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Abstract. The concept of fractal geometry, introduced by Mandelbrot has been 
explored in diverse areas of science, including acoustics [1]. First part of this 
work relates the properties of far-field Fraunhofer region diffraction in wave 
acoustics for characterizing reflection on a periodic regular indented plane. 
Diffusion prediction of a self-similar structure, the Sierpinski carpet, is then 
developed through the computation of its spatial Fourier transform. Scattering 
intensity computation results show that after propagation of a coherent plane 
wave through the structure, the resulting acoustical field displays fractal 
properties itself, showing a self-similar structure of the reflected signal.  This 
computational approach of the Sierpinski carpet’s scattering properties will lead 
us to develop, in a near future, an acoustic angular scattering  measurement 
process, applied to a Sierpinski tetrahedron 3-D scale model. 

1 Introduction 

The aim of this work is to define an acoustic diffraction pattern computation model 
from varying geometry complexities, of regular or fractal structures [2]. To do this, 
we’ll develop twice analytical and numerical approaches of the far-field diffraction 
models, based on electromagnetism diffraction analogy [3]. Founding this approach, 
Bragg’s law and Fraunhofer’s model describe the field conditions for constructive and 
desctructive interferences, which is produced from strong diffraction. Considering 
diffusive structures as families of parallel planes running in different directions, each 
plane acts like a slightly reflective mirror, reflecting a tiny fraction of the incident 
acoustic wave. When in phase, those reflections lead to diffraction interferences 
production [4]. 
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2 Diffraction conditions 

Diffraction of a wave by a periodic structure is due to phase differences that result in 
constructive and destructive interference. This phenomenon can occur when waves 
pass through a periodic structure if the repeat distance is similar to the wavelength of 
the waves. Observation of diffraction patterns when acoustic waves pass through 
complex structures is here completed through the nature of those waves, involved 
diffraction process. 

Diffraction patterns are most obvious when the incoming waves are coherent, 
which means that the phase of the sinusoidal pattern of the acoustic fields is 
deterministic. Coherence has two domains: spatial and temporal. Consequently, 
knowledge of the field phase at some point in space and/or time determines the phase 
at other points in space and/or time. For spatially coherent sound, the phase difference 
∆φ ≡ φ1 − φ2 of the field measured at two different points in space at the same time 
separated by a vector distance ∆r remains constant for all times. If the phase 
difference measured at the same location at two different times separated by ∆t≡t1−t2 
is the same for all points in space, therefore, the sound is temporally coherent. 

2.1 Wave coherence 

The Fresnel (near-field) diffraction region occurs when the distance between the 
structure and the reception plane is small compared to the size of the structure. 
Fresnel diffraction pattern involve an hemispheric wavefront to reach the reflective 
structure, which means uncoherent incoming waves defining a non-deterministic 
acoustic field into twice spatial and temporal domains [5]. 

Otherwise, if viewed at a large distance compared to the extent of the object, the 
sound may be accurately modeled as plane waves with different wavefront tilts. This 
occurs in the Fraunhofer diffraction region as seen Figure 1: 

  
Fig. 1. Fresnel (near-field) and Fraunhofer (far-field) diffraction regions 



The diffraction length, known as the Rayleigh distance Dr, marks the transition 
between the near-field and the far-field regions of the waves.  

λ

22DDr =  .  (1) 

Considering the mean path D of the reflecting structure, most of the reflected 
energy of wavelength λ is diffracted through an angle of the order α = λ/D radians 
from its original propagation direction. When the wave have travelled a distance r 
from the plane, about half of the reflected energy will have left the plane structure by 
the geometric shadow if D/R = α. Consequently, the majority of the propagating 
energy in the "far field region" at a distance greater than the Rayleigh distance will be 
diffracted energy with polar radiation pattern. Physically, the equations for 
Fraunhofer and Bragg diffraction are similar and embody the same functional 
dependence on the distance r of the structure, incident wavelength λ,  and scattering 
angle α. 

2.2 Interferences production 

Within wave acoustics, interferences are described through the expression for the sum 
of two sinusoidal temporal oscillations of the same amplitude A and different 
frequencies f1 =2π/ω1 = c/λ1 and f2 =2π/ω2 = c/λ2, with λ, wavelength of the 
incoming wave : 
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In order to generalize waves travelling in any direction, we introduce the 3-D 
wavevector: 
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pointing in the direction of travel of the wave. Thus, the length of the wavevector 
is proportional to 1/λ. Thus, the equation for a travelling wave in 3-D space becomes: 
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Fig. 2. (x, z) incoming wave vector on a regularly indented plane 

A 3-D wavefront can exhibit a periodic variation in the phase φ [r, t] = kr−ωt, even 
when the wave is monotone as: ω1=ω2 =ω → λ1=λ2=λ. If sound from a single 
source is reflecting into two indents at different heights,  Rayleigh’s principle 
indicates that the sound through the two indents will “spread” and recombine. When 
viewed at a single location, the two sound “rays” with the same wavelength will 
recombine with different wavevectors such that |k1|=|k2|= |k|. 

 
Fig. 3. Interference geometry into an indent 

2.3 Rayleigh’s principle and Bragg's Law 

Rayleigh’s principle proposes a phase calculation between two acoustic rays, which 
takes the source incidence angle into account [4]. The path difference ∆d between two 
rays with wavelength λ and incidence angle α regarding a surface with depth Λ 
provides the following phase grating calculation between the two rays: 

∆α = ∆d (2π / λ) = cos α (4 π Λ / λ) , (5) 

with the path difference ∆d=2Λcosα.. For a weak path difference ∆d, rays are 
coherent and the acoustic wave is specularly reflected. Increasing ∆d interferes with 
rays, till ∆d = π, so that no energy is displayed in the specular direction : sound 
energy is then diffused. Rayleigh criterion defines the limit between specular and 



diffuse behavior of an incident source, corresponding to the structure depth 
indentations as : Λ<l/8cosα.. 
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Fig. 4. Rayleigh criterion: limits between specularity and diffusion, as a function of frequency, 
incidence angle, and structure intation depths. 

The specular reflection zone is defined in the lower part of the curves, taking the 
frequency and the angle of the incident wave into account. In interferences conditions, 
the propagation directions specified by the unit vectors v(d) = (φd, 0, γd) for a given 
regular plane division, repeating ν times a spatial unit of depth Λ are defined as the 
characteristic directions of scattering: 
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where αd is the grazing diffraction angle made by vectors v(d) = (φd, 0, γd) in the 
direction 0x, with φd = cos αd and γd = sin αd, , and p the diffraction order. For Λ = 0, 
equality between incident and reflected angle remain true, providing specular 
conditions specification. We can note here that, ignoring the specular component 
sinα, the first term of the previous equation can be compared to Bragg's Law, leading 
to the following expression: 
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where the integer p is the diffraction order, Λ, the distance between two reflection 
planes, λ, the wavelength of the incident beam and α its incidence angle. 



Moreover, the two-dimensional polar response of a given indented surface can be 
expressed through the diffraction orders (p, q), taking the angles of incidence and 
diffraction into account: 

λ
ααν sinsin22 +
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2.4 Interference geometry. 

The interference conditions can be expressed by defining the phases of the incident 
wave vector k0 and the diffracted vector k, which both have an amplitude equal to the 
reciprocical of the wavelength. In order to calculate the phase of the diffracted wave, 
taking the path lengths difference ∆d = 2νΛ cosα into account, we will consider the 
difference between the path of the sound wave along the incident beam k0r and its 
path along the diffracted beam kr (figure 5). By expressing this path length difference 
∆d = k0r - kr, the overall diffraction phase as: 

rkk )(2 0−=∆ πϕ  (9) 

 
Fig. 5. Phase geometry 

Considering rcosα the component of r in the direction of the diffraction vector s, 
all points with the same value of sr are lying on a plane perpendicular to vector s, 
allowing the same diffraction phase (figure 6). 

 
Fig. 6. Diffraction geometry 

Consequently, as the length of the diffraction vector s is equal to the spatial 
amplitude Λ (indentation depth), sr is a periodic function in the spatial domain, 



involving dimensions of the diffraction planes (indentation surfaces), and diffraction 
from any point at distance r of the structure will have a phase of sr = 2πνr in the 
space domain.  
In order to define reflection systems geometries in terms of their scattering functions, 
we’ll define the incident sound wave in the z-direction as equation (10). 
For a singly periodic structure which bellows uniform indentations of amplitude Λ, 
the two dimensional acoustic field satisfies the following Fourier series [6]: 
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Each of the terms of the series in previous equation is a spatial harmonic with 
period ν. The density-density correlation function 0G  is a main parameter of the 
scattering intensity of the structure. For an incident plane wave, equation (10) 
provides result of scattering from a periodic structure as an infinite sum of plane 
scattered waves, mostly harmonics. 

After reflection on the plane structure, amplitude and phase are found to be 
independent of the precise waveform of the incident wave. Moreover, the diffractance 
function at distance r of the structure g(r) is a characteristic property of the structure, 
defining the interfering behaviour of the scattered wave. 
However, g(r), the angular distribution function along a characteristic direction of 
scattering informs on the wave disturbance at a distance r from the object as: 

))()((
²

1)( 0 rrr ρmG
m

g −=  (11) 

2.5 Fraunhofer diffraction pattern 

The mathematical relationship between the shape and size of the wave output relative 
to that of the spatial structure input is a Fourier transform [7]. As the Fraunhofer 
diffraction pattern of the structure is related to the Fourier Transform of the 
diffractance function g(r), at large distances from the sound source, the far field or 
Fraunhofer diffraction region involves the diffracted sound pattern as variable in 
proportion to the reciprocal of the structure dimensions. Then, for the same energy 
input pattern f , the one-dimensional diffraction pattern in the Fraunhofer region has 
the angular distribution form: 
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The effect of incident plane wave scattering is the creation of far-field secondary 
waves. These waves, arising from each point on the structure, travel in all directions 
giving rise to complex distributions of amplitude and phase. 
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Fig. 7. Typical angular distribution function. The first shell represents the main density 
function at a distance r of the structure. 

Diffractance formulation (12) implies the density-density correlation function 
)()(0 rmomG = , which is the second moment of energy density taken between 0 and r. 

Square of the average density: 

)(∑=
i
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constitutes the limit of the density-density correlation function 0G  when ∞→r : 
2

0 )( mG →r and 1)( →rg , where a perfectly flat angular distribution function signs 
the specular field behaviour. This diffractance function g(r) defines the scattering 
intensity of the structure for a defined angle as: 
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This function describes secondary acoustic waves leaving the scattering structure at 
a specified angle and arriving at a particular point, creating scattering sidelobes. The 
complex amplitude at this point is obtained by adding the individual contributions 
from primary and secondary sources of amplitude g(r), involving the different path 
lengths of the travel to the reception point. Thus, the contribution from the element dr 
at a distance r is specified through the following one-dimensional intensity 
distribution, which is a major parameter of the Fraunhofer diffraction pattern: 
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The expression may be compared with the one-dimensional Fourier Transform of the 
diffractance function g(r) as:  

∫
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where ν=q/f 
 
is the spatial period of the indented structure. Taking equations (15) 

and (16) into account, the measured intensity I(r) and the square of the modulus of the 
structure diffractance Fourier transform are identical: 

2
22

2
2sin∏ 








==

i i

i
n kr

krFgI
π

π  
(17) 

This identity allows the expression of the scattering intensity I as a function of the 
structure factor of the indented plane, implying the characteristic interference function 
sinx/x, for a frequency f = 1/2πk as shown figure 8: 

  
Fig. 8. Typical Fraunhofer diffraction patterns 

The structure factor Fn is the Fourier transform of the scatterers of equal strength on 
all points at distance r of the diffraction plane. Continous expression of this previous 
equation involves structure angular distribution as: 

∫=
space

rrn drikkgrF )2exp()()( π  (18) 

As shown equation (18), the diffraction pattern is defined as the Fourier transform 
of the structure angular density. 

3 Application to the Sierpinski carpet structure 

In this section, we will apply the Fraunhofer diffusion formalism to a well-known 
two-dimensional structure, the Sierpinski carpet, in order to explore it behaviour from 
a wave acoustical solicitation. To do so, we will express its Fourier transform trough 
introduction of an iterative term into the structure factor. 



3.1 Iterative structure factor 

As the structure factor of the Fourier Transform of a multiplicative signal of level n 
can be written as either a product of n periodic functions Hi (r)( i = 1, 2, . . . , n) with 
frequencies Di-1, or a product of n scaled replicas of the structure factor of the first 
level H1(u) [8]: 
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Thus, the level n one-dimensional structure factor, constructed through an iterative 
procedure, can be defined as: 
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When the initiator is a square and the generator f1 its bottom-right quadratic 
subtraction complement, the Sierpinski carpet set is then obtained through the 
following iterative procedure: 

    
Fig. 9. Sierpinski triangle Generator, and 8 th & 16 th iteration levels. 

Alternatively, if Hn(r) in the form (20) is introduced in the Fourier integral, then the 
structure factor can be represented by the following Fourier series: 
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where νi is the spatial period of the structure at iteration level i=n, with scaling 
coefficients Di−1 for i = 1, . . . , n.. 
The structure factor Fn(r) is a complex function, as the initiator as well the generator 
matrix can take complex values. It is know that such as multiplicative cascades for 
real non-negative values of the generator matrix produce regular fractals [9]. 

We can observe a similarity in the construction of the multiplicative reflection 
structure itself and its Fourier Transform. Indeed, the structure factors in both cases 
are constructed as a product of n scaled replicas of the periodic signals with scaling 
coefficients Di−1. 



3.2 Results and discussion 

As an indicator of the indentation frequency, the Fourier transform discriminates 
clearly the structure of the reflection surface, revealing the spatial occurrences of the 
roughness peaks. 

      
Fig. 10. Space Fourier Transform of the Sierpinski carpet Generator, 8 th & 16 th iteration 

Fourier transform of the structure shows quasiperiodic behaviour of the structure 
factor, at every iteration if the shape. In addition, we can note that when iteration 
levels goes to infinite, the fractal structure becomes invariant for its Fourier 
transform. The angular scattering distribution function is defined through the structure 
factor computation of the surface, and indicates the fractal scattering behaviour for a 
particular direction of the incident wave: 
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The scattering intensity distribution leads to define the Fraunhofer diffraction 
patterns of  each structure iteration level figure 11: 

 
Fig. 11. Sierpinski carpets scattering angular distribution functions at π/2rd for ν=λ (structure 
distance vs. power density function) 

We can easily discriminate an anomalous quasiperiodic behaviour of the scattering 
angular and spatial factors, even when the characteristic Fraunhofer diffraction region 
pattern remains obvious. 



The angular density function remains quasi-periodic at any distance of the carpet, 
signing a quasi-perfect diffusive structure. The angular distribution of propagating 
energy will then no longer depend on the distance from the plane structure. 
Moreover, the spatial scattering distribution function offers a tridimensional 
representation of the scattering distribution function, showing the angular and 
distance distribution’s 3-D map of the surface’s scatterers density: 

 
Fig. 12. Sierpinski carpets spatial scattering distribution functions  (structure distance vs. 
diffraction angle vs. power density function) 

Results shows a high spatial diffractance persistence for high-level iterated Sierpinski 
carpet. This behaviour traduces an important diffusion capacity of the Sierpinski 
structure at high iteration levels. 

Spatial scattering distribution function data also provide scattering intensity cross-
distribution plot, as presented for the three iteration levels of the carpet: 

    
Fig. 13. Sierpinski carpets scattering intensity cross-distributions (diffraction angle vs. power 
density function) 

As expected, the Sierpinki carpet far field scattering intensity cross-distribution shows 
self-similar diffraction patterns for several spatial frequency bands: after propagation 
of a coherent plane wave through this fractal grating, the computed acoustic field has 
fractal properties. 

This diffraction pattern may be interpreted as the spatial filter response of the 
analysed structure. The location of mainlobe peak tells in which direction we get 
maximum response of the spatial structure from an acoustical solicitation. The 
mainlobe (highest peak) is then similar to the pass-band in a spatial filter, which 
diffracts acoustic energy in these directions. 



4 Conclusion 

It has been shown that diffusion capacity of a complex plane can be directly 
computed from the Fourier  transform of its spatial structure. Applied to a fractal 
plane structure, the resulting spatial intensity distribution reveals the self similar 
behaviour of the scattered acoustic field angular distribution. Moreover, this 
Fraunhofer diffraction region characterisation allows scattering prediction for many 
types of spatial configurations, under condition of interference acoustic field, that 
means spatial / temporal frequencies ratio. 

This powerful computation tool can also be applied to all types of complex 
geometries, including architectural (concert hall diffusers) and urban (façade 
indentations) configurations, in order to predict their far-field diffusion behaviour 
[10]. 
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