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Abstract— Exergames involve using the fullbody to inter-
act with an immersive world, which raises the challenge of
capturing, processing and recognizing the action of the user
even for cheap mocap systems such as the Microsoft Kinect.
In fact, these recent technological advances have renewed
interest in skeleton-based action recognition. Our review of
related literature reveals that the issues encountered are not
the result of random processes, which could simply be studied
by using statistical tools, but are instead due to the fact that
the pattern to be recognized, i.e. an action, was produced by a
human being. 2D hand-drawn symbols are further examples
of patterns resulting from a human motion. Therefore, the
main contribution of this paper is to examine the validity of
transferring the expertise of hand-drawn symbol representation
to better recognize actions based on skeleton data. Principally,
we propose a new action representation, namely the 3DMM,
as an initial case-study illustrating how such transfer could
be conducted. The experimental results, obtained over two
benchmarks, confirm the soundness of our approach and
encourage more thorough examination of the transfer.

I. INTRODUCTION

Recognition of human actions has recently become an
active research topic in computer vision. It has great potential
in applications such as video surveillance, sport video analy-
sis, human-computer interaction, motion retrieval, computer
animation and so forth.

Recent advances in sensing technology have renewed
interest in skeleton-based human action recognition and,
since then, various skeleton-based recognition methods have
flourished. In particular, we noticed that the best ones are not
limited only to the pattern recognition aspect of the problem.
In fact, it becomes clear that the many issues observed in
human action patterns, such as the inter-class similarity and
the intra-class variability, should not be considered as merely
resulting from random processes. These issues are governed
instead by kinematic constraints that must be considered
while modelling these human motions.

This key observation is therefore, specifically and even
exclusively due to the fact that the pattern to be represented
and recognized, i.e. an action, was produced by a human
being. 2D hand-drawn symbols are further examples of
patterns produced by a human motion, since they result from
the movement of a human hand, and the issues encountered
during their representation are accordingly due to more than
random processes. Interestingly, the proposed methods for
the recognition of online 2D hand-drawn patterns are well
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Fig. 1. Major steps constituting the proposed skeleton-based action
recognition approach.

ahead as far as the consideration of human-related constraints
in the conception of their representations is concerned.

Our work is therefore guided by the following question:
“Is it possible to represent and recognize 3D skeleton-based
human actions by transferring the rich expertise acquired
in representing online hand-drawn symbols, in terms of
reasonable dimensionality, high performance and the con-
sideration of kinematic constraints?”. A positive answer to
this approach would not only enhance the research about
action recognition, by avoiding the repetition of trial and
error, but would even allow for the emergence of transversal
recognition approaches which could recognize both hand-
drawn symbols and 3D human actions.

Considering this research trend, we put forward in this
paper a new skeleton-based action representation, namely the
3DMM, in the form of an initial case-study illustrating how
such a transfer can be conducted. This approach consists of
mapping 3D trajectory data into 2D feature space; hence,
the name: 3D Multistroke Mapping (3DMM). We purposely
built on an existing online hand-drawn feature-set, namely
the HBF49 [1], given its ability to deal with patterns of a
diverse nature.

The general pipeline of the 3DMM approach is composed
of three stages (Figure 1). The first step, called data prepro-
cessing, consists of applying a series of operations to the
input skeleton data in order to specifically ensure against
the invariance of different morphologies. The second step
deals with the actual representation transfer of the action.



This consists of projecting the processed joint trajectories
on each of the Cartesian planes in order to extract the so-
called HBF49 features. Finally, the classification was carried
out based on two classifiers namely Multilayer Perceptron
(MLP) and Support Vector Machines (SVM).

The remainder of this paper is organized as follows.
Section II, concerns the presentation of the work related to
human action recognition focusing on the approaches based
on skeleton data. Here, the HBF49 feature-set is briefly
presented. Section III, centers around, the presentation of the
3DMM approach as an initial case-study of such a transfer.
The experimental results obtained over two skeleton-based
benchmarks, including HDM05 [2] and UTKinect-Action
datasets [3], are presented in Section IV. Section V concludes
this paper and discusses future work.

II. RELATED WORK

Our aim in this paper is to explore a new trend consisting
of how skeleton-based actions could be represented based on
previous expertise of online hand-drawn symbol recognition.

On the one hand, it is important to highlight that a hand-
drawn symbol does not only refer to a handwritten text. In
fact, it covers a wider field which, in addition to handwriting,
includes sketch diagrams, signatures, free drawings and pen-
based control commands.

Early online hand-drawn recognition approaches focused
on recognizing only single-stroke symbols. A stroke is the
trace of a pen-tip movement which starts at pen-down and
ends at pen-up. However, multistroke symbol recognizers
have to take into account shape variations, differences in
stroke ordering, and a varying number of strokes.

In particular, Delaye et al. [1] conceived a new feature-
set, called HBF49 (Heterogeneous Baseline Feature Set).
Compared to most feature-sets proposed in other hand-drawn
symbol recognition approaches, this set, composed of 49 fea-
tures, has a great advantage regarding its low dimensionality.
Furthermore, according to its authors, the HBF49 feature-
set aims at recognizing hand-drawn symbols in a very wide
range of different contexts. It is able to describe any kind
of symbol, either monostroke or multistroke and includes
some features that are sensitive to orientation and stroke
order. Last, the high performance achieved by the HBF49
over different kind of benchmarks is another reason why we
retained this feature-set.

On the other hand, action recognition based on skeleton
data is attracting an increasing attention among the computer
vision community. In fact, a skeletal representation can not
only capture the essential structure of a subject in an easily-
understood and compact way, but it is also insensitive to
variations in viewpoint, human body scale and motion speed.

The histogram-based representations, such as the His-
tograms of 3D Joint Locations (HOJ3D) [3] or the Histogram
of Oriented Displacements (HOD)[4], are among the first
techniques used to model human actions based on skeleton
data. However using only histograms made it difficult to
distinguish gestures that are the reverse of each other.

An other approach consisted then in projecting the joint
trajectories into a more adapted representation spaces. For
instance, Vemulapalli et al. [5] have explicitly modelled
displacement between body parts as curves belonging to the
special Euclidean group SE(3).

Recently, Chaudhry et al. [6] introduced a new research
trend by using the 3D raw coordinates to build a bio-
inspired representation through leveraging findings in the
area of static shape encoding in the neural pathway of the
primate cortex. Similarly Zhang and Parker [7] conceived
a bio-inspired representation, called BIPOD, by spatially
decomposing 3D human skeleton trajectories and projecting
them onto three anatomical planes, and then encoding high-
order temporal dependencies.

Globally, previous skeleton-based approaches aimed to
find the best way for extracting the most discriminant in-
formation to represent an action. One can notice that recent
approaches, such as the bio-inspired representations [6], [7],
tend to take into account the physiological aspect of this
particular pattern recognition problem. In our current work,
we aim to go a step forward as far as the consideration of
kinematic constraints is concerned. In fact, we think that
an interesting research trend into 3D skeleton-based human
action recognition could be based on extending the achieve-
ments realized in online 2D symbol recognition. To this end,
we have retained the features of the HBF49 introduced above
since it was designed for the recognition of most kinds of
hand-drawn symbols while considering, at the same time,
the kinematic aspects of the problem. The approach resulting
from this transfer is outlined in Section III.

III. PROPOSED APPROACH

This section deals with our proposed action recognition
approach, namely: 3D Multistroke mapping (3DMM). Our
goal is to show that the proposed 2D to 3D transfer may
be promising, and, hence, we do not attempt to find the
best way to conduct this transfer. In this regard, we present
successively the three main steps composing the 3DMM
approach, namely data preprocessing, action representation
and classification which are illustrated in Figure 1.

A. Data preprocessing

Preprocessing mainly aims to tackle the anthropometric
differences between individuals. For example, walking move-
ments can differ in speed and footsteps since, in general,
subjects have different limbs’ length. To strengthen such an-
thropometric invariance, we retained the data transformation
that was initially proposed for motion editing in computer
animation by [8] and later adapted for gesture recognition
by [9].

According to this proposition, the 3D trajectories of 12
joints associated with movement of arms and feet, including
the shoulders, elbows, wrists, hips, knees and ankles should
be considered in order to capture the information necessary
for an action (Figure 2). The 3D position jti of each joint ji
at time t is given according to the coordinate system centred
in the hip joint of the skeleton.



Fig. 2. Selected joints and the associated morphology-independent vectors.

Given these coordinates, four vectors are computed corre-
sponding to each body part, namely, Left Arm, Right Arm,
Left Leg and Right Leg. For instance the Left Arm vector
noted ~VLeftArm(t) relates to the two end joints of the left-
up body part which are Left Shoulder jtLSh and Left Wrist
jtLWr, at time t (Eq.1).

~VLeftArm(t) =
−−−−−−→
jtLShj

t
LWr (1)

The three other vectors namely, ~VRightArm(t),
~VLeftLeg(t) and ~VRightLeg(t) are computed in a similar
way. All these vectors are represented in Figure 2.

After that, total-extension normalization is performed for
each vector to make it independent from body size. That is
to say, the vector ~VLeftArm(t) for instance is normalized by
the total arm length to obtain the morphology independent
vector of the left-up body part at time t which we refer to as
~V MI
LeftArm(t). This normalization is expected to reduce the

influence of the subject morphology. The used formula is
given in Eq.2, where jtLElbow refers to the Left Elbow joint
position at time t.

~V MI
LeftArm(t) =

~VLeftArm(t)

||jtLShj
t
LElbow||+ ||jtLElbowj

t
LWr||

(2)

For any given action, the variation across time of the vec-
tors introduced gives rise to four morphology-independent
trajectories used as input data to the next step, namely action
representation.

B. Action representation

In the following passages, we shall introduce the assump-
tion that led to the proposed transfer, which we refer to as
multistroke assumption and then, based on this, explain the
feature extraction procedure. Finally, we aim to justify the
feature selection used to obtain the final action representa-
tion.

1) Multistroke assumption and feature extraction: In this
step, the four preprocessed 3D trajectories have to be pro-
jected on to the three planes, namely, (XOY), (YOZ) and
(ZOX). As shown in Figure 3(a), this projection yields four
trajectories in each plane. Then, instead of designing a new
set of features as was done in existing approaches, we opted

for using the previously mentioned HBF49 set which has
already proved itself to be very efficient in the field of 2D
trajectory recognition.

After projection, the hand-drawn HBF49 features are ex-
tracted separately from each plane. In each such a plane the
feature extraction might be performed either according to the
monostroke or the multistroke strategy. (1) In monostroke
feature extraction, each trajectory is considered as a 2D
monostroke “symbol” and is, thus, processed independently
of the others. (2) In multistroke feature extraction strategy,
the separate projected trajectories are considered as different
strokes composing the same 2D “symbol”, and thus we ex-
tract the features as for a multistroke hand-drawn symbol. We
therefore followed a multistroke modelling which considers,
in fact, a 3D action as three projected multistroke “symbols”
where each stroke is related to one of the four body parts
(limbs) previously identified (Figure 3(b)).

Fig. 3. For a motion involving 4 limbs, each trajectory is projected on
to the three planes. (a) In the monostroke version, each single trajectory
is considerd alone, hence the different colour for each such a trajectory.
(b) In the multistroke version, a symbol is composed of all the projected
trajectories belonging to the same plane, and are coloured the same in this
illustration.

As has been discussed in related work, the HBF49 can
characterize both monostroke and multistroke symbols with
the same number of features. That is, the multistroke variant
generates 49 features per plane and thus results in an action
representation composed of 147 features (3 ∗ 49). Compared
to monostroke, multistroke preserves correlation and offers a
smaller feature-set. In our work, we have retained, therefore,
this variant for the action representation step; hence, the
name of the approach : 3D Multistroke Mapping (3DMM).
We consider that the extension of the multistroke concept,
found in hand-drawn symbol recognition, used to handle
several skeleton trajectories simultaneously, is an original
approach which addresses the plurality of trajectories often
faced in action recognition.

Furthermore, since the HBF49 features do not capture the
temporal dependence inside a pattern sequence, we built our
representation according to a multilevel temporal split of
the sequence. This way of integrating temporality has been
commonly adopted in many action recognition approaches
using different variants as in the works of [10], [11], [4].
In our approach we adopted a slightly different variant for
this temporal split. The top level representation is computed



over the entire sequence according to the multistroke scheme
defined above. This yields the first 147 features. The lower
levels are computed over smaller overlapping windows of
the entire sequence. For the purpose of this paper, we have
limited the number of levels to two, which brings the total
length of the representation to 588 (147 ∗ 1 + 147 ∗ 3).

2) Feature selection: As we extract the same features
according to each of the three projection planes, it is likely
that some of the generated features are found to be redundant
and can be dropped. The 3DMM approach, therefore, carries
out a features selection step before moving on to the classifier
learning step, using a fairly widespread selection algorithm
called One-R [12].

C. Action classification

The last step of our 3DMM recognition approach concerns
classification which was undertaken with two popular algo-
rithms, namely, Multilayer Perceptron (MLP) and Support
Vector Machines (SVM).

These two standard classifiers were employed with default
configuration. For the MLP classifier, we used one hidden
layer where the number of nodes equals the number of
classes plus the number of used features. For the SVM
classifier, we used a Polynomial kernel along with experi-
mentally fixed parameters: the polynomial degree is set to 3,
the gamma parameter is set to 102 and the C parameter is
set to 10. However, it should be noted that it may be relevant
to optimize these parameters in order to further improve the
recognition performance.

IV. EXPERIMENTAL VALIDATION

We have evaluated the performance of the 3DMM ap-
proach on two challenging and publicly available skeleton-
based benchmarks including HDM05 [2] and UTKinect [3].
In this section, we first describe these databases. Then,
we compare the performance of our approach with that
of previous state-of-the-art action recognition techniques,
insisting on the fact that this comparison is made with
approaches that used only skeleton-data.

A. Datasets

The HDM05 dataset contains around one hundred motion
classes, including various walking and kicking motions,
cartwheels, jumping jacks, grabbing and depositing motions,
squatting motions and so on. Each motion class contains 10
to 50 different instances of the same type of motion, covering
a broad spectrum of semantically meaningful variations.
Each sequence was captured using a motion capture system
at a rate of 30 frames per second. We used the same action
classes and test settings as in [13], where the data of three
subjects was used for training (the actors bd, mm and tr)
and the data of the others for testing (the actors bk and dg),
resulting in 250 mocap sequences.

The second benchmark used in our evaluation is the
UTKinect-Action dataset which was collected using depth
sequences. This dataset contains 10 types of human actions
which take place in indoor settings including: walking, sitting

down, standing up, picking up, carrying, throwing, pushing,
pulling, waving and clapping hands. Each action was col-
lected from 10 different people who repeated each motion
twice. Altogether, the dataset contains 6220 frames of 200
action samples. The length of sample actions ranges from
5 to 120 frames. This dataset is particularly interesting for
our study due to the significant variation between different
instances of the same action and the great variation in the
duration of the actions.

B. Results and discussion

In this section, we present and discuss the results obtained
firstly, on the HDM05 dataset and then, on the UTKinect-
Action dataset.

1) HDM05 motion capture dataset results: To investigate
the performance of the proposed approach, we conducted a
series of experiments on the HDM05 motion capture dataset.
We first used the same combination of subjects in the training
and test datasets as proposed by [13] in which the data of
three subjects was used for training (the actors bd, mm and
tr) and the data of the others for testing (the actors bk and
dg).

We built a two-Level representation by proceeding as
follows: over each window of the lower level we extracted
the best selected features that were determined on the top
level. Depending on the classifier used, MLP or SVM, we
extracted a different number of features on each window,
namely 20 features when using the MLP and 100 features
when using SVM. As result, we finished up with two
temporal representations composed of 80 (20∗1+20∗3) and
400 (100∗1+100∗3) features respectively. Table I presents
not only our results with and without temporal splitting but
also those obtained by several state-of-the-art approaches.

Method #Features Reco. rate (%)
MIJA/MIRM + LCSS [14] - 85.23
SMIJ + Nearest neighbour [13] - 91.53
LDS + SVM [6] - 91.74
Skeletal Quads + SVM [11] 9360 93.89
Cov3DJ + SVM [10] 43710 95.41
BIPOD + SVM [7] - 96.70
HOD + SVM [4] 1116 97.27
3DMM + SVM + Level = 1 100 91.74
3DMM + MLP + Level = 1 20 92.66
3DMM + SVM + Level = 2 400 94.49
3DMM + MLP + Level = 2 80 94.49

TABLE I
COMPARISONS BETWEEN 3DMM APPROACH, WITH AND WITHOUT

TEMPORAL SPLIT, AND PREVIOUS APPROACHES ON THE HDM05
DATASET.

On this dataset, our approach, with the two-Level temporal
representation and the SVM classifier, achieves an average
accuracy of 94.49% while it achieves only 91.74% using
the same classifier but without temporal splitting. A similar
observation is noticed when using the MLP classifier which
achieves 94.49% with temporal splitting and 92.66% without
it. Compared to the most recent approaches, we achieved
very decent results and our approach even outperforms some
of the more elaborate approaches such as the SMIJ [13]



Method Walk Sit Stand Pick Carry Throw Push Pull Wave Clap OverAll (%)
LTI + HMM [15] 63.16 100 100 100 83.33 61.11 90 100 85 85 86.76

Grassmann + SVM [16] 100 80 100 100 100 60 65 85 100 95 88.5
HOJ3D + HMM [3] 96.5 91.5 93.5 97.5 97.5 59 81.5 92.5 100 100 90.95

DS-SRC + Nearest neighbour [17] 90 100 95 85 100 75 90 95 100 80 91
STFC + SVM [18] 90 95 95 100 65 90 95 100 100 85 91.5

HSOM + VMM [19] - - - - - - - - - - 94.5
3DMM + SVM + Level = 1 (90 features) 85 100 100 95 90 100 95 100 100 95 96
3DMM + MLP + Level = 1 (40 features) 90 95 100 95 90 95 100 100 100 95 96

3DMM + SVM + Level = 2 (360 features) 85 100 100 95 90 100 95 100 100 95 96
3DMM + MLP + Level = 2 (160 features) 90 95 100 95 90 95 100 100 100 95 96

TABLE II
COMPARISONS BETWEEN 3DMM APPROACH AND PREVIOUS APPROACHES ON THE UTKINECT-ACTION DATASET ACCORDING TO THE LOSEQOCV

PROTOCOL. RECOGNITION RATE (%) GIVEN FOR EACH ACTION CLASS.

or the Skeletal Quads [11] representations. Despite the fact
that the 3DMM approach is an initial case-study for the
transfer from hand-drawn symbol representation to model
whole-body actions, the high accuracy obtained with such
an approach already testifies to the soundness of the transfer.
The results achieved confirm the maturity of the hand-drawn
features, here HBF49, in terms of capturing the discriminant
information of human-produced patterns.

Moreover, our approach competes with the most efficient
skeleton-based approaches that have previously been eval-
uated on this dataset such as Cov3DJ [10], BIPOD [7]
or HOD [4]. Compared to these sophisticated approaches,
the 3DMM is to be considered as an initial case-study for
adapting the existing hand-drawn symbol recognition works.
Even though, its performance is close to these state-of-the-
art results. Furthermore, while these representations, referred
to above, suffer from a very high dimensionality (Table I),
our proposition is composed of a reduced number of features
(only 80 features with the MLP classifier versus more than
1000 features in previous approaches). The effectiveness of
our approach is therefore fostered by its simplicity (reduced
dimensionality). According to the very promising results of
the 3DMM, we estimate that the main hypothesis of this pa-
per, concerning the possible transfer of hand-drawn symbol
recognition expertise to efficiently represent 3D whole-body
actions, has been largely confirmed.

Other experiments were carried out on the HDM05 dataset
to verify the ability of the 3DMM approach to handle
morphological variabilities. In fact, data of different subjects
used to make up the training and test dataset can affect the
classification accuracy of a specific algorithm. Therefore,
to remove this bias, we evaluated our approach using all
possible combinations of three subjects out of five (C3

5 =
10) in different sets of training and unseen test datasets
respectively. Each combination was evaluated 10 times with
and without a temporal splitting of the actions. The results
show an average accuracy, obtained by using the SVM and
MLP classifiers without the temporal splitting, as 83.86%
and 83.17% respectively. On the other side, the use of the
temporal based representation by means of the SVM and
MLP classifier respectively brought accuracies to 90.73%
and 92.99%. This evaluation is different from the ones con-

ducted by previous approaches where only one specific com-
bination of subjects was used in the training and test datasets
respectively. Our results show the significant strength of
the 3DMM approach and its robustness to morphological
variations in the training dataset. Since no previous approach
has been evaluated on this dataset according to this last
protocol, our results may even serve as a reference for future
action recognition approaches.

2) UTKinect-Action dataset results: Finally, we com-
pared the 3DMM approach to previous approaches on the
UTKinect-Action dataset. For a fair comparison with the
previous representations, we followed the same experimen-
tal procedure initially proposed by [3] which consisted of
performing the Leave One Sequence Out Cross Validation
(LOSeqOCV) on the 200 sequences constituting this dataset.
For each iteration, a single sequence was used for the test
while 199 sequences were used for learning. In addition to
the calculation of an average rate, we separately calculated
the recognition rate for each of the 10 action classes. The
results obtained by our approach with and without temporal
splitting are presented in Table II.

Our experiments have proved undoubtedly that the 3DMM
approach is effective on all action classes, unlike previous
approaches which collapsed significantly for some of them,
for instance in, the “Throw” class for [3], [16], [15] and the
“Carry” class for [18]. Such high rates of accuracy on all
types of actions naturally lead to an overall average greater
than all previous skeleton-based approaches evaluated on
the UTKinect-Action dataset, that is 96% with and without
temporal splitting. Compared to previous benchmarks, this
result is especially important given the noisy nature of
this dataset which was collected by a Kinect. Compared to
current approaches evaluated on this benchmark, according
to the LOSeqOCV protocol, the 3DMM approach reduces
the error rate by 27.27%, i.e. ( 1.55.5 ).

Similarly to [18], a cross-subject test was also performed,
in which the data of half of the subjects were used for
training and the remaining for testing. This test is different
from LOSeqOCV, where the majority of the subjects were
used for training. The recognition rates are presented in Table
III. It is noted that we do not compare with [5], as they use
a different cross-subject protocol.



Method Reco. rate (%)
STFC [18] 85
Joint features [20] 87.90
3DMM + MLP + Level = 1 (70 features) 90.32
3DMM + SVM + Level = 1 (100 features) 90.46
3DMM + MLP + Level = 2 (280 features) 90.81
3DMM + SVM + Level = 2 (400 features) 91.51

TABLE III
COMPARISON BETWEEN 3DMM APPROACH AND THE BEST TESTED

APPROACH ON UTKINECT-ACTION DATASET, ACCORDING TO A

CROSS-SUBJECT-VALIDATION.

This last experiment, based on cross-subjects evaluation,
tells a great deal about the greater strength of the 3DMM
approach when faced with subject morphology variability.
As presented in Table III, the most accurate result is 91.51%
which was obtained by means of a two-Level representation
and the SVM classifier. With our first attempt to transfer
hand-drawn symbol recognition techniques, we have outper-
formed all previous approaches that have used only skeleton
data from the UTKinect according to this protocol.

V. CONCLUSION AND FUTURE WORK

We have presented, in this paper, a novel research trend
consisting in the transfer of hand-drawn symbol recogni-
tion expertise to represent 3D actions. We have based this
proposition on the observation that patterns produced by a
human motion, in particular 2D hand-drawn symbols and 3D
actions, share several important properties. One of the most
important similarity we have highlighted is the fact that both
human performances are driven by similar motion control
laws. Since this observation is exclusive to the domain of
hand-drawn symbols and 3D actions, both being the result
of a human motion, we hypothesized that both recognition
problems could be addressed in similar ways.

The 3D Multistroke Mapping (3DMM) approach is the
outcome of such a transfer. To this end, we built on an
existing online feature-set to represent hand-drawn symbols,
namely the HBF49. This choice was motivated by the ability
of the HBF49 to deal with many application contexts and its
robustness to patterns of diverse nature. We have emphasized
the fact that the extension of the multistroke concept found
in the field of hand-drawn symbol recognition and used
to handle simultaneously several joints trajectories, is an
original way of addressing the plurality of trajectories often
faced in action recognition.

The experimental results carried out on two challenging
datasets, namely HDM05 and the UTKinect-Action datasets
show that the 3DMM approach is a promising human action
representation which competes with state-of-the-art methods
based only on skeleton data. Future work will probably
focus on addressing multi-person interactions on the basis
of existing hand-drawn representations.
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