫ rd(x)

0

(

σ∗[0]|∇(θd + hu+d)|
2
)

◦ Λ(x, s)|det(DΛ(x, s))| ds , x ∈ D .

Next, for x ∈ D and d ∈ (0, d0), the definition of Λ and rd together with (2.3) and the Cauchy-Schwarz

inequality ensure that

|V − (θd + hu+d)(x, u(x))|
2 = |(θd + hu+d)(Λ(x, rd(x))− (θd + hu+d)(Λ(x, 0))|

2

=

∣

∣

∣

∣

∣

∫ rd(x)

0

(∇(θd + hu+d)) ◦ Λ(x, s))∂sΛ(x, s) ds

∣

∣

∣

∣

∣

2

≤

(

∫ rd(x)

0

|∂sΛ(x, s)|
2

σ∗[0] ◦ Λ(x, s)|det(DΛ(x, s))|
ds

)

Hd(x)

=
Hd(x)

ωd(x)
,

with

ωd(x) :=

(

∫ rd(x)

0

1

σ∗[0] ◦ Λ(x, s)|det(DΛ(x, s))|
ds

)−1

, x ∈ D .

Therefore,

lim inf
d→0

Gd(θd) = lim inf
d→0

d

2

∫

D

Hd(x) dx

≥ lim inf
d→0

d

2

∫

D

ωd(x) |V − (θd + hu+d)(x, u(x))|
2 dx , (3.15)
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and we are left with identifying the last term of the right-hand side of (3.15). To this end, we observe that

(3.7) and (3.9) entail that

lim
d→0

1

d ωd(x)
= lim

d→0

rd(x)

d

1

rd(x)

1

ωd(x)
=

1

σ∗(x, 0)(1 + |∇u(x)|2)

uniformly with respect to x ∈ D. Combining this convergence with (3.12) and (3.14) allows us to pass to

the limit in the right-hand side of (3.15) and conclude that

lim inf
d→0

Gd(θd) ≥ G0(θ0) ,

after recalling that hu(x, u(x)) = V for x ∈ D by (2.3), whence (3.10).

Step 2: Recovery sequence. Let θ ∈ H1
B(Ω1). We may extend θ in the z-direction so that θ belongs to

H1(Ω0) as well. Defining

ϕd(x, z) := max

{

0, 1−
(z − u(x))+

d

}

,

we get θd := ϕdθ ∈ H1
0 (Ω

d) and θd → θ in L2(Ω0). Then

lim sup
d→0

Gd(θd) = lim sup
d→0

d

2

∫

D

∫ u+d

u

σ∗[z − u] |ϕd∇θ +∇hu+d + θ∇ϕd|
2 dzdx

= lim sup
d→0

d

2

∫

D

∫ u+d

u

σ∗[z − u] |θ|2 |∇ϕd|
2 dzdx

= lim sup
d→0

1

2d

∫

D

∫ u+d

u

σ∗[z − u] |θ|2
(

1 + |∇u|2
)

dzdx ,

whence

lim sup
d→0

Gd(θd) = G0(θ)

by [1, Lemma III.1]. Since θd = θ in Ω1, this readily implies that

lim sup
d→0

Gd(θd) = G0(θ)

from which the assertion follows. �

Remark 3.4. Proposition 3.3 is likely to be true if condition (3.1) is replaced by the weaker one u = 0
on ∂D. In this case, however, the parametrization of the domain Ωd

2(u) along the normal to Σ(u) is more

involved, and this is the difficulty to be overcome.

3.2.2. Reduced Model when σ2 = O(d). Using Proposition 3.3 and arguing as in Section 3.1, the electro-

static energy Ee(u) for a given deflection u reads in the limit d→ 0

Ee(u) := −
σ1
2

∫

Ω1(u)

|∇ψu|
2 d(x, z)−

1

2

∫

D

σ∗[0]
(

ψu[u]− V
)2(

1 + |∇u|2
)

dx , (3.16)
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where ψu − hu ∈ H1
B(Ω1(u)) is a maximizer of

G0(u, θ) =
σ1
2

∫

Ω1(u)

|∇(θ + hu)|
2 d(x, z) +

1

2

∫

D

σ∗[0] θ[u]
2
(

1 + |∇u|2
)

dx

in

H1
B(Ω1(u)) =

{

θ ∈ H1(Ω1(u)) ; θ = 0 on ∂Ω1(u) \ Σ(u)
}

.

Thus ψu solves

∆ψu = 0 , (x, z) ∈ Ω1(u) , (3.17a)

supplemented with the Dirichlet boundary conditions

ψu = hu , (x, z) ∈ ∂Ω1(u) \ Σ(u) , (3.17b)

and with mixed boundary conditions on Σ(u)

σ1
(

∂zψu[u]−∇u · ∇′ψu[u]
)

+ σ∗[0]
(

1 + |∇u|2
)(

ψu[u]− V
)

= 0 , x ∈ D . (3.17c)

We now compute the electrostatic force acting on the elastic plate which corresponds to the Fréchet deriva-

tive of the electrostatic energy Ee(u) with respect to u. As in Section 2.2 we consider v ∈ C∞
0 (D) and set

us := u+sv for s ∈ (−σ0, σ0), where σ0 is chosen small enough such that us > −H and the transformation

Φ(s)(x, z) :=

(

x, z + s
H + z

H + u(x)
v(x)

)

, (x, z) ∈ Ω1(u) ,

is a C1-diffeomorphism from Ω1(u) onto Ω1(us) for all s ∈ (−σ0, σ0). We next define for s ∈ (−σ0, σ0)
the solution ψ(s) to (3.17) with us instead of u, that is, ψ(s) solves

∆ψ(s) = 0 , (x, z) ∈ Ω1(us) ,

supplemented with Dirichlet boundary conditions on ∂Ω1(us) \ Σ(us)

ψ(s) = hus
, (x, z) ∈ [D × {−H}] ∪ [∂D × (−H, 0)] ,

and with mixed boundary conditions on Σ(us)

σ1
(

∂zψ(s)[us]−∇us · ∇
′ψ(s)[us]

)

+ σ∗[0]
(

1 + |∇us|
2
)(

ψ(s)[us]− V
)

= 0

for x ∈ D. Then, for s ∈ (−σ0, σ0),

Ee(us) = −
σ1
2

∫

Ω1(us)

|∇ψ(s)|2 d(x, z)−
1

2

∫

D

σ∗[0]
(

ψ(s)[us]− V
)2(

1 + |∇us|
2
)

dx ,
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and, using again the Reynolds transport theorem, Gauss’ theorem, and (3.17a)

d

ds
Ee(us)|s=0 = −σ1

∫

Ω1(u)

[

∇ψu · ∇∂sψ(0) + div

(

|∇ψu|
2

2
∂sΦ(0)

)]

d(x, z)

−

∫

D

σ∗[0]
(

ψu[u]− V
)2
∇u · ∇v dx

−

∫

D

σ∗[0]
(

1 + |∇u|2
)(

ψu[u]− V
)(

∂sψ(0)[u] + ∂zψu[u]v
)

dx

= −σ1

∫

∂Ω1(u)

[

∂sψ(0)∇ψu · n∂Ω1(u) +
|∇ψu|

2

2
∂sΦ(0) · n∂Ω1(u)

]

dS

−

∫

D

σ∗[0]
(

ψu[u]− V
)2
∇u · ∇v dx

−

∫

D

σ∗[0]
(

1 + |∇u|2
)(

ψu[u]− V
)(

∂sψ(0)[u] + ∂zψu[u]v
)

dx .

Since

∂sΦ(0)(x, z) =

(

0,
H + z

H + u(x)
v(x)

)

, (x, z) ∈ Ω1(u) ,

and ∂sψ(0) = 0 on D × {−H} and ∂D × (−H, 0) by (2.3) and (3.1), we further obtain

d

ds
Ee(us)|s=0 = −σ1

∫

D

(∂zψu[u]−∇u · ∇′ψu[u]) ∂sψ(0)[u] dx

−
σ1
2

∫

D

|∇ψu[u]|
2v dx+

∫

D

div
(

σ∗[0]
(

ψu[u]− V
)2
∇u
)

v dx

−

∫

D

σ∗[0]
(

1 + |∇u|2
)(

ψu[u]− V
)(

∂sψ(0)[u] + ∂zψu[u]v
)

dx .

Owing to (3.17c), the contributions involving ∂sψ(0)[u] cancel and we end up with

d

ds
Ee(us)|s=0 =−

σ1
2

∫

D

|∇ψu[u]|
2v dx+

∫

D

div
(

σ∗[0]
(

ψu[u]− V
)2
∇u
)

v dx

−

∫

D

σ∗[0]
(

1 + |∇u|2
)(

ψu[u]− V
)

∂zψu[u]v dx ,

so that the electrostatic force exerted on the plate is

Fe(u) :=−
σ1
2
|∇ψu[u]|

2 − σ∗[0]
(

1 + |∇u|2
)(

ψu[u]− V
)

∂zψu[u]

+ div
(

σ∗[0]
(

ψu[u]− V
)2
∇u
)

.
(3.18a)

Consequently, when σ2 = O(d), the evolution of u is given in the thin elastic plate limit d→ 0 by

α0∂
2
t u+ r∂tu+B∆2u− T∆u+ ζ = −Fe(u) , x ∈ D , t > 0 , (3.18b)
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supplemented with clamped boundary conditions

u = B∂νu = 0 , x ∈ ∂D , t > 0 , (3.18c)

with ζ(t) belonging to ∂I[−H,∞)(u(t)) for t > 0 and ψu solving (3.17).

4. VANISHING ASPECT RATIO LIMIT ε→ 0

The previously presented models are complex in that they couple an evolution equation for the deflection

u involving a nonlinear nonlocal source term depending on the electrostatic potential ψu to an elliptic

boundary value problem for the latter on a domain moving according to the evolution of u. It is thus

worth looking for simpler and more tractable models in order to get a better insight into the dynamics. A

well-documented simplification is the so-called vanishing aspect ratio limit which allows one to express

the electrostatic potential ψu explicitly in terms of the deflection u and gives rise to models featuring a

single equation for u with only a local source term [4, 9, 30–32]. In this limit the vertical extent of the

MEMS device is assumed to be much smaller than its horizontal dimension. A prior step is to properly

rescale the variables and the unknowns. For simplicity we assume throughout this section that the function

h introduced in (2.3) is explicitly given by

h(x, z, w) :=
V (H + z)

H + w
, (x, z, w) ∈ D × (−H,∞)× (−H,∞) .

4.1. Rescaled Equations for the Transmission Model (2.28), (2.29). We introduce dimensionless vari-

ables in equations (2.29) for ψu and (2.28) for u. More precisely, we scale variables according to

t̃ :=
t

rL4
, x̃ :=

x

L
, z̃ :=

z

H
, ũ :=

u

H
, ψ̃ũ,ℓ :=

ψu,ℓ

V
, σ̃ :=

σ

σ1
, σ̃∗ :=

σ∗
σ1
,

and define the relative thickness δ := d/H of the elastic plate and the aspect ratio ε := H/L of the device.

Accordingly, we introduce D̃ := {x̃ ∈ R
2 ;Lx̃ ∈ D},

Ω̃1(ũ) :=
{

(x̃, z̃) ∈ D̃ × R ; −1 < z̃ < ũ(x̃)
}

and

Ω̃2(ũ) :=
{

(x̃, z̃) ∈ D̃ × R ; ũ(x̃) < z̃ < ũ(x̃) + δ
}

with interface

Σ̃(ũ) := {(x̃, z̃) ∈ D̃ × R ; z̃ = ũ(x̃)} .

We then use these relations in (2.28) and (2.29) to derive dimensionless equations. Dropping the tilde

everywhere, we get for the dimensionless electrostatic potential

ε2div′ (σ∇′ψu) + ∂z(σ∂zψu) = 0 in Ω(u) , (4.1a)

JψuK = ε2 Jσ∇′ψuK · ∇u− Jσ∂zψuK = 0 on Σ(u) , (4.1b)

ψu = bu+δ , on ∂Ω(u) , (4.1c)

where

Ω(u) = {(x, z) ∈ D × R ; −1 < z < u(x) + δ}
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and

bu+δ(x, z) :=
1 + z

1 + u(x) + δ
, (x, z) ∈ Ω(u) .

Also, we obtain for the dimensionless deflection of the elastic plate the evolution equation

γ2∂2t u+∂tu+ β∆2u− τ∆u + ζ = −λgδ,ε(u) , x ∈ D , t > 0 , (4.2a)

with ζ(t) belonging to ∂I[−1,∞)(u(t)) for t > 0 and subject to the boundary conditions

u = β∂νu = 0 , x ∈ ∂D , t > 0 , (4.2b)

where

gδ,ε(u) :=
1

2

∫ u+δ

u

∂zσ∗[z − u]
(

ε2|∇′ψu,2[z]|
2 + |∂zψu,2[z]|

2
)

dz

+
1

2
σ∗[δ]

(

ε2 |∇′ψu,2[u+ δ]|
2
+ (∂zψu,2[u+ δ])2

)

+
1

2

σ∗[0]− 1

1 + ε2|∇u|2

{

ε2
∣

∣

∣
∂zψu,2[u]∇u+∇′ψu,2[u]

∣

∣

∣

2

+ ε4
(

∇′ψu,2[u] · ∇
⊥u
)2
}

(4.2c)

+
1

2

(σ∗[0]− 1)σ∗[0]

1 + ε2|∇u|2

(

∂zψu,2[u]− ε2∇u · ∇′ψu,2[u]
)2

,

and

γ2 :=
α0

r2L4
, β := B , τ := TL2 , λ = λ(ε) :=

σ1V
2L

ε3
.

The rescaled total energy for a given deflection u is

E(u) := Em(u) + λEe(u)

with rescaled mechanical energy

Em(u) =
β

2

∫

D

|∆u|2 dx+
τ

2

∫

D

|∇u|2 dx+

∫

D

I[−1,∞)(u) dx (4.3)

and electrostatic energy λEe(u), where

Ee(u) = −
1

2

∫

Ω(u)

σ
(

ε2|∇′ψu|
2 + (∂zψu)

2
)

d(x, z) . (4.4)

Note that we single out the dependence of the total energy E on the parameter λ as the dynamics of the

model is very sensitive to the tuning of this parameter.
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4.2. Vanishing Aspect Ratio Limit for the Transmission Model (2.28), (2.29). We next derive a simpli-

fied model from (2.28), (2.29) by letting the aspect ratio ε = H/L tend to zero while keeping δ = d/H > 0
fixed. Setting ε = 0 in (4.1), it readily follows from (4.1a) and (4.1b) that there is a function A independent

of z such that

∂zψu,1(x, z) = A(x) , (x, z) ∈ Ω1(u) ,

and

σ∗(x, z − u(x))∂zψu,2(x, z) = A(x) , (x, z) ∈ Ω2(u) .

We then integrate the above equations in z and use the boundary conditions (4.1c) to obtain

ψu,1(x, z) = A(x)(1 + z) , (x, z) ∈ Ω1(u) ,

and

ψu,2(x, z) = 1− A(x)

∫ u(x)+δ

z

dq

σ∗(x, q − u(x))
, (x, z) ∈ Ω2(u) .

Since ψu,1 and ψu,2 coincide along Σ(u) by (4.1b), we can compute A as

A(x) = (1 + u(x) +Nδ(x))
−1 , x ∈ D ,

where

Nδ(x) :=

∫ δ

0

dq

σ∗(x, q)
, x ∈ D .

We then deduce that

∂zψu,2(x, z) = [σ∗(x, z − u(x)) (1 + u(x) +Nδ(x))]
−1 , (x, z) ∈ Ω2(u) .

Setting ε = 0 and using the above formula in (4.2c), the force exerted on the elastic plate is given by

gδ,0(u)(x) =
1

2
(1 + u(x) +Nδ(x))

−2 , x ∈ D . (4.5)

Let us point out that the electrostatic energy Ee(u) is then

Ee(u) = −
1

2

∫

D

dx

1 + u(x) +Nδ(x)
(4.6)

and thus coincides with the one from [3, Section 4.4]. Recalling (4.2) we end up with a single equation for

the deflection u which reads

γ2∂2t u+ ∂tu+ β∆2u− τ∆u + ζ = −
λ

2 (1 + u+Nδ)
2 , x ∈ D , t > 0 , (4.7)

subject to the boundary condition (4.2b). In (4.7), the function ζ(t) ∈ ∂I[−1,∞)(u(t)) accounts for the

constraint u ≥ −1. Equation (4.7) as well as the electrostatic energy Ee(u) depend weakly on dielectric

properties of the top plate since Nδ → 0 as δ → 0. Hence no such effects are retained in this limit. This is

consistent with our findings in Section 3.1.
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In fact, in the limit δ = 0 of zero thickness, equation (4.7) reduces to the commonly used vanishing

aspect ratio equation

γ2∂2t u+ ∂tu+ β∆2u− τ∆u = −
λ

2 (1 + u)2
, x ∈ D , t > 0 . (4.8)

Remark 4.1. If the dielectric σ2 of the plate is independent of the vertical coordinate, then the electrostatic

potential computed above coincides with the one from [30, Equations (2.15), (2.17)]. However, the final

form −λ/2(1 + u)2 of the electrostatic force in equation (4.8) does not include any dielectric effects and

therefore differs markedly from [30, Equation (2.19)] which features prominently such effects. The reason

for this discrepancy is that the electrostatic force considered in [9, 30] does not correspond to the one from

(2.28a) derived from the electrostatic energy functional (see also Remark 2.2).

The small gap equation (4.8) for a thin plate has been thoroughly investigated in the last two decades,

see e.g. [4, 9, 11, 13, 17, 19, 24, 26] and the references therein. This equation features a singularity when

u approaches the value −1 which has the following consequences: on the one hand, there is no stationary

solution when λ exceeds a certain threshold value. On the other hand, if λ is sufficiently large, then the

solution to the evolution problem does not exist for all times and ceases to exist when u reaches the value −1
at a certain time.

A striking difference between equation (4.8) for zero thickness δ = 0 and equation (4.7) for positive

thickness δ > 0 is that no such singularity occurs in the latter due to the constraint u ≥ −1 (provided

Nδ > 0, of course, which is the case when the plate is a dielectric material everywhere). Nevertheless,

the touchdown phenomenon may still take place, but corresponds to a so-called zipped state [16] in which

the constraint is saturated, meaning that the set of points in D at which u takes the value −1 is not empty.

Equivalently, ζ 6≡ 0 in (4.7). Nonetheless, the dynamics of u is then still governed by an evolution equation

and there is no model breakdown. Equation (4.7) was also derived in [16, Equation (17)] in a different

set-up, where a layer of insulating material with constant dielectric and thickness d is on top of the ground

plate. Zipped states were investigated numerically therein. We also refer to [3] for other related models.

4.3. Vanishing Aspect Ratio Limit for the Highly-Conducting Model (3.17), (3.18). To study the limit-

ing behavior in (3.17), (3.18) when the aspect ratio ε = H/L of the device vanishes we scale variables and

unknowns as

t̃ :=
t

rL4
, x̃ :=

x

L
, z̃ :=

z

H
, ũ :=

u

H
, ψ̃u :=

ψu

V
, σ̃∗ :=

Hσ∗
σ1

.

Introducing D̃ := {x̃ ∈ R
2 ; Lx̃ ∈ D} and

Ω̃1(ũ) := {(x̃, z̃) ∈ D̃ × R ; −1 < z̃ < ũ(x̃)} ,

it follows from (3.17) and (3.18) that, after dropping the tilde, ψu solves the rescaled Laplace equation

ε2∆′ψu + ∂2zψu = 0 , (x, z) ∈ Ω1(u) , (4.9a)

supplemented with Dirichlet boundary conditions on ∂Ω1(u) \ Σ(u)

ψu(x, z) =
1 + z

1 + u(x)
, (x, z) ∈ [D × {−1}] ∪ [∂D × (−1, 0)] , (4.9b)
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and with mixed boundary conditions on Σ(u)

∂zψu[u]− ε2∇u · ∇′ψu[u] + σ∗[0](1 + ε2|∇u|2)(ψu[u]− 1) = 0 , x ∈ D , (4.9c)

while the evolution of u is given by

γ2∂2t u+ ∂tu+ β∆2u− τ∆u+ ζ = −λgε(u) , x ∈ D , t > 0 , (4.10a)

with ζ(t) ∈ ∂I[−1,∞)(u(t)), supplemented with clamped boundary conditions

u = β∂νu = 0 , x ∈ ∂D t > 0 , (4.10b)

and the electrostatic force −gε(u) reads

gε(u) := −
ε2

2
|∇′ψu[u]|

2 −
1

2
|∂zψu[u]|

2

− σ∗[0](1 + ε2|∇u|2)(ψu[u]− 1)∂zψu[u] (4.10c)

+ ε2div
(

σ∗[0](ψu[u]− 1)2∇u
)

.

The parameters γ, β, τ , and λ in (4.10a) are given by

γ2 :=
α0

rL4
, β := B , τ := TL2 , λ :=

σ1V
2L

ε3
.

Let us now identify the vanishing aspect ratio limit ε → 0 of (4.9)-(4.10). We first infer from (4.9a) and

(4.9c) that

∂zψu(x, z) = σ∗(x, 0)(1− ψu(x, u(x)) , (x, z) ∈ Ω1(u) ,

hence, taking into account that ψu(x,−1) = 0 for x ∈ D by (4.9b),

ψu(x, z) = σ∗(x, 0)(1− ψu(x, u(x))(z + 1) , (x, z) ∈ Ω1(u) .

In particular, taking z = u(x), x ∈ D, in the previous identity gives

ψu(x, u(x)) =
σ∗(x, 0)(1 + u(x))

1 + σ∗(x, 0)(1 + u(x))
, x ∈ D ,

and thus

ψu(x, z) =
σ∗(x, 0)(1 + z)

1 + σ∗(x, 0)(1 + u(x))
, (x, z) ∈ Ω1(u) .

We next set ε = 0 in (4.10c) and find that

g0(u) = −
1

2
|∂zψu[u]|

2 − σ∗[0](ψu[u]− 1)∂zψu[u] =
1

2

(

σ∗[0]

1 + σ∗[0](1 + u)

)2

for x ∈ D and t > 0. Hence we obtain the governing equation for u in the form

γ2∂2t u+ ∂tu+ β∆2u− τ∆u + ζ = −
λ

2

(

1

1 + u+ σ∗[0]−1

)2

(4.11)

for x ∈ D and t > 0, with ζ(t) ∈ ∂I[−1,∞)(u(t)), supplemented with clamped boundary conditions (4.10b).
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Let us point out that equation (4.11) is similar to equation (4.7) with Nδ replaced by 1/σ∗[0], so that the

vanishing aspect ratio limits as ε → 0 of the transmission model (2.28), (2.29) and of the highly-conducting

model (3.17), (3.18) give rise to similar equations.

5. DISCUSSION

In the present paper we derived models for a MEMS device which take into account the thickness of

the elastic plate and its dielectric properties. Our approach relies on the computation of the electrostatic

force exerted on the elastic plate as the first variation of the electrostatic energy and thus contrasts with the

derivation of related models in the existing literature. The resulting force differs from those of previous

works in that it involves additional terms accounting for the jump of the permittivity across the device.

Our models also incorporate a constraint accounting for the fact that the elastic plate cannot penetrate the

ground plate. An interesting feature of this constraint is that it prevents the breakdown of the models when

pull-in occurs. Alternative models in this direction are proposed in [16, 25, 27, 28]. We next focused on

the derivation of models with reduced complexity. We first considered the case when the thickness d of the

elastic plate vanishes. If the dielectric permittivity is of order one with respect to d, then the reduced model

obtained in the limit d → 0 does not retain any effects of the dielectric. However, such effects still play a

role in the reduced model obtained in the limit d → 0 if the dielectric permittivity is of order d. We finally

performed the classical vanishing aspect ratio limit when the vertical dimension is much smaller compared

to the horizontal ones. We obtained an explicit formula for the electrostatic force in terms of the deflection.

The final model then only involves a single equation for the deflection and shows different features than

corresponding models in the existing literature: the source term is well-defined as long as the permittivity

does not vanish and is only singular on the zero set of the permittivity. From a mathematical viewpoint,

several questions arise from the previous analysis: besides the well-posedness of the transmission problem

(4.1), (4.2) and the highly-conducting model (4.9), (4.10), it is also worth investigating the dynamics of the

vanishing ratio models (4.7) and (4.11), including the existence of zipped stationary states and their possible

multiplicity. We plan to investigate further these issues in future works.
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