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Abstract: The aim of this paper is to evaluate the most used radar backscattering models (Integral 21 

Equation Model "IEM", Oh, Dubois, and Advanced Integral Equation Model "AIEM") using a wide 22 
dataset of SAR (Synthetic Aperture Radar) data and experimental soil measurements. These 23 
forward models reproduce the radar backscattering coefficients ) from soil surface 24 
characteristics (dielectric constant, roughness) and SAR sensor parameters (radar wavelength, 25 
incidence angle, polarization). The analysis dataset is composed of AIRSAR, SIR-C, JERS-1, 26 
PALSAR-1, ESAR, ERS, RADARSAT, ASAR and TerraSAR-X data and in situ measurements (soil 27 
moisture and surface roughness). Results show that Oh model version developed in 1992 gives the 28 
best fitting of the backscattering coefficients in HH and VV polarizations with RMSE values of 2.6 29 
dB and 2.4 dB, respectively. Simulations performed with the Dubois model show a poor 30 
correlation between real data and model simulations in HH polarization (RMSE = 4.0 dB) and 31 
better correlation with real data in VV polarization (RMSE = 2.9 dB). The IEM and the AIEM 32 
simulate the backscattering coefficient with high RMSE when using a Gaussian correlation 33 
function. However, better simulations are performed with IEM and AIEM by using an exponential 34 
correlation function (slightly better fitting with AIEM than IEM). Good agreement was found 35 
between the radar data and the simulations using the calibrated version of the IEM modified by 36 
Baghdadi (IEM_B) with bias less than 1.0 dB and RMSE less than 2.0 dB.  These results confirm 37 
that, up to date, the IEM modified by Baghdadi (IEM_B) is the most adequate to estimate soil 38 
moisture and roughness from SAR data. 39 

Keywords: Oh; Dubois; IEM; AIEM; SAR images; soil moisture; and surface roughness.  40 
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In the context of sustainable development, soil and water resources management is a key issue 43 
not only from the environmental point of view, but also from a socioeconomic perspective [1]. Soil 44 
surface characteristics (SSC), such as moisture (mv), roughness, texture, and slaking crusts are some 45 
key variables used to understand and model natural hazards, such as erosion, drought, runoff, and 46 
floods [2]. Particularly, soil moisture and roughness are important variables in land surface 47 
hydrology as they control the amount of water that infiltrates into the soil and replenishes the water 48 
table [3]. Synthetic Aperture Radar (SAR) data were widely and successfully used for monitoring 49 
the spatial and temporal evolution of soil moisture and roughness [4–7]. The estimation of soil 50 
moisture and roughness was performed by inverting the measured SAR backscatter through SAR 51 
backscattering models (both empirical and physical). Unlike physical models, empirical models 52 
need to be calibrated using site specific in situ measurements and SAR observation at each time are 53 
used over a different study area. Moreover, the validity domain of semi-empirical models is limited 54 
to the range of data used for calibration. The most commonly empirical models are the models of 55 
Oh [8–11] and Dubois [12]; while, the most popular physical models are Integral equation model 56 
(IEM)  [13], IEM calibrated by Baghdadi, called in  this paper ''IEM_B'' [14–19], and Advanced 57 
Integral Equation Model (AIEM) [20].  58 

For bare soils, SAR backscattering models allow backscattering coefficients simulation by using 59 
soil parameters (mainly dielectric constant, and roughness) and SAR configurations (frequency, 60 
incidence angle, polarization) as input. Several studies reported important discrepancies between 61 
backscattering models simulations and SAR observations [15,21–23]. The discrepancy between SAR 62 
simulations and SAR measurements is mainly related to the description of surface roughness which 63 
is an important input to SAR backscattering models [17,24,25]. For most of the backscattering 64 
models the surface roughness is described by three parameters: the standard deviation of the height 65 
(Hrms), the correlation length (L) and the shape of the correlation function [13,26]. The correlation 66 
length is usually measured with an uncertainty which introduces an error on simulated 67 
backscattering coefficients [27–33]. A few studies proposed a semi-empirical calibration of SAR 68 
backscattering models in order to reduce the uncertainty on SAR simulations [14,15,17–19,34,35]. In 69 
[14,15,17–19,34] the method consisted of replacing the measured L by a fitting parameter, so-called 70 
Lopt, which was found to be related to Hrms (Lopt increases with Hrms). Lopt is a function of Hrms 71 
(linear, exponential, or power calibration) which depends on SAR parameters (incidence angle, 72 
polarization and frequency). This calibration reduces IEM’s input soil parameters (Hrms and mv 73 
instead of Hrms, L and mv). Rahman et al. [35] proposed a method for deriving L through the IEM. 74 
In this method, the radar signal is modeled as a function of only Hrms and L, and the contribution of 75 
soil moisture on backscattering coefficients is ignored (dry soil). Thus, L could be estimated by 76 
inverting the IEM. 77 

Several studies have been carried out to evaluate and compare the robustness of the 78 
backscattering models such as, Oh, Dubois and IEM (original IEM, IEM_B and AIEM). Zribi et al. 79 
[23] evaluated the Oh model and IEM using L-, C- and X-bands SAR data and in situ 80 
measurements. Results showed that the IEM provides accurate simulations (RMSE about 2.0 dB) 81 
only over smooth surfaces. In addition, for rough surfaces and medium incidence angle, Oh model 82 
simulations retrieve backscattering values very close to the measured ones, while showing poor 83 
correlation with measured backscattering coefficients over smooth areas. Baghdadi and Zribi [21] 84 
evaluated the backscattering models IEM, Oh and Dubois by using large C-band SAR data and in-85 
situ measurements. Results showed that these models frequently tend to over-estimate or under-86 
estimate the radar signal (in the order of -3.0 dB) and the errors on model simulation depends on 87 
height surface roughness, Hrms, soil moisture, mv, and/or incidence angle. Baghdadi et al. [18] 88 
evaluated the potential of IEM, Oh and Dubois models by using TerraSAR-X images acquired over 89 
France and Tunisia and experimental datasets of in-situ measurements (mv ranged between 5 vol.% 90 
and  41 vol.% and Hrms between 0.42 cm and 4.55 cm). In this case, the semi-empirical Oh model 91 
correctly simulated the backscattering(showing over or under-estimation of the backscatter < 1dB, 92 
and RMSE < 3dB), while Dubois model showed a poor correlation between real data and 93 
simulations, with RMSE between 2.2 and 4.4 dB and over or under-estimation of the backscatter of 94 
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about 3.4 dB. In addition, the IEM simulates correctly the backscattering at X-band for Hrms<1.5 cm 95 
by using the exponential correlation function and for Hrms >1.5 cm by using the Gaussian 96 
correlation function. Panciera et, al. [36] compared the performances of the IEM, Dubois and Oh 97 
models by using fully polarized L-band airborne data (incidence angles between 24° and 38°) and in-98 
situ measurements (mv between 5 vol.% and 39 vol.% and Hrms between 1cm and 7.6 cm) acquired 99 
over the study area in southeastern Australia. At HH polarization, the three models simulated the 100 
backscattering with almost similar accuracy, showing a mean error between the simulated and the 101 
observed backscattering coefficients of about 1.6 dB in absolute value (standard deviation ʺstdʺ 102 
about ±2.5dB). At VV polarization, the Oh model resulted to be more accurate than IEM and Dubois 103 
models: the mean errors between the simulated and observed backscattering were equal to 4.5 dB 104 
(std = ±2.0 dB), 1.7 dB (std = ±2.3 dB), and -0.4 dB (std=±2.4 dB) for IEM, Dubois, and Oh model, 105 
respectively.  106 

Several studies confirmed that the use of the calibrated correlation length, as proposed by 107 
Baghdadi et al. [14–19] is able to improves the performance of the IEM at both both HH and VV 108 
polarizations [36–38].  Dong et al. [37] used the calibrated correlation length in the AIEM to simulate 109 
SAR data in C-band. Results showing that the RMSE reduced from 3.1 to 1.7 dB at HH and VV 110 
polarizations and from 31.0 to 5.1 dB at HV polarization. Panciera et al. [36] showed that the use of 111 
calibrated correlation length decreases the errors on IEM simulation with a bias equal to about -0.3 112 
dB (std about ±1.1 dB) at both HH and VV polarizations. 113 

The aim of this study is to evaluate the most popular backscattering SAR models (Oh, Dubois, 114 
IEM, IEM_B, and AIEM) by using a wide range of SAR data and in-situ measurements. With the 115 
arrival of Sentinel-1A and -1B satellites that provides free high resolution SAR data with 3 days 116 
revisit time, several research teams work actually on developing methods for mapping soil 117 
moisture using these Sentinel-1 data. Most of methods for soil moisture mapping are based on 118 
using backscattering models for soil moisture estimates. The objective of our is study is to evaluates 119 
the most commonly backscattering models using a wide dataset of SAR data and in situ 120 
measurements acquired over numerous agricultural sites in France, Italy, Germany, Belgium, 121 
Luxembourg, Canada and Tunisia. Thus, this study could be of a great importance for scientific 122 
community since it help on understand backscattering models accuracy and performance for wide 123 
range of soil surface conditions, acquired for several study areas through the world by numerous 124 
SAR sensors. Never before haves been evaluated all these backscatter models together in the same 125 
literature with such a wide dataset.these wide ranges of data using all these models together in the 126 
same literature. In addition, this study is the first that evaluates the AIEM backscatter models using 127 
L-, C- and X- bands together.  A description of the study areas and different datasets used in this 128 
study is provided in Section 2. Section 3 the models are described. The results are shown in section 129 
4. Finally, section 5 presents the conclusion. 130 

2. Dataset 131 

2.1. Study areas 132 

A wide range of datasets composed of AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS, 133 
RADARSAT, ASAR and TerraSAR-X acquisitions over numerous agricultural sites in France, Italy, 134 
Germany, Belgium, Luxembourg, Canada and Tunisia (Table 1), have been used in this research 135 
work. In addition, in-situ measurements of soil moisture and surface roughness were carried out 136 
simultaneously to SAR acquisitions over bare soil surfaces. 137 

2.2. Satellite data  138 

A large number of L-, C- and X-band images (approximately 1.25 GHz, 5.3 GHz and 9.6 GHz, 139 
respectively) were acquired between 1994 and 2014 with different incidence angles (between 18° 140 
and 57°) and in HH, VV and HV polarizations (Table 1). ). The spatial resolution of SAR images is 141 
between 1m and 30m (Table 1). Images were first radiometrically calibrated to enable the extraction 142 
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of the backscattering coefficients (  ). Then, the mean backscattering coefficients were computed 143 
from calibrated SAR images by linearly averaging the σ° values of all pixels within the plot. 144 

2.3. Field data 145 

Field measurements of soil moisture and surface roughness have been collected from the bare 146 
plotsfields selected over of the studytest areas. Each plot is a homogeneous surface (similar soil type, 147 
moisture content and surface roughness) of around one hectare or more. In-situ measurements of soil 148 
moisture (mv, in vol.%) were carried out for a soil layer of 5 cm or 10 cm in each reference plot by 149 
using both the gravimetric method or a calibrated TDR (time domain reflectometry) probe. For each 150 
bare soil reference field the average soil moisture (mv) of all samples was calculated. The soil 151 
moisture ranged between 2 vol.% and 47 vol.%. 152 

Roughness measurements were carried out by using laser or needle profilometers (mainly 1 m 153 
and 2 m long, and with 1 cm and 2 cm sampling intervals); while for some in-situ measurement 154 
campaigns, a meshboard technique was used. Several roughness profiles along and across the 155 
direction of tillage were acquired in each reference field. The standard deviation of surface heights 156 
(Hrms) and the correlation length (L) were calculated by using the mean of all experimental 157 
correlation functions. In our dataset, Hrms ranged from 0.2 cm to 9.6 cm and the L from 1.2 cm to 158 
38.5 cm. 159 

A total of 2442 experimental data of soil moisture content and surface roughness were 160 
available, together with the corresponding values of backscattering coefficient, of which 1262 at HH 161 
polarization, 790 at VV polarization, and 390 at HV polarization (see Table 1). 162 

Table 1. Description of the dataset used in this study. Fr: France, It: Italy, Ge: 163 
Germany, Be: Belgium, Lu: Luxembourg, Ca: Canada, Tu: Tunisia. 164 

Site SAR sensor Spatial 

resolution         

Freq Year Number of data 

Orgeval (Fr) [39] SIR-C 30m x 30m L 1994 
 HH : 1262 measurements 

 66 in L-band 

 766 in C-band 

 430 in X-band 

 

 VV : 790 measurements 

 159 in L-band 

 411 in C-band 

 220 in X-band 

 HV : 390 measurements 

 13 in L-band 

 313 in C-band 

 64 in X-band 

 

Orgeval (Fr) [39], 

[40], [41] 

 

 

SIR-C, ERS, 

ASAR 

 

 

30m x 30m 

 

C 

 

 

 

1994; 1995; 

2008; 2009; 

2010 

 

 

Orgeval (Fr) [41] PALSAR-1 30m x 30m   L 2009 

Orgeval (Fr) [42] TerraSAR-X 1m x 1m X 
2008, 2009, 

2010 
Pays de Caux (Fr)  

[43], [44] 

ERS; 

RADARSAT 
30m x 30m C 1998; 1999 

Villamblain (Fr)  

[6], [34], [45] 

 

 

Villamblain (Fr)  

[41], [46] 

ASAR 

 

 

 

TerraSAR-X 

30m x 30m 
C 

 

 

 

 

X 

2003; 2004; 

2006 

 

 

 

2008; 2009 

Thau (Fr) [47] 

 

RADARSAT 

TerraSAR-X 

30m x 30m 

1m x 1m 

C 

X 
2010; 2011 2010 

Touch (Fr) [6], [47] ERS-2; ASAR 30m x 30m C 
2004; 2006; 

2007 
Mauzac (Fr) [46] 

 
TerraSAR-X 1m x* 1m X 2009 

Garons (Fr) [46] 

 
TerraSAR-X 1m x *1m X 2009 

Kairouan (Tu) [48] 

 

Kairouan (Tu)  

[46], [48], [49] 

ASAR 

 

 

TerraSAR-X 

30m x *30m 
C 

 

 

X 

2012 

 

 

2010; 2012; 

2013; 2014 

Yzerons (Fr) [50] TerraSAR-X 1m x *1m X 2009 

Versailles (Fr) [46] TerraSAR-X 1m x *1m X 2010 

Mis en forme : Surlignage
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Seysses (Fr) [46] TerraSAR-X 1m x *1m X 2010 

Chateauguay (Ca) 

[43] 
RADARSAT 30m x 30m C 1999 

Brochet (Ca) [43] RADARSAT 30m x 30m C 1999 

Alpilles (Fr) [43] 
ERS; 

RADARSAT 
30m x 30m C 1996; 1997 

Sardaigne (It) [51] 
ASAR; 

RADARSAT 
30m x 30m C 2008; 2009 

Matera (It) [52] SIR-C 30m x 30m L 1994 

Alzette (Lu)  

[35],[30] 
PALSAR-1 30m x 30m L 2008 

Dijle (Be) [30] PALSAR-1 30m x 30m L 2008; 2009 

Zwalm (Be) [30] PALSAR-1 30m x 30m L 2007 

Demmin (Ge) [30] ESAR 2m x 2m L 2006 

Montespertoli (It) 

[36],[53] 

 

Montespertoli (It)  

[54] 

 

Montespertoli (It)  

[55] 

AIRSAR 

 

 

 

SIR-C 

 

 

JERS-1 

30m x 30m 
L 

 

 

L; C 

 

 

L 

1991 

 

 

1994 

 

 

1994 

 165 

3. Description of the backscattering models 166 

3.1. The semi-empirical Dubois model 167 

Dubois et al. [12] proposed a semi-empirical model for simulating the backscattering 168 
coefficients in HH and VV polarizations (°HH and °VV) on bare soils. The expression of °HH and 169 
°VV depends on the incident angle (), the soil dielectric constant (, which is a function of the soil 170 
moisture content), the soil roughness defined by the standard deviation of surface height (Hrms), 171 
and the radar wavelength (=2/k where k is the wave number). The model optimized for bare soils 172 
according to the validity domain defined by k Hrms2.5, mv35 vol.%, and 30° is expressed as: 173 
 174 

  7.04.1tan028.0

5

5.1
75.20 sin10

sin

cos
10 


















  HrmskHH

 

  7.01.1tan046.0

3

3
35.20 sin10

sin

cos
10 


















  HrmskVV

 

        (1) 

 175 

where  is expressed in radians and  in cm, and 
0

HH and 
0

VV  are expressed in linear units. 176 

3.2. The semi-empirical Oh model 177 

Oh et al. [8–11] developed between 1992 and 2004 several versions of a semi empirical 178 
backscattering model. Basing on theoretical models, scatterometer measurements and airborne SAR 179 
observations, the Oh model is built over a wide variety of bare soil surfaces.  The Oh model relates 180 
the co-polarized ratio p (=°HH/°VV) and the cross-polarized ratio q (=°HV/°VV) to incident angle 181 
(), wave number (k), standard deviation of surface height (Hrms), correlation length (L), and soil 182 

moisture (mv) or dielectric constant (
r ). 183 

The initial version of the Oh model [9] is defined as: 184 
 185 
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HV eq  123.0 00
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Where: 187 
 188 

2

0
1

1

r
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    (4) 

 189 

 190 

Oh et al. [10] proposed a new expression for q to incorporate the effect of the incidence angle: 191 

 192 

 193 

Oh et al. [11] again modified the expressions for p and q, and the following expression for the cross-194 
polarized backscatter coefficient was proposed: 195 

 196 

4.1

65.0

)(4.0

35.0

0

0

.
90

1 Hrmsk

mv

VV

HH ep 



















 

 (6) 

 8.0)(9.0

2.1

0

0

13.1sin1.0 Hrmsk

VV

HV e
L

Hrms
q 








 





 

 (7) 

 8.1)(32.02.27.00 1cos11.0 Hrmsk

HV emv  
 

(8) 

Oh and Kay [56] demonstrated that the measurement of the correlation length is not accurate 197 

and that the ratio q is not sensitive to the roughness parameter (defined as Hrms/L). Thus, Oh [8] 198 

proposed a new equation for q that ignores the correlation length (L): 199 

   9.0)(3.14.1

0

0

15.1sin13.0095.0 Hrmsk

VV

HV eq  




 
                   (9) 

The Oh model [8] is optimized for bare soils in the following validity domain: 200 
0.13kHrms6.98, 4mv (vol.%)29.1, and 10°≤  ≤ 70°. 201 

 

    Hrmsk

VV

HV eq 06.14.19.0

00

0

1sin1.025.0


 




 

                                                                                                                  

(5)   
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The estimation of soil moisture and surface roughness from Oh model requires two 202 
backscattering coefficients at least, with one co-polarized coefficient (°HH or °VV ) and one cross-203 
polarized coefficient (°HV or °VH).  The availability of °VV and °VH allows using the ratio q and 204 
°HV in the inversion process of SAR data, while the ratio p/q, as well as °HV, is used in the case 205 
where SAR data are available in the both HH and HV polarizations. 206 

3.3. The physical Integral Equation Model (IEM)  207 

The Integral Equation IEM is a physical model [13], where the soil is characterized by the 208 

dielectric constant (
r ), the standard deviation of surface height (Hrms), the form of the correlation 209 

function, and the correlation length (L). The IEM also takes into account the sensor parameters such 210 
as the incidence angle (θ), the polarization (pq with p,q=H or V), and the radar wave number (k=2/ 211 
where  is the wavelength). The IEM has a validity domain that covers the range of roughness 212 
values that are commonly encountered for agricultural surfaces:  213 

kHrms3 

     25.0sin192.0exp46.0)²cos(   LkLkHrmsk  

 

 

 

(10) 

 

 Over bare soils in agricultural areas, the backscattering coefficient of the surface contribution 214 
is expressed at HH and VV polarizations as: 215 
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    (11) 

At cross polarization, the backscattering coefficient is as follows: 216 
 217 
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Where: 218 
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: Fresnel coefficient at horizontal polarization (14) 
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: Fresnel coefficient at vertical polarization (15) 
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(19) 

r : dielectric constant, obtained on the basis of volumetric water content (mv). In our study, 219 

Hallikainen empirical model is used [57]. 220 

r : relative permittivity 221 

Re: real part of the complex number 222 

*

ppf
: conjugate of the complex number ppf

 223 

)(nW  is the Fourier transform of the nth power of the surface correlation 224 
function: 225 

dydxeyxbaW byaxinn


 )()( ),(

2

1
),( 

  
             (20) 

The distribution of ),( yx  is exponential for low surface roughness values and Gaussian 226 

for high surface roughness values. For one-dimensional roughness profiles, the correlation 227 
functions are defined as follows: 228 

Gaussian:

lexponentia:)(
2

























L

x

L

x

e

ex
 

 

                                      (21) 

3.4. IEM modified by Baghdadi (IEM_B)  229 

Several studies reported important discrepancies between backscattering coefficients 230 
simulated by IEM and those measured by SAR sensors [36,44,49,58–62]. Baghdadi et al. [14,28] 231 
showed that the discrepancy between the observed and IEM simulated backscattering coefficients is 232 
mainly due to the correlation length parameter which is difficult to be measured with a good 233 
accuracy. To reduce such incongruities between simulated and measured backscattering values, 234 
Baghdadi et al. [34,46,63,64] proposed a semi-empirical calibration of the IEM backscattering, which 235 
consists of replacing the in situ measured correlation length by  a fitting parameter  (Lopt). Lopt 236 
depends on surface roughness conditions and SAR configurations (incidence angle, polarization 237 
and radar wavelength).This calibration has been performed by using large experimental datasets 238 
and SAR configurations (incidence angles from 23° to 57°, and HH, HV, and VV polarizations), and 239 

),( yx
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it has been carried separately at X-band in [46], C-band in [17,34] and L-band in [64]. The proposed 240 
calibration reduces the IEM’s input soil parameters from three to two (Hrms and mv only, instead of 241 
Hrms, L and mv). 242 

Lopt is computed at L-, C-, and X-bands using a Gaussian correlation function and it is 243 
described as follows: 244 

 245 

In X-band:  

 

(22) 

 

 246 

In C-band:  
(23) 

 

 247 

In L-band:  

 

   (24) 

 

 248 

Where  is in radians; Lopt and Hrms are in centimeters. Several studies showed that the use of 249 
the fitting parameter Lopt allows more correct estimations of the radar backscattering coefficient 250 
[51]. 251 

3.5. The Advanced Integral Equation Model 252 

The Advanced Integral Equation Model (AIEM) [20] is the updated version of the Integral 253 
Equation Model (IEM) [65]. In a comparison with the IEM, two improvements have been integrated 254 
into the AIEM: 1) the complete expressions for the Kirchhoff field coefficient and the 255 
complementary field coefficient based on the removal of the simplification assumption of the 256 
Green’s function have been included in the AIEM [20] and 2) a continuous Fresnel reflection 257 
coefficient is obtained using a transition model [66]. This update allows a more precise calculation 258 
of the simple scattering for a surface with a wide range of dielectric constant (

r ), large standard 259 

deviation of heights Hrms, and various remote sensing configurations. The AIEM simulates the 260 
radar backscattering coefficients basing on the same parameters as the IEM. 261 

4. Results and discussion 262 

This section shows the evaluation results of the five radar backscattering models Dubois, Oh, 263 
IEM, IEM_B and AIEM using large datasets, characterized by various radar wavelength (L,C and 264 
X), wide range of incidence angles and large geographical distribution in regions with different 265 
climate conditions (humid, semi-arid and arid sites). In this study each plot is considered as 266 
sampling unit. For each plot, SAR data was simulated through backscatter models using in situ 267 
measurements (mv, Hrms and L) averaged within that plot. Then, the simulated SAR signal were 268 
compared with the backscattering coefficients computed from calibrated SAR images by linearly 269 
averaging the σ° values of all pixels within the plot. 270 

4.1. Evaluation of the Dubois model 271 

The evaluation of Dubois model was carried out for different scenarios using all data, per 272 
radar wavelength, and by range of soil moisture, k Hrms, and incidence angle. 273 

Using all data, the Dubois model over-estimates slightly the radar signal by about 1.0 dB in 274 
HH polarization and under-estimates slightly the radar signal by about 0.7 dB in VV polarization 275 
(Table 2 Figures 1 and 2). RMSE is about 4.0 dB and 2.9 dB at HH and VV polarization, respectively 276 
(Table 2). The analysis of the error according to each radar frequency band separately (L, C and X) 277 
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shows an over-estimation in HH polarization, which is almost the same at L-, C- and X-bands 278 
(between 0.9 dB and 1.1 dB). In VV polarization, the Dubois model under-estimates the radar signal 279 
by about 1.8 dB and 0.4 dB for X and C bands, respectively. For L band, the Dubois model fits 280 
correctly the radar signal in VV because the difference between real data and simulations is about 281 
0.2 dB. The RMSE in HH is the same as at X- and C-bands, and is about 4.1 dB and decreases to 3.0 282 
dB at L-band. In VV polarization, the RMSE increases with the radar frequency (2.5 dB at L-band, 283 
2.8 dB at C-band and 3.1 dB at X-band). 284 

The analysis of the error of the Dubois model according to the validity domain was studied by 285 
range of surface roughness (k Hrms), soil moisture (mv) and incidence angle (Table 2). The Dubois 286 
model underestimates the radar signal for kHrms<2.5 (validity domain of the Dubois model) by 287 
about 0.4 dB and 1.2 dB in HH and VV polarizations, respectively. In the case of kHrms<2.5, the 288 
RMSE is about 3.6 and 3.0 dB for HH and VV polarizations, respectively. In addition, the Dubois 289 
model overestimates the radar signal for kHrms>2.5 by about 2.9 dB in HH polarization with RMSE 290 
about 4.6 dB. In VV polarization, the Dubois model fits correctly the radar signal in the case of 291 
kHrms>2.5 with a difference between real and simulated data of about 0.2 dB and a RMSE of 2.5 dB 292 
(Table 2).   293 

Moreover, the evaluation of the Dubois model was carried out by range of soil moisture (mv). 294 
Results show an overestimation in HH pol. by about 2.6 dB and a slightly underestimation in VV by 295 
about 0.5 dB with mv-values lower than 20 vol.% (RMSE= 4.6 and 2.8 dB at HH and VV, 296 
respectively) (Table 2). In besides, the Dubois model correctly simulates the backscattering 297 
coefficient in HH pol. with a difference between real data and simulations about 0.3 dB and 298 
underestimates the radar signal in VV by about 1.0 dB with mv-values greater than 20 vol.%. In the 299 
case of mv-values greater than 20 vol.%, the RMSE is about 3.4 dB and 3.0 dB for HH and VV 300 
polarization respectively. Finally, the performance of Dubois model was studied according to 301 
ranges of incidence angle (Table 2). For θ<30° (outside the validity domain of the Dubois model), 302 
the Dubois model overestimates the radar signal by -4.2 dB in HH polarization (RMSE=5.5 dB) and 303 
slightly underestimates the radar signal in VV polarization (real data – simulations = -0.6 dB) with a 304 
RMSE of 2.9 dB. At θ>30°, the Dubois model correctly simulates the backscattering coefficient in 305 
HH pol. with a difference between real data  and model of 0.3 dB at HH polarization and 306 
underestimates the backscattering at VV pol. by about 1.5 dB (RMSE= 3.2  dB and 2.9 dB for HH 307 
and VV polarizations, respectively). 308 

  309 
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Table 2. Comparison between the Dubois model output and real data using the entire dataset, and 310 
by separating two intervals of kHrms, soil moisture (mv) and incidence angle (). Bias = real data – 311 

simulations. 312 

    

 All 

data 

L-

band 

C-

band 

X-

band 

kHrms 

< 2.5 

kHrms 

> 2.5 

mv < 

20 

vol.% 

mv 

> 20 

vol. 

% 

 < 

30° 

 > 

30° 

Dubois 

for HH 

pol. 

Bias (dB) -1.0 -1.0 -1.1 -0.9 +0.4 -2.9 -2.6 +0.3 -4.2 +0.3 

RMSE 

(dB) 
4.0 3.0 4.1 4.1 3.6 4.6 4.6 3.4 5.5 3.2 

Dubois 

for VV 

Pol. 

Bias (dB) +0.7 -0.2 +0.4 +1.8 +1.2 -0.2 +0.5 +1.0 -0.6 +1.5 

RMSE 

(dB) 
2.9 2.5 2.8 3.1 3.0 2.5 2.8 3.0 2.9 2.9 

 

(a) 

 

(b) 

 

(c)                                                            

 

(d) 

Figure 1. Comparison between backscattering coefficient values obtained from SAR images and 313 
those estimated from the Dubois model at HH polarization. (a): Dubois model simulations vs SAR 314 
data, (b): difference between SAR signal and the Dubois model vs soil roughness (kHrms), (c): 315 
difference between SAR signal and the Dubois model vs soil moisture (mv), (d): difference between 316 
SAR signal and Dubois model vs incidence angle. 317 
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(a) 

 
(b) 

 
(c) 

 
                               (d)  

Figure 2. Comparison between backscattering coefficient values obtained from SAR images and those 318 
estimated using the Dubois model at VV polarization. (a): Dubois model simulations vs SAR data, (b): 319 
difference between SAR signal and Dubois model vs soil roughness (kHrms), (c): difference between SAR 320 
signal and the Dubois model vs soil moisture (mv), (d): difference between SAR signal and the Dubois model 321 
vs incidence angle. 322 

4.2. Evaluation of the Oh model 323 

The Oh model versions developed in 1992, 1994, 2002 and 2004 were applied to our datasets. 324 
The evaluation of the different Oh model versions was carried out firstly using all data, successively 325 
for each radar wavelength (L, C and X bands), and finally by range of soil moisture, kHrms and 326 
incidence angle (Table3, Figures 3, 4 and 5).  327 

Using the entire dataset, results showed that the different versions of Oh model correctly 328 
simulate the backscattering at both HH and VV polarizations with difference between real data and 329 
simulations varying between -0.9 and +0.4 dB at HH pol. and between (-1.3 dB and +0.4 dB) in VV 330 
pol. The RMSE values are approximately the same for all models and in both HH and VV 331 
polarizations, i.e. between 2.4 dB and 2.8 dB. The Oh 1992 model simulates slightly better the 332 
bacscattering than the other versions (Table 3).  For HV polarization, the Oh 2002 model simulates 333 
correctly the backscattering with a difference between real and simulated data of about +0.7 dB, 334 
with RMSE equal to 2.9 dB.   335 

In L-band, the different versions of the Oh model underestimate the backscattering at both HH 336 
and VV polarizations. This underestimation varies between 1.3 dB and 2.5 dB in HH polarization 337 
and between 0.7 dB and 2.1 dB in VV polarization (table 3). The RMSE is slightly higher in HH than 338 
in VV polarization (between 2.8 dB and 3.7 dB in HH and between 2.6 dB and 3.4 dB in VV). The Oh 339 
1994 version better simulates the backscattering than other versions of Oh model, with an 340 
underestimation of the backscattering between 1.3 dB and 0.7 dB and RMSE of 2.8 and 2.6 dB for 341 
HH and VV polarizations, respectively. At HV polarization, the Oh model underestimates the 342 
backscattering by about 1.5 dB with RMSE equal to 3.1 dB. 343 
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In C-band, the Oh 1992 model correctly simulates the backscattering in both HH and VV 344 
polarizations with differences between real and simulated data of 0.1 dB and 0.4 dB at HH and VV 345 
polarizations, respectively (Table 3). Besides, the RMSE is of 2.4 dB at HH and 2.3 dB at VV pol. 346 
Moreover, the other Oh versions overestimate the backscattering in both HH and VV polarizations 347 
(between 0.9  dB and 1.5 dB) with similar RMSE between 2.6 dB and 2.8 dB. At HV polarization, the 348 
Oh 2002 model slightly underestimates the backscattering by about 1.0 dB with a RMSE of 2.7 dB. 349 

The analysis of results obtained in X-band shows that Oh model versions simulate the radar 350 
signal with difference between real data and simulations between 0.0 and -1.2 dB in HH and  351 
between +0.4 and -2.1 dB in VV (Table 3, Figures 3,4, and 5 ).  The RMSE is between 2.3 and 2.8 dB 352 
in HH and between 2.0 and 2.7 dB in VV polarization. For HV polarization, the Oh model over-353 
estimates the backscattering by about 0.9 dB with RMSE of 3.8 dB. 354 

The analysis of the error was studied by selecting two ranges of surface roughness (kHrms<2.0 355 
and kHrms>2.0) (Table 3). This range is different from the general validity domain of the Oh model 356 
(0.13kHrms6.98) because it covers the entire dataset except only a few points.  For kHrms<2.0, the 357 
1994, 2002 and 2004 Oh models simulate correctly the backscattering at both HH and VV 358 
polarizations with differences between real data and simulations between -0.5 and +0.6 dB and  359 
RMSE between 2.4 dB and 2.7 dB. The Oh 1992 model underestimates the backscattering by 1.3 dB 360 
and 1.0 dB at HH and VV polarizations, respectively (RMSE is 2.9 for HH pol. and 2.7 dB for VV 361 
pol.). For kHrms>2.0, the 1992 and 2002 Oh versions simulate correctly backscattering at both HH 362 
and VV polarizations with difference between real and simulated data between -0.5 dB and -1.0 dB 363 
with RMSE between 2.3 and 2.6 dB. The 1994 Oh model over-estimates the backscattering at both 364 
HH and VV polarizations by about 1.7 dB and 2.1 dB, respectively (RMSE = 2.9 dB). The last version 365 
of the Oh model (Oh, 2004) underestimates the backscattering in HH polarization by about 1.5 dB 366 
(RMSE = 2.6 dB) and over-estimates it in VV polarization by about 2.0 dB (RMSE= 2.8 dB). At HV 367 
polarization, for kHrms<2, the Oh 2002 model underestimates the backscattering in HV by 1.8 dB 368 
(RMSE = 2.5 dB). In addition, Oh model correctly fits the backscattering for kHrms > 2.0, with a 369 
difference between the real and simulated data of about -0.7 dB and RMSE of 2.5 dB. 370 

Finally, the performance of the Oh model was studied according to its validity domain by 371 
selecting two intervals of soil moisture (mv<29.1 and mv>29.1 vol.%). For mv<29.1 vol.%, the 1992 372 
and 2002 Oh versions simulate correctly the backscattering coefficient at both HH and VV 373 
polarizations with  a difference between real and simulated data varying between -0.3 dB and -0.7 374 
dB. In addition, the 1994 and 2004 Oh models overestimate the backscattering at  both HH and VV 375 
polarizations (Table 3) with RMSE between 2.6 dB and 2.9 dB. In conclusion, for mv<29.1 vol.%, the 376 
1992 Oh model provides the best simulations. For mv>29.1.%, the 1994, 2002 and 2004 Oh models 377 
correctly simulate the backscattering with a difference between real and simulated data between -378 
0.8 dB and +0.5 dB, while the 1992 Oh model underestimates the backscattering by about 1.9 dB and 379 
1.5 dB at HH and VV polarizations, respectively (RMSE =3.1 dB for HH and 2.7 dB for VV). The 380 
RMSE values are approximately the same in the Oh 1994, 2002 and 2004 versions, and range 381 
between 2.2 dB and 2.6 dB. At HV polarization, the Oh model correctly simulates the backscattering 382 
for both range of mv-values, with  RMSE of 3.0 dB for mv<29.1 vol.% and RMSE of 2.6 dB for 383 
mv>29.1 vol.%. 384 

The validity domain of Oh model according to the incidence angle (10°≤  ≤ 70°) covers the 385 
entire dataset. Moreover our results showed that the performance of the Oh model is not dependent 386 
on the incidence angle. 387 

In conclusions, the Oh models simulate correctly the backscattering. Results showed that Oh 388 
1992 version is slightly better than other model versions. The performance of Oh model seems to be 389 
better in C- and X-bands than L-band. Moreover, most versions of the Oh model correctly simulate 390 
the backscattering in most cases although outside its mv validity domain. 391 
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Table 3. Comparison between real data and Oh models for all data and different ranges of kHrms 392 
and soil moisture (mv). Bias = real data – simulations. 393 

  
All 

data 

L-

band 

C-

band 

X-

band 

kHrms< 

2.0 

kHrms> 

2.0 

mv < 

29.1vol.% 

mv > 

29.1vol.% 

Oh et 

al. 

(1992) 

HH 
Bias (dB) +0.4 +2.5 +0.1 0.0 +1.3 -0.5 -0.3 +1.9 

RMSE (dB) 2.6 3.7 2.4 2.5 2.9 2.3 2.3 3.1 

VV 
Bias (dB) +0.1 +2.1 +0.4 -1.2 +1.0 -0.7 -0.4 +1.5 

RMSE (dB) 2.4 3.4 2.3 2.1 2.7 2.0 2.3 2.7 

Oh et 

al. 

(1994) 

HH 
Bias (dB) -0.9 +1.3 -1.2 -1.2 -0.05 -1.7 -1.6 +0.5 

RMSE (dB) 2.8 2.8 2.7 2.8 2.6 2.9 2.9 2.5 

VV 
Bias (dB) -1.3 +0.7 -1.3 -2.1 -0.5 -2.1 -1.7 -0.4 

RMSE (dB) 2.6 2.6 2.6 2.7 2.4 2.9 2.8 2.2 

Oh et 

al. 

(2002) 

HH 
Bias (dB) -0.3 +2.1 -0.9 -1.0 +0.3 -0.9 -0.7 +0.4 

RMSE (dB) 2.7 3.2 2.7 2.8 2.7 2.6 2.7 2.5 

HV 
Bias (dB) +0.7 +1.5 +1.0 -0.9 +1.8 -0.7 +0.5 +0.8 

RMSE (dB) 2.9 3.1 2.7 3.8 3.2 2.5 3.0 2.6 

VV 
Bias (dB) -0.6 +1.8 -1.2 +0.4 -0.2 -1.0 -0.7 -0.5 

RMSE (dB) 2.5 2.9 2.7 2.0 2.5 2.6 2.6 2.5 

Oh 

(2004) 

HH 
Bias (dB) -0.5 +2.1 -1.0 -0.6 0.6 +1.5 -0.9 +0.4 

RMSE (dB) 2.6 3.3 2.7 2.3 2.6 2.6 2.7 2.6 

VV 
Bias (dB) -1.1 +1.4 -1.5 -1.4 -0.2 -2.0 -1.3 -0.8 

RMSE (dB) 2.6 2.8 2.8 2.1 2.4 2.8 2.6 2.6 

  394 
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(a) 

 
(b) 

 
(c)                                                            

 
(d) 

Figure 3. Comparison between backscattering coefficients derived from SAR images and those 395 
estimated from the Oh 1992 model at HH polarization, (a): Oh model simulations vs SAR data, (b): 396 
difference between SAR signal and Oh model results vs soil roughness (kHrms), (c): difference 397 
between SAR signal and Oh model results vs soil moisture (mv), (d): difference between SAR signal 398 
and Oh model results vs incidence angle. 399 

  400 
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(a) 

 
(b) 

 
(c) 

 
                               (d)  

Figure 4. Comparison between backscattering coefficients derived from SAR images and those 401 
estimated from the Oh 1992 model at VV polarization, (a): Oh simulations vs SAR data, (b): 402 
difference between SAR signal and the Oh model vs soil roughness (kHrms), (c): difference between 403 
SAR signal and Oh model results vs soil moisture (mv), (d): difference between SAR signal and Oh 404 
model results vs incidence angle.  405 
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(a) 

 
(b) 

 
(c) 

 
                               (d)  

Figure 5. Comparison between backscattering coefficients derived from SAR images and those 406 
estimated from the Oh 2002 model at HV polarization, (a): Oh simulations vs SAR data, (b): 407 
difference between SAR signal and Oh model results vs soil roughness (kHrms), (c): difference 408 
between SAR signal and Oh model results vs soil moisture (mv), (d): difference between SAR signal 409 
and Oh model results vs incidence angle. 410 

4.3.  Evaluation of the IEM  411 

The IEM was tested on our dataset using both a Gaussian correlation function (GCF) and an 412 
exponential correlation function (ECF). The evaluation of the IEM was carried out firstly using the 413 
entire dataset, later on for each radar wavelength (L-, C- and X-bands) and finally according to the 414 
validity domain of the IEM (Eq. 10).  415 

Using all data, the IEM simulates the backscattering in HH polarization with an RMSE of 10.5 416 
dB and 5.6 dB for GCF and ECF, respectively (Table 4). At VV polarization, the RMSE is 9.2 dB for 417 
GCF and 6.5 dB for ECF. At HV polarization, the RMSE is higher than 30.0 dB for both GCF and 418 
ECF. Some points show a large discrepancy between the real data and the IEM simulations 419 
performed using both ECF and GCF (Figures 6-11). In case of the ECF (figures 9, 10, and 11), these 420 
points are mainly outside the IEM validity domain (Eq. 10).  In case of GCF (Figures 6, 7, and 8), the 421 
huge error is due to the high sensitivity of the IEM to roughness parameters (Hrms and L). Using 422 
the GCF, the IEM underestimates the backscattering coefficients for data with low Hrms values 423 
(kHrms<3), high L values (L>4 cm) and with high incidence angle (>35°). Using the ECF, the 424 
sensitivity of backscattering to the roughness parameters is much lower (Figures 9, 10 and 11). 425 
Altese et al. [67], Zribi et al. [23,68], and Callens et al. [69] showed that in agricultural areas, the ECF 426 
usually provides better agreement to real data than the GCF. 427 

The results obtained in L-band show that the IEM simulates the backscattering in HH pol. 428 
using both GCF and ECF with differences between real data and model simulations ranges between 429 

-0.9 dB and +0.6 dB, with an RMSE of 3.6 dB for GCF and 2.9 dB for ECF (Table 4). At VV 430 
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polarization, the IEM overestimates the backscattering by about 2.5 dB and 1.3 dB for GCF and ECF, 431 
respectively (RMSE of 5.0 dB for GCF and 3.5 dB for ECF). At HV polarization, the IEM simulates 432 
the backscattering using GCF with RMSE of 14.5 dB using GCF, and lower RMSE (6.8 dB) using 433 
ECF. 434 

According to the results observed in C-band, the IEM simulates the backscattering using GCF 435 
with RMSE of 11.2 dB and 8.6 dB for HH and VV polarizations, respectively (Table 4). The RMSE is 436 
lower with ECF than GCF about 4.1 dB for HH and 4.9 dB for VV polarizations. At HV polarization, 437 
the RMSE is higher than 25.0 dB using both GCF and ECF. 438 

The results obtained in X-band show that the IEM simulates the backscattering with higher 439 
RMSE than L- and C- bands, the RMSE in HH pol. being about 10.6 dB for GCF and 8.3 dB for ECF. 440 
At VV polarization, the RMSE is 11.3 dB for GCF and 9.4 dB for ECF. At HV polarization, the IEM 441 
simulates the backscattering with high RMSE which is larger than 54.0 dB using both GCF and ECF. 442 

The analysis of the error was also studied according to the validity domain of the IEM (Eq. 10). 443 
Inside the validity domain, the RMSE is larger than 11.5 dB for both HH and VV polarizations using 444 
GCF. Better results were obtained using ECF, where the IEM correctly simulates the backscattering 445 
at both HH and VV polarizations with differences between real and simulated data between -1.2 dB 446 
and -0.9 dB with RMSE of 3.2 dB at HH and 3.7 dB at VV polarizations, using data concerning the 447 
IEM validity domain. Outside the IEM validity domain, the IEM simulates the backscattering with 448 
RMSE of 6.7 dB for HH and 3.1 dB for VV using GCF; wheras RMSE is 7.8 dB for HH and 9.4 dB for 449 
VV polarization using ECF. At HV polarizations, model simulations show large differences from 450 
real data for both GCF and ECF for points inside or outside the validity domain of the IEM (in this 451 
case, RMSE is larger than 20 dB). Errors observed on IEM simulations were also studied as a 452 
function of the difference between Lopt and the measured correlation length (L). Results show that 453 
the IEM using GCF gives poor simulations mainly when the measured correlation length was over-454 
estimated (L>Lopt). In this case, the IEM strongly under-estimates the SAR backscatter. In addition, 455 
the performance of the IEM was also analyzed using ECF according to the difference between Lopt 456 
and L. Results show the same performance of the IEM whatever the difference between Lopt and 457 
L.Error on IEM simulation was also studied as a function of the difference between Lopt and 458 
Lmeasured. Results showed that the IEM gives poor simulations when Lopt is lower than 459 
Lmeasured. Indeed, in the case of data with Lopt lower than Lmeasured, the IEM model strongly 460 
over-estimates the SAR backscatter. 461 

As a conclusion, we could say that the IEM better simulates the backscattering in L- band than 462 
in C- and X-bands. Moreover, the results show a better fitting with real data using ECF instead than 463 
GCF,which agrees with the validity domain of the IEM. 464 
  465 
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Table 4. Comparison between real data and IEM versions (original model, IEM_B and AIEM) using 466 
both GCF and ECF. (1)  all data, (2) for different SAR wavelength, (3) according to the validity 467 

domain of IEM. Bias = real data – model simulations. 468 

 

All 

data 

L-

band 

C-

band 

X-

band 

inside the 

validity 

domain 

outside the 

validity 

domain 

IEM  using GCF 

HH 
Bias (dB) +0.8 -0.9 +0.7 +1.5 +2.6 -1.8 

RMSE (dB) 10.5 3.6 11.2 10.6 12.4 6.7 

HV 
Bias (dB) +17.2 +5.2 +11.8 +46.3 +18.0 +14.1 

RMSE (dB) 38.4 14.5 26.7 74.0 28.5 50.1 

VV 
Bias (dB) +0.4 -2.5 +0.7 +3.5 +1.2 -0.9 

RMSE (dB) 9.2 5.0 8.6 11.3 11.5 3.1 

IEM using ECF 

HH 
Bias (dB) +0.8 +0.6 -1.0 +4.2 -1.2 +3.8 

RMSE (dB) 5.6 2.9 4.1 8.3 3.2 7.8 

HV 
Bias (dB) -15.8 +1.2 -19.9 0.0 -15.8 -17.1 

RMSE (dB) 31.4 6.8 25.1 54.4 20.1 44.3 

VV 
Bias (dB) +2.2 -1.3 +0.5 +6.7 -0.9 +7.1 

RMSE (dB) 6.5 3.5 4.9 9.4 3.7 9.4 

IEM_B with Lopt using GCF 

HH 
Bias (dB) -0.3 -0.1 -0.6 +0.3 

 

RMSE (dB) 2.0 2.3 2.1 1.8 

HV 
Bias (dB) 

  

-1.3 

 RMSE (dB) 3.1 

VV 
Bias (dB) +0.1 +0.2 0 +0.3 

RMSE (dB) 1.9 2.3 1.9 1.8 

AIEM using GCF 

HH 
Bias (dB) +2.3 -3.2 +2.9 +3.1 

 

RMSE (dB) 12.2 5.4 13.4 11.7 

VV 
Bias (dB) 0.0 -4.1 +0.5 +0.5 

RMSE (dB) 10.8 5.9 11.4 11.0 

AIEM using ECF 

HH 
Bias (dB) -2.3 -3.0 -3.6 +0.2 

 

RMSE (dB) 4.4 4.4 4.6 4.2 

VV 
Bias (dB) -1.8 -2.4 -2.3 -0.7 

RMSE (dB) 3.8 4.4 3.8 3.7 
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Figure 6. Comparison between backscattering coefficients derived from SAR images and those 469 
estimated from IEM at HH polarization using GCF. (a): IEM simulations vs SAR data, (b): difference 470 
between SAR signal and IEM vs soil roughness (kHrms), (c): difference between SAR signal and IEM 471 
vs soil moisture (mv), (d): difference between SAR signal and IEM vs incidence angle. 472 
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Figure 7. Comparison between backscattering coefficients derived from SAR images and those 474 
estimated from IEM at VV polarization using GCF. (a): IEM simulations vs SAR data, (b): difference 475 
between SAR signal and IEM vs soil roughness (kHrms), (c): difference between SAR signal and IEM 476 
vs soil moisture (mv), (d): difference between SAR signal and IEM vs incidence angle. 477 
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Figure 8. Comparison between backscattering coefficients derived from SAR images and those 480 
estimated from IEM at HV polarization using GCF. (a): IEM simulations vs SAR data, (b): difference 481 
between SAR signal and IEM vs soil roughness (kHrms), (c): difference between SAR signal and IEM 482 
vs soil moisture (mv), (d): difference between SAR signal and IEM vs incidence angle. 483 
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                               (d)  

Figure 9. Comparison between backscattering coefficients derived from SAR images and those 485 
estimated from IEM at HH polarization using ECF. (a): IEM simulations vs SAR data, (b): difference 486 
between SAR signal and IEM vs soil roughness (kHrms), (c): difference between SAR signal and IEM 487 
vs soil moisture (mv), (d): difference between SAR signal and IEM vs incidence angle. 488 
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Figure 10. Comparison between backscattering coefficients derived from SAR images and those 490 
estimated from IEM at VV polarization using ECF. (a): IEM simulations vs SAR data, (b): difference 491 
between SAR signal and IEM vs soil roughness (kHrms), (c): difference between SAR signal and IEM 492 
vs soil moisture (mv), (d): difference between SAR signal and IEM vs incidence angle. 493 
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Figure 11. Comparison between backscattering coefficients derived from SAR images and those 496 
estimated from IEM at HV polarization using ECF. (a): IEM simulations vs SAR data, (b): difference 497 
between SAR signal and IEM vs soil roughness (kHrms), (c): difference between SAR signal and IEM 498 
vs soil moisture (mv), (d): difference between SAR signal and IEM vs incidence angle. 499 

4.4. Evaluation of IEM modified by Baghdadi (IEM_B) 500 

The IEM_B was also tested on our dataset. This model version was run using GCF (Figures 12, 501 
13 and 14). In comparison to the original IEM, results show that the RMSE was significantly lower. 502 
Using the entire dataset, the IEM_B correctly simulates the backscattering  at both HH and VV 503 
polarizations showing low differences between real data and model simulations (-0.3 dB for HH 504 

and +0.1 dB for VV) with approximately similar RMSE of about 2.0 dB (Table 4). Moreover, the 505 
evaluation of the IEM_B was tested separately for each SAR band. Results show that the IEM_B 506 
correctly simulates the backscattering in comparison to the original model for all bands and in both 507 
HH and VV polarizations with a difference between real data and model simulations lower than 1.0 508 
dB and with approximately similar RMSE between 1.8 and 2.3 dB (Table 4). At HV polarization, the 509 
IEM_B slightly over-estimates the backscattering by about 1.3 dB with RMSE of 3.1 dB, (the IEM_B 510 
was run only at C-band). Moreover, results show that the IEM_B simulations in both HH and VV 511 
pol., are slightly better in X- and C-bands than in L-band. The analysis of the difference between 512 
IEM_B simulations and SAR data versus the difference between Lopt and the measured correlation 513 
length (L) shows that IEM_B simulates well SAR data whatever the value of the difference between 514 
Lopt and L.The analysis of the difference between IEM_B simulations and SAR data versus the 515 
difference between Lopt and the measured correlation length (Lmeasured) shows that IEM_B 516 
simulates well SAR data whatever the value of the difference between Lopt and Lmeasued. 517 
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Figure 12. Comparison between backscattering coefficients derived from SAR images and those 518 
estimated from IEM_B at HH polarization using GCF. (a): IEM_B simulations vs SAR data, (b): 519 
difference between SAR signal and IEM_B vs soil roughness (kHrms), (c): difference between SAR 520 
signal and IEM_B vs soil moisture (mv), (d): difference between SAR signal and IEM_B vs incidence 521 
angle. 522 
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Figure 13. Comparison between backscattering coefficients derived from SAR images and those 525 
estimated from IEM_B at VV polarization using GCF. (a): IEM_B simulations vs SAR data, (b): 526 
difference between SAR signal and IEM_B vs soil roughness (kHrms), (c): difference between SAR 527 
signal and IEM_B vs soil moisture (mv), (d): difference between SAR signal and IEM_B vs incidence 528 
angle. 529 
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Figure 14. Comparison between backscattering coefficients derived from SAR images and those 531 
estimated from IEM_B in C-band at HV polarization using GCF. (a): IEM_B simulations vs SAR 532 
data, (b): difference between SAR signal and IEM_B vs soil roughness (kHrms), (c): difference 533 
between SAR signal and IEM_B vs soil moisture (mv), (d): difference between SAR signal and 534 
IEM_B vs incidence angle. 535 

4.5. Evaluation of the Advanced Integral Equation Model (AIEM) 536 

The AIEM was tested on our dataset at HH and VV polarizations using both GCF and ECF. For 537 
all data, the AIEM simulates the backscattering at HH and VV polarizations using GCF with RMSE 538 
larger than 10 dB (Table 4, Figures 15 and 16). Moreover, results show better agreements of the 539 
AIEM with real data using ECF (Figures 17 and 18). Indeed, the AIEM tends to overestimates the 540 
backscattering by about 2.3 dB at HH and 1.8 dB at VV (RMSE is 4.4 dB for HH and 3.8 dB for VV). 541 
Using the ECF, Figures 17 and 18 show high overestimations of the backscattering for low values of 542 
surface roughness (kHrms<4) and for incidence angles higher than 35°. Moreover, Figures 17 et 18 543 
show high underestimation of the radar signal (using ECF) in both HH and VV polarizations for 544 
points with high surface roughness (kHrms>6), low mv-values (mv<5 vol.%, and with low incidence 545 
angles (<20°). Figures 15 and 16 show that some points show high discrepancies between the real 546 
data and the AIEM simulations using GCF. Due to the high sensitivity  to surface roughness of the 547 
AIEM using GCF, these points correspond mainly to surface with kHrms<3, L>4 cm and >35°. 548 

The performance of the AIEM was also evaluated for each SAR wavelength. Results show that 549 
in L-band the AIEM simulates the backscattering with RMSE of about 5.0 dB at both HH and VV 550 
polarizations using the GCF. In C and X-bands, the AIEM using GCF simulates the backscattering 551 
with RMSE higher than in L-band (RMSE>11 dB).  Moreover, AIEM better simulates better the 552 
backscattering in using GCF than ECF for all wavelength (RMSE about 4 dB). 553 

In conclusions, the AIEM is able to better simulate better the backscattering than the original 554 
IEM only using the ECF with better results in X-band than in C- and L-bands.  555 
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Figure 15. Comparison between backscattering coefficients derived from SAR images and those 556 
estimated from AIEM at HH polarization using GCF. (a): AIEM simulations vs SAR data, (b): 557 
difference between SAR signal and AIEM vs soil roughness (kHrms), (c): difference between SAR 558 
signal and AIEM vs soil moisture (mv), (d): difference between SAR signal and AIEM vs incidence 559 
angle. 560 
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(d) 

Figure 16. Comparison between backscattering coefficients derived from SAR images and those 563 
estimated from AIEM at VV polarization using GCF. (a): AIEM simulations vs SAR data, (b): 564 
difference between SAR signal and AIEM vs soil roughness (kHrms), (c): difference between SAR 565 
signal and AIEM vs soil moisture (mv), (d): difference between SAR signal and AIEM vs incidence 566 
angle. 567 
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                               (d)  

Figure 17. Comparison between backscattering coefficients derived from SAR images and those 570 
estimated from AIEM at HH polarization using ECF. (a): AIEM simulations vs SAR data, (b): 571 
difference between SAR signal and AIEM vs soil roughness (kHrms), (c): difference between SAR 572 
signal and AIEM vs soil moisture (mv), (d): difference between SAR signal and AIEM vs incidence 573 
angle. 574 

  575 



Water 2016, 8, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/water 

 576 

 
(a) 

 
(b) 

 

(c)                                                            

 
(d) 

Figure 18. Comparison between radar backscattering coefficients calculated from SAR images and 577 
those estimated from AIEM for VV polarization using ECF. (a): AIEM simulations vs SAR data, (b): 578 
difference between SAR signal and AIEM vs soil roughness (kHrms), (c): difference between SAR 579 
signal and AIEM vs soil moisture (mv), (d): difference between SAR signal and AIEM vs incidence 580 
angle. 581 

5. Conclusion 582 

Physical (IEM, IEM_B and AIEM) and semi-empirical (Oh and Dubois) backscattering models 583 
were tested using a wide dataset composed by large intervals of surface conditions (mv between 2 584 
vol.% and 47 vol.%, Hrms between 0.2 cm and 9.6 cm and k Hrms from 0.2 and 13.4), the dataset was 585 
acquired over bare soils in various agricultural study sites (France, Italy, Germany,  Belgium, 586 
Luxembourg, Canada and Tunisia) characterized by large variety of climatological conditions and 587 
using SAR sensors  in L-, C- and X-bands with incidence angle between 18° and 57°. 588 

Results show that the IEM modified by Baghdadi (IEM_B used the empirical correlation length 589 
instead of measured correlation length) provides the most accurate SAR simulations (bias lower 590 
than 1.0 dB and RMSE lower than 2.0 dB) with slightly better performance in X-band (RMSE=1.8 591 
dB) than in L- and C-bands (RMSE between 1.9 and 2.3 dB). At HV polarization, the IEM_B was 592 
only run at C-band. Results show that the RMSE strongly decreases from values higher than 25.1 593 
dB, using the original IEM, to 3.1 dB, using IEM_B. In contrast, high RMSE were found using both 594 
IEM and AIEM using Gaussian correlation function (RMSE higher than 9.2 dB) for both HH and VV 595 
polarizations because of the high sensitivity of the Gaussian correlation function to roughness 596 
parameters, mainly for kHrms<3 and L>4 cm. Moreover, results show better simulations of 597 
measured backscattering coefficients for both IEM and AIEM using exponential correlation function 598 
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(RMSE > 5.6 dB for IEM and RMSE > 3.8 dB for AIEM) at HH and VV polarizations. At HV 599 
polarization, IEM results show very high errors (RMSE larger than 30.0 dB using both Gaussian 600 
correlation function and exponential correlation function). The AIEM better simulates the 601 
backscattering than the original IEM only using the exponential correlation function with slightly 602 
better results in X-band than in C- and L-bands. In contrast, the IEM simulates better the 603 
backscattering in L- band than C- and X-bands (Table 4).  604 

Using the empirical models, all the Oh model versions show good agreements (RMSE<3.0 dB) 605 
with measured backscattering with slightly better performance of the Oh 1992 version (bias less 606 
than 1.0 dB and RMSE less than 2.6 dB) at both HH and VV polarizations. The Oh model provides 607 
better results than Dubois model which simulates the backscattering in HH with RMSE of 4.0 dB, 608 
and slightly better simulations for VV with RMSE of 2.9 dB. At HV polarization, the Oh 2002 609 
version correctly simulates the backscattering with difference between real and simulated data of 610 
about +0.7 dB and RMSE of 2.9 dB. The performance of the Oh 1992 version in HH and VV 611 
polarizations is better in C- and X-bands (bias between -1.2 and +0.4 dB with RMSE <2.5 dB) than in 612 
L-band (bias > +2.0 with RMSE >3.0 dB). 613 

It should be mentioned that the use of different in situ sampling methods and SAR acquisition 614 
techniques may also contribute to the modelling errors. Indeed, the datasets comprises both 615 
airborne and space-borne acquisitions, which may cause scaling effects. In addition, in-situ data 616 
have been collected using different techniques, both regarding soil moisture (gravimetric and TDR, 617 
sometimes at different sampling depths) and roughness (different profile length and sampling 618 
intervals, and post-processing methods).  619 

This study evaluated the robustness of the most used backscattering models by means of 620 
statistical indices (Bias and RMSE). These statistical indices should guide in choosing the 621 
appropriate model for backscattering coefficients simulation. As it has been shown in the present 622 
study, the IEM modified by Baghdadi (IEM_B) was the most accurate model among the others. 623 
Thus, it is preferred to use the IEM_B in the inversion procedure of SAR backscattering coefficient 624 
in order to more accurately estimate soil moisture and roughness parameters. 625 
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