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Ariane Bize1*

1 UR HBAN, Irstea, Antony, France, 2 UMR 1319 MICALIS, PAPPSO, INRA, Jouy-en-Josas, France,

3 Omics Services, Paris, France, 4 UR 1268 BIA, INRA, Nantes, France, 5 Centre of Biological Engineering,

University of Minho, Braga, Portugal, 6 Laboratory of Microbiology, Wageningen University, Wageningen,

The Netherlands, 7 LGP2, UMR CNRS 5518, Grenoble INP-Pagora, Saint Martin d’Hères, France

* ariane.bize@irstea.fr

Abstract

Lignocellulosic materials from municipal solid waste emerge as attractive resources for

anaerobic digestion biorefinery. To increase the knowledge required for establishing

efficient bioprocesses, dynamics of batch fermentation by the cellulolytic bacterium Rumini-

clostridium cellulolyticum were compared using three cellulosic materials, paper handker-

chief, cotton discs and Whatman filter paper. Fermentation of paper handkerchief occurred

the fastest and resulted in a specific metabolic profile: it resulted in the lowest acetate-to-lac-

tate and acetate-to-ethanol ratios. By shotgun proteomic analyses of paper handkerchief

and Whatman paper incubations, 151 proteins with significantly different levels were

detected, including 20 of the 65 cellulosomal components, 8 non-cellulosomal CAZymes

and 44 distinct extracytoplasmic proteins. Consistent with the specific metabolic profile

observed, many enzymes from the central carbon catabolic pathways had higher levels in

paper handkerchief incubations. Among the quantified CAZymes and cellulosomal compo-

nents, 10 endoglucanases mainly from the GH9 families and 7 other cellulosomal subunits

had lower levels in paper handkerchief incubations. An in-depth characterization of the

materials used showed that the lower levels of endoglucanases in paper handkerchief incu-

bations could hypothetically result from its lower crystallinity index (50%) and degree of poly-

merization (970). By contrast, the higher hemicellulose rate in paper handkerchief (13.87%)

did not result in the enhanced expression of enzyme with xylanase as primary activity,

including enzymes from the “xyl-doc” cluster. It suggests the absence, in this material, of

molecular structures that specifically lead to xylanase induction. The integrated approach

developed in this work shows that subtle differences among cellulosic materials regarding
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chemical and structural characteristics have significant effects on expressed bacterial func-

tions, in particular the cellulolysis machinery, resulting in different metabolic patterns and

degradation dynamics.

Introduction

Conversion of cellulose during the degradation of biomass residues and agricultural waste and

products has been extensively studied in the context of biofuel production [1–3]. Other sources

of lignocellulosic materials, such as waste, are currently emerging as attractive options for bior-

efinery based on anaerobic digestion [4–6]. The cellulosic fraction in municipal solid waste

(MSW) accounts for up to 50% weight in developed countries. Using this resource for biofuel

or synthon production can potentially cuts down emissions of greenhouse gases while improv-

ing resource efficiency. In contrast with native biomass, this lignocellulosic fraction mainly

contains diverse manufactured products with heterogeneous properties such as sanitary tex-

tiles, papers, or cardboards.

The optimal strategies to efficiently recover energy or added-value molecules from these

specific waste materials are not fully established yet. Approaches relying on fermentation by

pure strain cultures, similar to current bioprocesses for bioethanol or biofuel production,

could be considered, such as various processes based on fermentation by yeasts [6] or consoli-

dated bioprocessing with various microorganisms such as the bacterium Lachnoclostridium
phytofermentans or the fungus Trichoderma reesei [7, 8]). Alternatively, bioprocesses based on

the action of complex microbial communities, such as those classically used for organic waste

treatment and valorization (e.g. methanization) could also be invaluable options [5, 9].

Characterization and understanding of the fermentation process of lignocellulosic manu-

factured materials are needed to establish the scientific bases required for the development of

bioprocesses efficiently exploiting their potential. In this respect, a limited number of such

studies have been published so far [9–12]. The present work focuses on three cellulosic materi-

als containing no lignin, cotton discs, paper handkerchief and Whatman filter paper, which

will be referred as “Cotton”, “Tissue” and “Whatman paper”, respectively. These substrates are

rather homogeneous compared to the variety of lignocellulosic waste materials and their bio-

conversion has been only little studied so far [9–12].

To characterize their anaerobic fermentation dynamics and mechanisms in simple model

conditions, Ruminiclostridium cellulolyticum, formerly known as Clostridium cellulolyticum,

was selected as model species. Although the wild-type strain does not produce high concentra-

tions of ethanol nor other biofuel or platform molecules (acetate being the main metabolic

end-product), the species is currently considered as a model organism for consolidated bio-

processing through metabolic engineering as exemplified by a recently engineered strain pro-

ducing isobutanol directly from cellulose [13]. Moreover, closely related members of R.

cellulolyticum have been detected in anaerobic digesters treating waste with high cellulose con-

tent [14] and the species has recently been shown to improve wheat straw methanization by

bioaugmentation [15]. Finally, the wild-type R. cellulolyticum bacterium is an important bio-

logical model of mesophilic anaerobic cellulolytic bacterium, so that a robust knowledge

framework is available for data interpretation including knowledge on the cellulolysis machin-

ery and on its metabolism upon growth on cellulose and its derivatives [16–18]. In particular,

detailed studies of its metabolism upon growth on cellobiose versus cellulose showed key meta-

bolic nodes in the central metabolic pathways [18, 19]. Its cellulolysis machinery relies both on
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cellulosomal proteins and non-cellulosomal secreted enzymes [20]. Cellulosomes are complex

extracellular muti-enzyme machineries produced by numerous cellulolytic microorganisms.

The modulation of R. cellulolyticum cellulosome composition at the protein level according to

the carbohydrate growth substrate has been described in details by targeted approaches [16,

17]. Recently, a transcriptomic and proteomic study of R. cellulolyticum grown on a variety of

substrates (glucose, xylose, cellobiose, cellulose, xylan or corn stover) showed that core cellu-

lases are regulated by carbon catabolite repression, while most of the accessory CAZymes and

their associated transporters are regulated by the Two-Component Systems [21].

To achieve a global insight into the bioconversion dynamics and mechanisms of the three

studied cellulosic materials by R. cellulolyticum, a combined approach was developed. The fer-

mentation dynamics was monitored in batch microcosms and the biodegradation mechanisms

were analyzed at the protein level for Tissue and Whatman Paper through label-free quantita-

tive shotgun proteomics. The in-depth characterization of the three materials was moreover

conducted to elaborate precise hypotheses regarding the origin of the differences in metabolic

end-product concentrations and in protein levels. The present work is, to our knowledge, the

first global shotgun proteomic study of R. cellulolyticum. The obtained data provide evidence

that Tissue is degraded the fastest by R. cellulolyticum and is associated to a distinct metabolic

pattern compared to both other materials. When comparing Tissue and Whatman Paper, the

data show a clear influence of the substrates, even though they are rather similar, on protein

levels from the cellulolysis machinery and the central carbon metabolism. Based on the mate-

rial characteristics, it is postulated that the crystallinity rate and the degree of polymerization

had a preponderant influence on the cellulosome composition here, compared to the hemicel-

lulose content.

Materials and Methods

Bacterial strain and culture conditions

R. cellulolyticum H10 ATCC 35319 (DSM 5812) was grown anaerobically at 37˚C, as indicated

on ATCC website (www.lgcstandards-atcc.org/Products/Cells_and_Microorganisms/Bacteria/

Alphanumeric_Genus__Species/35319.aspx#culturemethod). The basal medium (initial pH

7.1) contained, per liter: Na2HPO4, 0.4 g; KH2PO4, 0.4 g; NH4Cl, 0.3 g; NaCl, 0.3 g; MgCl2, 0.1

g; CaCl2, 0.1 g; NaHCO3, 4.0 g; Na2S.9H2O, 0.2 g. The medium was supplemented with 0.2

mL/L of vitamin solution and 1 mL/L of acid and alkaline trace element solutions (each) [22].

5 mg/L resazurin were added to the medium as a redox indicator. Inoculation was realized

with 10% (v/v) of a pre-adapted culture grown on 1 g/L Sigmacell microcrystalline cellulose in

125 mL flasks with 50 mL working volume. Three cellulosic materials were used separately as

sole carbon substrates: cotton pads (“Cotton”, Leader Price, Disques à Démaquiller—Simple-

ment, Duo face, 100% cotton), Whatman qualitative filter paper, Grade 1 (“Whatman Paper”,

1001–125, 11 μm, 125 mm diameter) and paper handkerchief (“Tissue”, Lotus Classic, large

handkerchiefs, made from pure cellulose fibers, pure virgin pulp). These substrates were cut in

bands (~1.5 cm x 5 cm) and added to each flask to a final concentration of 2.5 g/L. For each

cellulosic substrate separately, triplicate flasks were dedicated to physico-chemical monitoring

of the degradation dynamics. For Tissue and Whatman paper separately, six additional repli-

cate flasks by substrate were operated and sacrificed at 2 different time points for proteomic

analyses during the incubation.

Physico-chemical analyses of the incubation samples

At each sampling time, fresh samples (2 mL) were recovered from the 125 mL flasks and cen-

trifuged at 10 000g for 10 min at 4˚C. The obtained pellets and supernatants were stored
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separately at -80˚C. Volatile fatty acid concentrations (including lactate and acetate) were mea-

sured using a DX 120 Ion Chromatograph (Dionex) with an IonPAc ICE-AS1 column. Etha-

nol concentrations were quantified by headspace gas chromatography—mass spectrometry

(GC-MS) (Trace GC Ultra and DSQ II from Thermo with a TR-WAX column (30 m length,

0.25 mm intern diameter, 0.25 μm thick polyethylene glycol film).

DNA extraction and quantification

DNA was extracted from the pellets with the PowerSoil DNA Isolation Kit (MO BIO Laborato-

ries, Inc., Carlsbad, CA, USA) according to the manufacturer’s instructions and was quantified

with the fluorescence-based Qubit dsDNA HS assay (Life Technologies). The obtained values

were multiplied by a constant factor specific of each DNA extraction series to take into account

the extraction yields. Based on R. cellulolyticum genome size, it was estimated that 1 ng of

DNA corresponded to 227,703 genome copies.

Physico-chemical characterization of the substrates

The total solids and volatile solids in each substrate were calculated from the moisture and ash

content, determined by oven-drying, following instructions described in EN ISO 12879 and

EN ISO 12880. Material elemental composition was analyzed using a Vario EL III (Elementar

Analysensysteme GmbH, Hanau, Germany). Chemical oxygen demand was measured on

solid substrates with the LCK 514 kit (Hach Lange) according to the manufacturer’s

instructions.

To determine the crystallinity index, diffraction diagrams were monitored by recording X-

ray diffraction diagrams every 10 min on a Bruker D8 Discover diffractometer. Cu Kα1 radia-

tion (Cu Kα1 = 1.5405 Å), produced in a sealed tube at 40 kV and 40 mA, was selected and

parallelized using a Gobël mirror parallel optics system and collimated to produce a 500 μm

beam diameter. Crystallinity index was calculated based on [23], as follows:

Crystallinity index ð%Þ ¼
P

2y
jU � Aj2yP

2y
jC � Aj2y

� 100

With A the value obtained for the amorphous standard, C the value obtained for crystalline

standard and U the value obtained for the sample.

To determine the molar mass distribution of the cellulosic substrates, the latter were dis-

solved in N,N-dimethylacetamide (DMAc) and derivatized by tri-carbanilation using phenyli-

socyanate as reactant (reaction time 5 days at 40˚C)[24]. The reaction was quenched with

methanol and direct samples from the obtained solutions were analyzed after dilution in tetra-

hydrofurane (THF) in a size-exclusion chromatographic system (Viscotek TDA-302 appara-

tus) equipped with 3 Varian PLGel Mixed B columns (7.8×300) with a guard column. The

coupled detection was UV at 260 nm, DRI, RALS/LALS/RI at 670 nm (laser 3 mW, 670 nm)

and viscometer detector. DRI was used as concentration detector and UV as control. The chro-

matographic solvent was THF, injected concentrations were 1 mg/mL (injection volume 100

microliter), and the dn/dC of cellulose tricarbanilate in THF was taken at a predetermined

value of 0.165. Data were treated by the OmniSec™ (4.5.6. version) program (Malvern Co.).

The lignocellulose sugar content of the samples was determined by the commercial facility

of Celignis Analytical (http://www.celignis.com, Analysis Package P7, substrate hydrolysis fol-

lowed by ion chromatography). Van Soest fractionation of the substrates was performed by

the commercial facility of INRA Transfert Environnement as in [25] (https://www6.

montpellier.inra.fr/it-e).
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Proteomic analyses

Total proteome and exoproteome extraction and shotgun MS/MS analyses. After 46 h

and 70 h of incubation, 3 flasks for each substrate were sacrificed at each time point and sam-

pled for proteomic analyses. The total volume, except 2 mL used for chemical analyses, was

supplemented with 1 mM Phenylmethylsulfonyl Fluoride to inhibit protease activity and cen-

trifuged at 6 000g for 20 min. The collected supernatant was further centrifuged at 13 000g for

15 min. Pellets from the first centrifugation round and supernatants from the second one were

frozen in liquid nitrogen immediately and stored at -80˚C. Proteins from the pellets were

extracted as described in [26] with minor modifications. Briefly, cell disruption was performed

by bead-beating of the pellets resuspended in 1X PBS using 0.1 mm silica and glass beads, and

by a subsequent ultrasonication step. Proteins were extracted using liquid phenol and precipi-

tated with ammonium acetate in methanol. After several washing steps, the protein pellets

were resuspended in buffer (7 M urea, 2 M thiourea, 4% (w/v) CHAPS) as described in [9] and

stored at -80˚C. Culture supernatants were filtered through 0.22 μm PVDF membrane filters

and proteins were precipitated and resuspended as described above. Protein concentrations

were measured using an Agilent 2100 Bioanalyzer with the High Sensitivity Protein 250 kit fol-

lowing the manufacturer’s instructions.

For each sample, 5μg of each whole proteome were classically purified by SDS-PAGE,

digested by trypsin in gel and analyzed by LC-MS/MS on a LTQ-Orbitrap Discovery mass

spectrometer (Thermo Fisher, USA). Peptide separation was realized with an Ultimate 3000

RSLCnano system (Dionex, Voisins le Bretonneux, France) using a long gradient and a C18

column (Pepmap100, 0.075 x 50 cm, 100 Å, 2 μm, Thermo) during 188 min to enhance the res-

olution and the sensitivity of peptide detection by mass spectrometry. A detailed protocol is

provided S1 File.

Protein database search and label free quantification. The data processing pipeline was

designed using the TOPPAS software [27], part of the OpenMS project [28]. X!Tandem

(directly provided in the OpenMS archive) was used to perform database searches in batch

mode. Peak lists were created by an OpenMS dedicated tool with an additional processing

step. Indeed, a precursor recalculation was computed for each tandem spectrum to improve

the number of matches between a spectrum and a peptide sequence. While proteins were

digested with trypsin, the analysis program allowed for 2 missed trypsin cleavage sites. Cyste-

ine carbamidomethylation was set as a fixed modification; methionine oxidation and protein

N-terminal acetylation were set as variable modifications for all X!Tandem searches. The mass

tolerances in MS and MS/MS were set to 10 ppm and 0.6 Da respectively. Data were searched

against a target/decoy concatenated database to obtain a false discovery rate (FDR) value at the

peptide level. All identifications were validated with a final peptide FDR of 5% and a calculated

protein FDR of 1%.

For the relative quantification based on eXtracted Ion Chromatogram (XIC), peaks were

detected in each sample using the « PeakPickerCentroid » algorithm (OpenMS software). Vali-

dated identification data were matched with detected peaks. Peaks which were assigned to the

same peptide sequence in different samples were used as anchors for retention time alignment

between those samples. A Protein Abundance Index (PAI) was calculated and defined as the

average of XIC area values from the three most intense peptides identified for a given protein.

Statistical analyses of the label-free quantification proteome datasets. All statistical

analyses were performed using the programming language R on log10-transformed and quan-

tile normalized PAI. The substrate, incubation time and substrate-by-incubation time interac-

tion effects were assessed by Tobit models with a censoring threshold equal to the minimum

non-zero value for a given protein. With y�ijkl the normalized log10 PAI of protein l, for the
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substrate Si, incubation time Tj and replicate k, the model used for each protein is the follow-

ing:

yijkl ¼

min
i0j0k0 : y�

i0 j0k0 l
>0
ðy�i0j0k0 lÞ if y�ijkl ¼ 0 and 9k0 : y�ijk0 l 6¼ 0

y�ijkl otherwise

*

with y�ijkl ¼ ml þ ailSi þ bjlTj þ gijlðS;TÞij þ εijkl

and εijkl � N ð0; s2

l Þ

Tobit regressions were computed using the Markov chain Monte Carlo algorithm from the

R package MCMCpack [29]. Runs that did not pass the Heidelberger and Welch’s convergence

diagnostic [30, 31] were discarded. Substrate (αil) and interaction (γijl) effect coefficients as

well as p-values were determined from the posterior distributions. P-values were adjusted for

multiple comparisons using Benjamini and Hochberg’s false discovery rate [32]. The signifi-

cance threshold used corresponds to a false discovery rate of 1%.

For the supernatants, the proteins with at least one statistically significant effect were fil-

tered to select only proteins likely to be released in the extracellular milieu, cellulosomal pro-

teins and secreted CAZYmes (see next section). The other proteins from the supernatants

(cytoplasm/cell wall) were considered as originating from cell lysis.

In silico predictions of protein sub-cellular localization

Prediction of sub-cellular localization was obtained from LocateP database (www.cmbi.ru.nl/

locatep-db/cgi-bin/locatepdb.py) and by analyzing R. cellulolyticum protein sequences with the

SurfG+ program 1.02 [33] with default parameter values with a local Galaxy instance (migale.

jouy.inra.fr/galaxy/). The protein sequences were moreover analyzed with the last available

version of specific tools: SignalP 4.1 server (www.cbs.dtu.dk/services/SignalP/), LipoP 1.0

server (www.cbs.dtu.dk/services/LipoP/), SecretomeP 2.0 server (www.cbs.dtu.dk/services/

SecretomeP/), TMHMM server v. 2.0 (www.cbs.dtu.dk/services/TMHMM/), selecting the

“Gram-positive” option whenever available. The results were manually examined and con-

fronted to the knowledge on R. cellulolyticum proteins, in particular on cellulosomal proteins

and cellulases [16, 21]. For ABC transporters, the subfamily name was retrieved from the

Archaeal and Bacterial ABC Systems database (ABCdb database www-abcdb.biotoul.fr/) and

for peptidases, the Peptidase database identity (MEROPS ID) was indicated (merops.sanger.ac.

uk/).

The mass spectrometry proteomic data are available via ProteomeXchange, identifier

PXD001051 and DOI 10.6019/PXD001051.

Results and Discussion

Growth and fermentation patterns

Fermentation dynamics of the three studied materials by R. cellulolyticum was characterized by

incubating them separately in anaerobic, mesophilic conditions. For all incubations and as was

expected [18, 20], acetate was the major end-product, followed by ethanol and lactate (Fig 1A–

1C). Degradation occurred at a faster rate for Tissue than for both other substrates during the

94 first hours of incubation, as shown by the faster accumulation of acetate, ethanol and lactate

in Tissue incubations over this time period (Fig 1A–1C, S1 Fig, panel A for the total dissolved

organic carbon). A distinct metabolic profile was moreover observed for Tissue incubations,
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with lower acetate-to-lactate concentration ratios (Fig 1D) as well as lower acetate-to-ethanol

concentration ratios compared to both other substrates (Fig 1E). This specific metabolic profile

likely results from the higher sugar influx in the cells and the faster pH decrease in the milieu

over time, from pH 7.1 to pH ~6.3 (S1 Fig, panel B). Indeed, it has previously been shown for

R. cellulolyticum that the carbon flux partition between acetate, lactate and ethanol is greatly

influenced by pH and entering carbon flows [20, 34, 35].

At the end of the 190 hours of incubation, the substrates were only partly degraded, as

shown by the degradation yields estimated from carbon mass distributions (S1 File, S2 Fig and

S1 Table), but significantly altered, disrupting easily during sample handling. Such a partial

degradation is expected in batch microcosms where suboptimal growth conditions emerge

over time, typically with the accumulation of H2 (values at the final time point shown in S1

Fig, panel C) or other fermentation products. Independently, colonization of the cellulosic

substrates by the bacterial cells was qualitatively followed in microplate incubations over the

incubation period, by wet mount microscopy and scanning electron microscopy (S1 File and

S3 Fig). The observations were in good agreement with the degradation dynamics, since

Fig 1. Growth and fermentation dynamics of R. cellulolyticum on Tissue (black symbols), Whatman Paper (grey symbols) and Cotton (light grey

symbols). Acetate (A), ethanol (B) and lactate (C) are the three most abundant fermentation products and their concentration ratios are shown in (D-E).

Genome copy numbers estimated from the amount of total extracted DNA are shown in (F). Error bars indicate standard deviations calculated from

triplicate samples, except in F (duplicate samples). Light grey areas indicate the time points selected for subsequent proteomic analyses.

doi:10.1371/journal.pone.0170524.g001
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colonization occurred the fastest for Tissue and the slowest for Cotton. Scanning electron

microscopy provided insight into the cell aggregate structure and suggested the absence of

thick biofilm (S1 File and S3 Fig).

Substrate characterization

To identify substrate’s properties likely to explain the differences observed during their fer-

mentation by R. cellulolyticum, the three cellulosic substrates were characterized in details

(Table 1). Measurement values of total solids, volatile solids, carbon, nitrogen and organic con-

tents (Table 1) were each highly similar among the three substrates and consistent with cellu-

lose being their major component. Moreover, the dominant chemical functional groups were

the same in all substrates and typical of cellulosic materials since primary and secondary alco-

hols and glycosidic bonds were identified by Fourier transform infrared spectroscopy (FTIR,

S1 File, S4 Fig).

Important differences between the substrates concerned the crystallinity index (CI)

(Table 1), the molar mass distributions (Table 1, S1 File and S5 Fig) and the hemicellulose con-

tent (Table 1). CI is commonly measured to estimate the amount of crystalline regions in cellu-

lose, less easily degradable compared to amorphous regions. Based on the calculated CI,

cellulose was the most amorphous in Tissue and the most crystalline in Whatman Paper

(Table 1). The average degree of polymerization (DP) (Table 1, S1 File and S5 Fig) was the low-

est for Tissue and the highest for Cotton. Both Whatman Paper and Cotton were composed

almost exclusively of glucose (98.58% and 98.69% respectively, Table 1), whereas Tissue con-

tained a significant proportion (13.87%) of pentoses (mainly xylose, 13.72%) in addition to the

Table 1. Detailed characteristics of Tissue, Whatman Paper and Cotton.

Tissue W. Paper Cotton

Total Solids/Volatil Solids (%/%) 94.9/94.2 96.0/95.8 96.5/96.4

Carbon/Nitrogen (%/%) 41.9/0.07 43.1/0.03 41.1/0.05

Chemical Oxygen Demand (g/g) 1.06 1.14 1.11

Crystallinity Index (%) 50 94 74

Degree of Polymerization* ~970 ~1300 ~2730

Total sugar content (% Dry Matter) 97.23 99.22 99.47

Hexoses (% Dry Matter) 83.35 98.67 98.94

Glucose 81.54 98.58 98.69

Galactose 0.14 0.03 0.14

Mannose 1.66 0.05 0.07

Rhamnose 0.02 0.01 0.03

Pentoses (% Dry Matter) 13.87 0.55 0.54

Xylose 13.72 0.51 0.45

Arabinose 0.15 0.04 0.09

Van Soest fractionation

Neutral Detergent Soluble fraction (%) 0.05 0.01 5.3

Acid Detergent Soluble fraction (%) 14.89 4.01 43.6

Sulfuric Acid Soluble fraction (%) 85.06 84.84 49.8

Insoluble Volatile Solids fraction (%) 0 11.13 1.2

W. Paper: Whatman Paper.

*The DP values correspond to the MW values of the peak of individual (i.e. non-aggregated) cellulose chains from the molar mass distribution plots (S5 Fig)

divided by the mass of the tricarbanilated anhydroglucose unit (519 Da) (see Materials and Methods).

doi:10.1371/journal.pone.0170524.t001
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dominant glucose (81.54%) (Table 1). The composition data were consistent with the molecu-

lar weight distribution analyses (S1 File and S5 Fig).

Material characterization highlighted differences among the substrates both in terms of

composition and structure. Based on these characteristics, the faster bioconversion observed

for Tissue compared to both other substrates could arise from its low CI and its low average

DP. Moreover, the presence of hemicelluloses in Tissue is likely to increase its enzyme accessi-

bility and/or its hydrophilicity at the supramolecular level since networks of hemicelluloses

and cellulose are less ordered and crystalline than networks of pure cellulose, which is thus

likely to favor a faster degradation [36].

By contrast, Van Soest fractionation indicated that Whatman Paper is overall the substrate

the less readily solubilized by chemical solutions (total of 4.02% solubilization by the first two

detergents), followed by Tissue (total of 14.94% solubilization by the first two detergents) and

Cotton (total of 48.9% solubilization by the first two detergents) (Table 1). These results high-

light that great differences exist between chemical and biological reactivity for the studied cel-

lulosic substrates.

Comparative proteome-wide label-free quantification

To investigate which biological functions could predominantly be influenced by the substrate

during fermentation, a sensitive shotgun proteomic approach based on XIC was implemented

and served as basis for comparative quantitative analyses. Two substrates were selected for this

approach, Tissue due to its specific metabolic profile and Whatman Paper as a reference since

cellulose colonization by R. cellulolyticum has previously been studied on this substrate [37,

38]. Two time points were selected to be able to discriminate between the effect of the sole sub-

strate and the effect of time and substrate interaction. Illustrative examples of such effects are

provided in S6 Fig. Proteins were extracted from the pellets and supernatants separately at

incubation times 46h and 70h (S7 Fig, panel A) and analyzed by LC-MS/MS. At the selected

time points, fermentation products were just starting to significantly accumulate (Fig 1A–1C)

and the biomass was actively growing (Fig 1F), limiting the possible effects of inhibitors accu-

mulating in batch microcosms.

A total of 1194 proteins were quantified by the XIC approach (S1 Dataset). A good repro-

ducibility was obtained (S7 Fig, panel B) and the identified functions were consistent with cel-

lulose fermentation (S8 Fig, S2 Table). Comparative statistical analyses were conducted for

each protein by adjusting models accounting for the influence of substrate, of time and of the

interaction of substrate and time. In total, 151 proteins showing significantly different levels

(Q-value < = 0.01) were identified and validated (S1 Dataset), including 132 with an effect in

the pellets exclusively, 16 with an effect in the supernatants exclusively and 3 with an effect in

both. They besides included 20 cellulosomal components (providing information about sub-

strate hydrolysis mechanisms), 8 enzymes from the central carbon catabolism (providing

information about the response to intracellular carbon fluxes) and 44 extracytoplasmic pro-

teins (providing information about substrate transport and other specific functions).

Carbohydrate-active enzymes (CAZymes) and cellulosomal proteins. Considering

their essential role in substrate deconstruction and catabolism, proteins related to cellulolysis

and CAZymes were specifically examined. R. cellulolyticum cellulosomes include structural

subunits and numerous different catalytic subunits [16, 17, 20] encoded by 65 distinct genes

[21]. Their average protein composition is highly modulated according to the nature of the

carbohydrate growth substrate [16, 21]. R. cellulolyticum genome encodes up to 149 CAZymes

according to [21] and only a subset of them are extracellular components involved in lignocel-

lulose deconstruction since CAZymes participate to a variety of other biological processes. For
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the present study, a total of 153 proteins from R. cellulolyticum were considered (S1 Dataset)

corresponding to its CAZymes and to its known non-CAZyme cellulosomal structural sub-

units. Among these 153 proteins, 103 were quantified in at least one sample and 28 showed sig-

nificantly different levels when comparing growth on Tissue and Whatman Paper (Tables 2–

4). The present approach appears as complementary to specific proteomic approaches target-

ing cellulosomal components (such as in [16]) since the sensitivity is comparable and addi-

tional functions can also be detected. Indeed, out of the 52 cellulosomal components and

CAZymes detected in [16], 47 were quantified in the present study and, for instance, 7 addi-

tional proteins with a dockerin-module (cellulosomal components), not detected in [16], were

quantified here.

As expected, the 28 proteins with significantly different levels were dominated by celluloso-

mal subunits (Tables 2 and 3, total of 20 proteins). The levels of an important proportion of

the 65 cellulosomal proteins were thus significantly influenced although both cellulosic sub-

strates are rather similar, highlighting the sensitivity of cellulosome composition to subtle sub-

strate differences. Among the 20 cellulosomal proteins with significant effects, 17 had lower

levels or levels that decreased faster when comparing growth on Tissue and on Whatman

Paper (Tables 2 and 3, at least one negative log fold change), encompassing 6 glycoside hydro-

lase (GH) families and 2 other CAzyme families (Tables 2 and 3). This observation is at first

sight unexpected: minor sugar components being more abundant in Tissue compared to

Whatman, especially hemicelluloses (Table 1), it could have been anticipated that a variety of

cellusome enzymes could have higher levels in the Tissue incubations. In the model proposed

by [21], core cellulosomal genes are activated, or not repressed, when intracellular levels of gly-

colytic intermediates are low (carbon catabolite repression) [21]. Since less carbon flowed

through glycolysis during growth on Whatman paper compared to Tissue, results obtained

here reflect that hydrolysis of the most recalcitrant substrate requires more diverse celluloso-

mal enzymes during a longer time.

Hemicelluloses from Tissue were very likely at least partly fermented during the incuba-

tions since 3 intracellular proteins involved in xylose or xylose oligomer catabolism (encoded

by Ccel_0203, Ccel_3438, Table 4, and Ccel_3429) had higher levels in Tissue incubations, sug-

gesting a higher xylodextrin intracellular influx therein. It is however unclear whether the

higher abundance of xylose in Tissue specifically induced the higher expression of certain xyla-

nases. Indeed, cellulosomal proteins encoded by the “xyl-doc” cluster (14 genes more specifi-

cally oriented towards hemicellulolysis [16]) did not show any significant differences, although

8 of them were quantified in the whole dataset (S1 Dataset). The cellulosomal endoglucanase

Ccel_0429, presenting higher levels in Tissue incubations, could have participated to hemicel-

lulose deconstruction since it exerts xyloglucan depolymerization as a secondary activity [39];

however its regulation mechanisms are unknown. Finally, the other cellulosomal subunits

with a known xylanase activity and statistically significant differences had lower levels in Tis-

sue incubations (Ccel_0755 in Table 2, Ccel_0931 in Table 3).

The lack of specific activation of the “xyl-doc” cluster has previously been reported [16, 21]

during growth of R. cellulolyticum on oat spelt xylan, as well as its activation during growth

on wheat straw [16] or corn stover [21]. Together with the present work, these observations

suggest that natural lignocellulosic substrates, in which hemicellulose is associated to lignin

within complex entangled structures, are more likely to induce the expression of the “xyl-doc”
cluster than more simple or engineered materials where the growth substrates are more readily

available.

The subset of cellulosomal proteins with significantly different levels was enriched in endo-

glucanases (12 out of 20 cellulosomal proteins with different levels, Table 2, compared to 17

endoglucanases in total among the 65 cellulosomal proteins annotated in R. cellulolyticum

Proteome Analyses of R. cellulolyticum Fermenting Cellulosic Materials
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genome). Among these endoglucanases, 10 had significantly lower levels in the Tissue incuba-

tions, particularly enzymes from the GH5 and GH9 families (Table 2). This result is consistent

with the presence of shorter cellulose chains in this Tissue as well as its lower CI. In the closely

related Ruminiclostridium thermocellum [40] and Ruminiclostridium clariflavum [41], it has

indeed been shown that the levels GH9 endoglucanases, which are also very common in their

cellulosomes, are influenced by the substrate’s nature, with increased levels in the presence of

crystalline cellulose.

Overall, CAZyme expression appears to be influenced here more by substrate structure

than by its carbohydrate composition, although the present experiments do not provide a fully

formal proof.

Central carbon metabolism. To determine whether the level of sugar influx affected the

expression of enzymes from the central carbon metabolism, enzymes from the glucose and

Table 4. Non-cellulosomal CAZymes with at least one statistically significant effect when comparing incubations on Tissue and Whatman Paper.

Pellet Supernatant

Gene ID Protein/

Gene name

Substrate Interaction Substrate Interaction Modular structure Localization Protein function or name

Ccel_0428 Cel5I -3.85 +3.83 S-GH5-CBM17-CBM28-

(SLH)3

cell wall Endoglucanase Cel5I

Ccel_2417 +3.86 +3.86 GT39 cell wall Glycosyl transferase family 39

Ccel_0881 -0.60 S-CBM16-UNK secreted Unknown (Carbohydrate-

binding, CenC-like protein)

Ccel_1036 -0.27 GH51-UNK secreted α-Arabinofuranosidase

Ccel_2893 -3.64 +3.64 S-GH18-UNK secreted β-Glycosidase

Ccel_1139 +0.30 UNK-GH3-UNK intracellular β-Glucosidase

Ccel_0203 +0.31 GH3-UNK intracellular β-Xylosidase

Ccel_3438 +0.34 GH43-UNK intracellular β-Xylosidase/a-

arabinofuranosidase

The column titles are identical to those from Table 2.

doi:10.1371/journal.pone.0170524.t004

Table 3. Other cellulosomal proteins with significantly different levels when comparing Tissue and Whatman Paper incubations.

Pellet Supernatant

Gene ID Protein/

Gene name

Substrate Interaction Substrate Interaction Modular structure Localization Protein function or name

Ccel_0931 P41a,

xyn10A

-0.31 S-GH10-DOC1 cellulosome Xylanase Xyn10A

Ccel_2162 P42 -0.27 S-DOC1-CE2 cellulosome Acetyl-xylan esterase

Ccel_1655 -0.22 S-DOC1-UNK cellulosome Unknown (cellulosome

protein dockerin type I)

Ccel_1060 -4.09 -3.78 S-COG2755 /

COG2845-DOC1

cellulosome SGNH-hydrolase

Ccel_2243 -0.23 -0.22 S-PL1-UNK-DOC1-UNK cellulosome Pectate lyase

Ccel_0379 P76 -0.20 S-GH5-LNK-CBM32-DOC1 cellulosome Mannanase

Ccel_1597 P50 -0.15 S-GH27-UNK-DOC1 cellulosome α-Galactosidase

Ccel_1543 +0.60 S-TSP_C–(fn3)4-CBM cellulosome Cellulosome anchoring

protein cohesin region

The column titles are identical to those from Table 2.

doi:10.1371/journal.pone.0170524.t003
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xylose catabolic pathways of R. cellulolyticum (Fig 2 and S1 Dataset) were specifically exam-

ined. Among them, 23 were successfully quantified in at least one of the pellet samples and

statistical models could be adjusted for 18 of them. Finally, 8 proteins showed statistically sig-

nificant effects: the glucose-6-phosphate isomerase (product from Ccel_1445, pgi), the ATP-

dependent 6-phosphofructokinase (Ccel_2612, pfkA), the xylose isomerase (Ccel_3429, xylA),

the glyceraldehyde-3-phosphate dehydrogenase (Ccel_2275), the phosphoglycerate kinase

(Ccel_2260), the phosphoglycerate mutase (Ccel_0619), the 2,3-bisphosphoglycerate-indepen-

dent phosphoglycerate mutase (Ccel_2259, gpmI) and the phosphopyruvate hydratase, also

known as enolase (Ccel_2254, eno). All 8 of them are enzymes from upstream of the pyruvate

node and they are distributed over the Embden-Meyerhof-Parnas (EMP) and xylose-utiliza-

tion pathways (Fig 2). Except for the enolase, they all showed only positive effects, indicating

higher protein levels and/or lower protein level decreases in Tissue incubations compared to

Whatman Paper incubations.

This result shows that the higher sugar influx during Tissue fermentation leads to an overall

enhanced expression of enzymes from the carbon catabolic pathways, which is shown for the

first time here for R. cellulolyticum and contrasts to a previous report on the closely related

Ruminiclostridium termitidis [42].

Other extracytoplasmic proteins. The nature of the cellulosic substrate most certainly

directly or indirectly influences the expression levels of numerous extracytoplasmic proteins

since the latter are involved in a variety of biological processes in bacteria, including substrate

colonization, substrate uptake, or cell-cell interactions, which are all relevant for the present

study. Predicting the subcellular localization of proteins is a complex issue [43]. To identify

extracytoplasmic proteins in the present dataset, the 115 proteins showing at least one statisti-

cally significant effect when comparing growth on Tissue and Whatman Paper (other than

those already described in the result section on CAZymes and cellulosomal proteins) were spe-

cifically analyzed in silico. Among the 115 manually examined proteins, 44 had a predicted

extracytoplasmic localization and the detailed results are shown in S3 Table. For 36 of these 44

proteins, the prediction can be considered as very robust since at least both SurfG+ and Loca-

teP indicate an extracytoplasmic localization (with however sometimes distinct predicted sub-

cellular localizations).

Noticeably, the 44 selected proteins include 8 components of ATP-binding Cassette (ABC)

transporters (Table 5) and 4 of them, encoded by Ccel_1987, Ccel_2997, Ccel_0998 and

Ccel_1133, are likely involved in sugar transport based on blastp analyses against the manually

curated part of ABCdb (www-abcdb.biotoul.fr, CleanDb). They indeed show significant simi-

larity (e-value < 10−5) with the sequence of several proteins annotated as sugar binding pro-

teins and with at least one experimentally well-characterized sugar-transporter component

such as the D-xylose transporter subunit encoded by the xylF gene from Escherichia coli
(Ccel_1987) or the multiple sugar-binding ABC transporter, sugar-binding protein precursor

MsmE encoded by msmE gene from Streptococcus mutans (Ccel_2997, Ccel_0998, Ccel_1133).

The trends regarding their expression are contrasted, since higher or lower levels are observed

in Tissue incubations according to the protein (Table 5). These results show the modulation of

the sugar ABC transporter profile according to the nature of the cellulosic substrate and con-

sistently, genes Ccel_1987, Ccel_0998 and Ccel_1133 belong to genomic regions regulated by

Two-Components Systems responding to the availability of specific extracellular soluble sug-

ars, as described in [21].

Interestingly, a Fibronectin type III domain protein (encoded by Ccel_0648) predicted to

be released in the extracellular milieu by both SurfG+ and LocateP was associated to significant

negative effects in the pellets, indicating higher levels in the Whatman paper incubations

(S3 Table). A Fibronectin type III-like repeat from the Ruminiclostridium thermocellum
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Fig 2. Proteins with significant effects when comparing growth on Tissue and Whatman Paper

mapped over R. cellulolyticum glucose and xylose catabolic pathways. Statistically significant substrate

and substrate-by-time interaction effects were considered. The green color indicates positive effects while the

red color indicates negative effects. Positive effects correspond to quantified protein levels higher in Tissue

incubations than in Whatman Paper incubations (substrate effect) and to quantified protein levels increasing
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cellobiohydrolase CbhA was previously shown to promote hydrolysis of cellulose by modifying

its surface [44]. If the protein encoded by Ccel_0648 participates to a similar function, its

higher concentration levels in Whatman Paper incubations could favor the hydrolysis of this

more recalcitrant substrate compared to Tissue.

Other extracytoplasmic proteins with significantly different levels could be interesting, such

as those containing SLH domains; however, a fine interpretation is overall hindered by the cur-

rently limited knowledge on non-cellulolytic extracytoplasmic proteins in R. cellulolyticum.

For instance, the ABC transporter specificities are poorly described for this species. Strikingly,

among the 16 proteins of unknown function present in the dataset of the 151 significant pro-

teins, 13 correspond to predicted extracytoplasmic proteins (S3 Table). Better characterizing

transporters and other extracytoplasmic proteins from R. cellulolyticum thus appears of great

more or decreasing less in Tissue incubations than in Whatman Paper incubations (substrate-by-time

interaction effect). The statistical models (see Materials and Methods) take into account the replicates and

their variability. Protein names and EC numbers are indicated in grey. * indicate effects not significant when

adjusting for multiple comparisons (Q-values > 0.01) but still supporting the overall trend (p-values < = 0.05).

** indicate a significant negative substrate effect (q-value� 0.01) and a positive interaction effect (q-

value > 0.01 but p-value� 0.05). Pathways were adapted from the Biocyc website (http://biocyc.org/).

doi:10.1371/journal.pone.0170524.g002

Table 5. ABC transporter proteins with significantly different levels when comparing Tissue and

Whatman Paper incubations.

Pellets Supernatants

Gene ID Protein name Sub. a) Inter. b) Sub. a) Inter. b) SurfG+c) LocatePd)

Ccel_1987 Putative solute-binding

component of ABC transporter

(S_1ab)

+0.37 PSE Lipid

anch.

Ccel_1133 Extracellular solute-binding

protein family 1 (S_5ab)

+0.55 PSE Lipid

anch.

Ccel_1768 Extracellular solute-binding

protein family 5 (S_2a)

+0.27 PSE Lipid

anch.

Ccel_2997 Extracellular solute-binding

protein family 1 (S_5ab)

-7.65 NA NA PSE N-ter

anch.

Ccel_0967 Transport permease protein

(M_7a)

-0.15 NA NA MB Memb.

Ccel_0998 Extracellular solute-binding

protein family 1 (S_5ab)

-3.66 +3.66 NA NA PSE Lipid

anch.

Ccel_1156 Periplasmic solute binding

protein (S_8b)

-3.68 +3.68 NA NA PSE Lipid

anch.

The proteins are listed according to the observed effects and to the subcellular localization predicted by

SurfG+.
a) The log10 fold change values are indicated for proteins with statistically significant substrate effects

(“Sub., Q-value < = 0.01). Tissue incubations are used as a reference (positive values when the protein

levels are higher in the Tissue incubations). The statistical models take into account the replicates and their

variability.
b) The log10 fold change values are indicated for proteins with statistically significant substrate-by-time

interaction effects (“Inter.”, Q-value < = 0.01). Tissue incubations are used as a reference (positive values

when the protein levels increase faster or decrease slower in the Tissue incubations). The statistical models

take into account the replicates and their variability.
c) Subcellular localization predicted by SurfG+. PSE: potentially surface exposed; MB: membrane.
d) Subcellular localization from LocateP database. Lipid anch.: Lipid anchored; Memb: Multi-

transmembrane;. N-ter anch.: N-terminally anchored (No cleavage site).

doi:10.1371/journal.pone.0170524.t005
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importance to better understand its physiology during cellulose degradation and to be able to

implement global approaches such as systems metabolic engineering.

Conclusions

Fermentation by model cellulolytic bacteria of engineered materials has been little studied so

far. In this study, fermentation by R. cellulolyticum of three cellulosic substrates containing no

lignin, paper handkerchief, cotton discs and Whatman filter paper was considered. Paper

handkerchief was fermented the fastest and 151 proteins had significantly different levels when

comparing paper handkerchief and Whatman filter paper incubations, including 8 enzymes

from the central carbon metabolic pathways and 44 distinct extracytoplasmic proteins. They

moreover comprised 20 out of the 65 cellulosomal components and 4 non-cellulosomal extra-

cytoplasmic CAZymes potentially involved in cellulolysis, highlighting the sensitivity of the

cellulolysis machinery to subtle differences in substrate properties. In particular, ten celluloso-

mal endoglucanases, mainly from GH5 and GH9 families, had lower levels during fermenta-

tion of paper handkerchief when comparing with fermentation of Whatman paper. This

observation hypothetically results from the lower crystallinity rate and degree of polymeriza-

tion of cellulose in paper handkerchief. Paper handkerchief exhibited higher hemicellulose

content and the enhanced level of intracellular xylose isomerase suggested that the hemicellu-

lose was at least partly metabolized. However, regarding hemicellulose hydrolysis, none of the

known extracytoplasmic enzymes with xylanolysis as primary activity had significantly higher

levels in the Tissue incubations. It appears that natural lignocellulosic substrates, in which

hemicellulose is associated to lignin within complex entangled structures, could be more likely

to induce the expression of the “xyl-doc” cluster or other specialized xylanases than more sim-

ple or engineered materials where the growth substrates are more readily available. Similar to

differences occurring among Tissue and Whatman paper incubations, there could be signifi-

cant differences on protein levels among Whatman paper and Cotton incubations, especially

regarding the cellulolysis machinery, since these substrates have different crystallinity index

and degrees of polymerization. Addressing this question would require further proteomic

analyses. The present study provides, to our knowledge, the first whole-proteome analysis on

the model cellulolytic bacterium R. cellulolyticum and expands the knowledge on the proteome

response of this bacterium to cellulosic substrates.

Supporting Information

S1 Fig. Data on fermentation of Tissue (black symbols), Whatman Paper (grey symbols)

and Cotton (light grey symbols) by R. cellulolyticum. (A) Evolution over time of the total

Dissolved Organic Content (DOC). (B) Evolution over time of pH. (C) Cumulated gas produc-

tion at the final incubation time point. Error bars indicate standard deviations calculated from

triplicate samples. Light grey areas in (A) and (B) indicate the time points selected for subse-

quent proteomic analyses. R. cellulolyticum was grown in 50 mL batch fermentation micro-

cosms on 2.5 g/L cellulosic substrate.

(TIF)

S2 Fig. Average carbon mass distributions in the microcosms at the initial and final incu-

bation time points. The carbon masses are in mg. Sampled: carbon mass removed from the

microcosms through sampling of the liquid phase—CO2 gas: carbon mass in CO2 in the head-

space—DIC: inorganic carbon mass in the liquid phase (Dissolved Inorganic Carbon)–DOC:

organic carbon mass in the liquid phase (Dissolved Organic Carbon)–Cellulosic material: esti-

mated carbon mass in the substrate (contained either in Tissue, Whatman Paper or Cotton).
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The percent values next to each substrate name indicate the estimated average degradation

yield (percentage of carbon from the substrate that was degraded). Details on the calculation

method are available in S1 File.

(TIF)

S3 Fig. Illustrative microscopy images of substrate colonization by R. cellulolyticum during

growth in microplates on Tissue (left column), Whatman Paper (middle column) and Cot-

ton (right column) at a final concentration of 5 g/l. Confocal Laser Scanning Microscopy

images were acquired from Tissue (A-D), Whatman Paper (F-I) and Cotton (K-N) incuba-

tions, on wet mount samples stained with a cellular esterase activity marker (green) after

removal of the planktonic cells. Scale bars are 200 μm. A total of 75 representative images were

acquired. Scanning Electron Microscopy images were acquired from Tissue (E), Whatman

Paper (J) and Cotton (O) incubations, on samples collected after 48 h of incubation. Scale bars

are 3 μm. A total of 137 images of scanning electron microscopic were acquired. Details on the

methods are available in S1 File.

(TIF)

S4 Fig. Mid-infrared absorption spectra obtained for Tissue, Whatman Paper and Cotton.

W. Paper: Whatman Paper. The 5 peaks annotated with arrows on the spectra are related to

the presence of cellulose. Details on the method are available in S1 File.

(TIFF)

S5 Fig. Molar mass distribution curves of the cellulose and hemicellulose chains from Tis-

sue (black lines), Whatman Paper (grey lines) and Cotton (light grey lines). M stands for

Molar Mass. Vertical colored lines indicate the positions of the M values corresponding to the

peak of individual (i.e. non-aggregated) cellulose chains (see Table 1). Grey area A1: hemicellu-

lose distribution peak observed for Tissue, originating from bleached wood pulp. Grey area

A2: peaks corresponding to very high molecular weight polymers and, more likely, to cellulose

chain aggregates. Details on the method are available in S1 File.

(TIFF)

S6 Fig. Illustrative examples of statistically significant substrate and substrate-by-time

interaction effects on the protein levels. The illustrative examples are selected from the data-

set of the pellet proteins. On each dot plot, the values are shown for the incubation times 46h,

70h and for the blank. The shown values correspond to the log-transformed and normalized

data. The red color corresponds to Tissue incubations and the green color to Whatman Paper

incubations. The “+” and “-”signs indicate the sign of the considered effect (substrate or sub-

strate-by-time interaction). From left to right and from top to bottom: Ccel_1139 encodes a β-

Glucosidase (see also Table 4); Ccel_0734 encodes the endoglucanase Cel9H (see also Table 2);

Ccel_0203 codes for a β-Xylosidase (see also Table 4); Ccel_2392 codes for the endoglucanase/

cellobiohydrolase Cel9V (see also Table 2); Ccel_1570 encodes a putative uncharacterized pro-

tein; Ccel_0735 encodes the endoglucanase Cel9J (see also Table 2); Ccel_3392 encodes a puta-

tive uncharacterized protein; Ccel_0428 encodes the endoglucanase Cel5I (see also Table 4).

(TIF)

S7 Fig. Quantification of total extracted proteins and principal component analyses of the

proteomes based on the individual protein quantification data. A) Total amounts of pro-

teins extracted from the Tissue (black) and Whatman Paper (grey) incubations, after 46h and

70h of incubation, from the pellets and supernatants respectively. B) Principal component

analysis of the samples based on the label-free quantitative proteomic data (XIC approach).

(TIF)
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S8 Fig. Functional profiles for all proteins encoded in R. cellulolyticum genome and for the

proteins showing significantly different levels in the presence of Tissue compared to What-

man Paper. A selection of 32 Gene Ontology (GO) terms is shown, corresponding to the cate-

gories with highest percentages of annotations and to the most enriched or depleted categories

when comparing the dataset of proteins with significantly different levels (after removal of cat-

egories with less than 3 proteins with significantly different levels) and all genome-encoded

proteins. The GO terms are shown from the most enriched to the most depleted, from top to

bottom. R. cellulolyticum genome encodes 3290 proteins, of which 2081 have GO annotations

in UniprotKB, corresponding to a total of 3674 GO annotations. 151 proteins showed signifi-

cantly different levels, of which 116 have GO annotations in UniprotKB, corresponding to a

total of 385 annotations. Numeric values and additional details are shown in S2 Table.

(TIF)

S1 Dataset. Summary of the quantitative results obtained for each protein of R. cellulolyti-
cum.

(XLSX)

S1 Table. Carbon mass distributions in the microcosms at the initial and final incubation

time points. The carbon masses are in mg. The average values (± one standard deviation

where relevant) are shown. Cellulosic material: carbon mass in the substrate (contained either

in Tissue, Whatman Paper or Cotton)–DOC: organic carbon mass in the liquid phase (Dis-

solved Organic Carbon)–DIC: inorganic carbon mass in the liquid phase (Dissolved Inorganic

Carbon)–CO2 gas: carbon mass in CO2 in the headspace—Sampled: carbon mass removed

from the microcosms through sampling of the liquid phase—Total: total carbon mass in the

microcosms at the initial incubation time point—Degradation yield: estimated percentage of

degraded carbon from the substrate. The carbon mass in the cellulosic material at the final

time point is calculated by considering that the total carbon mass is identical at time points 0h

and 190h in the system. To calculate the carbon mass removed through sampling of the liquid

phase, two options were considered: no substrate particles were sampled (option 1), substrate

particles at a concentration of 2.6 g/L (corresponding to the initial concentration) were sam-

pled (option 2). Consequently, two different values were obtained for the carbon mass in the

cellulosic material at time point 190h. More details on the method are available in S1 File.

(PDF)

S2 Table. Functional profiles for all proteins encoded in R. cellulolyticum genome and for

proteins showing significantly different levels in the presence of Tissue compared to What-

man Paper. a) BP: Biological Process—CC: Cellular Component—MF: Molecular Function.

b) For each GO term, percentage of the GO term annotations among the significant proteins.

c) For each GO term, percentage of the GO term annotations among all proteins encoded in

R. cellulolyticum genome. d) Ratios of both percentages. The GO terms are presented by

decreasing ratio values. See legend from S7 Fig for additional details.

(XLSX)

S3 Table. Extracytoplasmic proteins with at least one statistically significant effect when

comparing incubations on Tissue and Whatman Paper. The proteins are listed according to

the observed effects, to the subcellular localization predicted by SurfG+ and according to their

function. a) The Gene IDs (Ccel_) are given according to UniprotKB database. b) The Protein

names are given according to UniprotKB database. c)—d) Statistically significant effects for

proteins quantified in Pellets and Supernatants respectively. Substrate effects (Q-value < =

0.01) are indicated with + for positive effects (quantified protein levels higher in Tissue incuba-

tions than in Whatman Paper incubations) and—for negative effects (quantified protein levels
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lower in Tissue incubations than in Whatman Paper incubations). Substrate-by-time interac-

tion effects (Q-value < = 0.01) are indicated with + for positive effects (quantified protein lev-

els in Tissue incubations increase more or decrease less than in Whatman Paper incubations)

and—for negative effects (quantified protein levels in Tissue incubations increase less or

decrease more than in Whatman Paper incubations).The statistical models take into account

the replicates and their variability. e) Subcellular localization predicted by SurfG+. PSE: poten-

tially surface exposed; EXT: extracellular milieu; CYTO: cytoplasm; MB: membrane. f) Subcel-

lular localization from LocateP database. Lipid anch.: Lipid anchored; Released: Secretory

(released) (with cleavage site); Memb: Multi-transmembrane;. N-ter anch.: N-terminally

anchored (No cleavage site); Intracell.: Intracellular. g) SignalP predictions concerning the

presence of a signal peptide. Y: yes; N: no. h) SecretomeP predictions concerning the secretion

by a non-classical pathway (without signal peptide). Y: yes; N: no. i) LipoP predictions con-

cerning lipoproteins and signal peptides. SpII: lipoprotein signal peptide (signal peptidase II);

SpI: signal peptide (signal peptidase I); TMH: n-terminal transmembrane helix (this is gener-

ally not a very reliable prediction according to LipoP website); CYT: cytoplasmic (all others). j)

TMHMM predictions: number of predicted transmembrane helixes. k) TMHMM predictions:

possible presence of a signal peptide (as indicated on THMM server website, “predicted TM

segments in the N-terminal region sometime turn out to be signal peptides”).

(XLSX)

S1 File. Supplementary Materials and Methods and References.

(PDF)
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