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Abstract—In certain applications involving direction of arrival
(DOA) estimation we may have a priori information on some of
the DOAs. This information could refer to a target known to
be present at a certain position, or to a reflection. In this paper
we investigate a methodology for array processing that exploits
the information on the known DOAs for estimating the unknown
DOAs as accurately as possible. We present algorithms that can
efficiently handle the case of both correlated and uncorrelated
sources when the receiver is a uniform linear array. We find a
major improvement in estimator accuracy in feasible scenarios,
and we compare the estimator performance to the corresponding
theoretical stochastic Cramér-Rao Bounds (CRBs) as well as to
the performance of other methods capable of exploiting such prior
knowledge. In addition, we apply the investigated estimators to
real data from an ultra-sound array.

Keywords—Antenna arrays; array signal processing; direction of
arrival estimation; Cramer-Rao bound

1 INTRODUCTION

In some direction of arrival (DOA) estimation applications
there exists a priori information that is not exploited in the
traditional DOA finding algorithms such as [1], [2], and [3].
For example, in a stationary RADAR scenario there can be
a reflection that is always received. The DOA associated with
this reflection is of no interest to the observer, since it is already
known. However its presence might degrade the estimation of
the unknown DOAs of interest.

A methodologically related problem is the frequency es-
timation, for example the diagnosis of rotating machines
in industrial environments. The rotational behavior of such
machines is well-known and hence some peaks of the related
frequency spectrum are known, e.g. the power grid supply
frequency [4]. Estimating this supply frequency provides no
information about the equipment; rather, the known spectral
peaks might obscure weaker interesting peaks.

The important feature of this prior information is that it is
hidden in the received data; regular algorithms will simply
treat the known directions or frequencies as part of the set
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of unknown ones. It would then be advantageous if prior
knowledge on some DOAs or frequencies could be used in
order to increase the accuracy when estimating the remaining
unknown parameters.

For angle estimation this has been done in various ways.
The MUSIC method [1], [5], is a so-called subspace method
in which the subspaces spanned by the desired signals and the
noise, respectively, are separated. One approach, then, is to use
the prior information to decrease the dimension of the space
spanned by the signals such that this space only contains the
unknown signals. This dimension decrease, or deflation, of the
signal subspace can be viewed geometrically as an orthogonal
projection onto a lower dimensional subspace. This type of
approach is suggested in, e.g., [6], [7], and [8]: the space
spanned by the array data is projected onto the orthogonal
complement of the subspace containing the known DOAs,
thus removing the subspace spanned by the known directions
from the array manifold. Then, it is shown that the unknown
directions are more easily found from the reduced-dimension
data set.

A similar approach is to use oblique projections, see [9] for
an introduction to this concept. In this case, instead of project-
ing orthogonally onto a certain subspace, a projection along
the subspace that is to be removed is performed. This results
in a different solution as compared to projecting orthogonally
since the projection is along a different path. The benefit of
this approach is that the entire contribution of the concerned
subspace is cancelled — in the orthogonal projection case, only
the portion perpendicular to the desired subspace is cancelled.
Thus, if the two subspaces are not orthogonal, the oblique
projection can be superior to the orthogonal one. However,
the oblique projector may increase the contribution of noise
terms; see [9] for more details on this subject.

Comparisons of these two approaches applied to MUSIC can
be found in [10], where some theoretical bounds are studied
as well. By studying the Cramér-Rao Bound (CRB) for the
case when prior information is available, it can be seen that
the previously mentioned projection based methods are not
performing optimally in the sense that they are not achieving
the theoretically best achievable accuracy. This should not be
surprising — in [11] and [12] the asymptotic properties of
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MUSIC were studied, and it was concluded that MUSIC is
not efficient in the case when there is correlation between the
source signals. On the other hand in the case of uncorrelated
sources, MUSIC is efficient in the sense that it asymptotically
achieves the CRB. However, in [13] it was shown that a tighter
CRB exists when the sources are known to be uncorrelated;
from the perspective of asymptotic accuracy, MUSIC is thus
suboptimal in this scenario as well. The conclusion is that we
cannot achieve asymptotically efficient estimates with MUSIC
whether the sources are correlated or not, if we properly
account for the model-imposed limits on accuracy.

Motivated by the above observation, the focus of this paper
is on incorporating prior DOA knowledge into methods that
are asymptotically statistically efficient. We are studying a
scenario with a Uniform Linear Array (ULA) at the receiver,
i.e. a sensor array consisting of identical omnidirectional
sensors with uniform inter-sensor separation. We investigate
two ULA DOA methods ([2], [3]), which are asymptotically
efficient in the case of correlated and uncorrelated impinging
signals, respectively. Both of these methods find their estimates
through polynomial rooting, and this is where the approach
[14] denoted PLEDGE (as in Prior knowLEDGE) advocated
in this paper can be used: we convert the knowledge of
some DOAs into knowledge of the corresponding roots of
the polynomial to be factored. Doing so allows us to refine
the estimates of the other unknown roots, and hence of the
unknown DOAs. An important fact is that we incorporate the
known information in a statistically optimal way.

As will be shown, both DOA estimation methods show
significant accuracy improvements when modified to utilize
known DOAs: the signal-to-noise-ratio (SNR) required to
achieve the theoretical performance limit is reduced, and in
addition this limit is improved as predicted by the respective
CRB. When the sources are uncorrelated, the exploitation of
prior DOA information as in [14] does not enhance the method
in [2] as much as when the sources are correlated; this moti-
vates the application of PLEDGE to the method in [3], which
is usable only when the sources are uncorrelated. Being able to
exploit the uncorrelatedness of the signals in conjunction with
prior DOA knowledge allows greater accuracy increases. The
realizable gain was illustrated in [15] and is further investigated
in this paper. To accurately judge the performance of the two
PLEDGE-based methods we compare them to other methods
capable of exploiting prior DOA knowledge, [7] and [10].

The paper is structured as follows. In Section 2 we define
the scenario and in Section 3 we review the two DOA finding
algorithms [2] and [3]. In Section 4, we discuss different
methods of incorporating prior DOA-knowledge: the approach
introduced in [14] and advocated in this paper, and two other
methods ([7] and [10]) for comparison. In Section 5 we derive
the CRBs for the studied scenarios, and in Section 6 we
perform numerical simulations to evaluate the potential of the
proposed methodology. Finally, we apply the estimators to real
data in Section 7.

The PLEDGE-concept was previously introduced in [14],
and it was examined for uncorrelated source signals in [15];
the contribution of this paper is a more thorough examination
of the potentially significant accuracy gains that result from

using prior information, comparing the algorithms to existing
methods, and applying them to real data. We also derive the
corresponding accuracy bounds in a more compact manner.

2 DATA MODEL

Consider d narrow-band, plane waves sensed by an m sensor
ULA. We assume that dk of the impinging waves originate
from a priori known directions; hence, define the angles of ar-

rival as θ̄
△
=

[
θT ϑT

]T △
= [θ1 · · · θdu ϑ1 · · · ϑdk ]

T
,

where θi denotes the unknown direction i and ϑj denotes
the known direction j; henceforth, the subscripts u and k
will denote unknown and known quantities, respectively. The
angular measurements are referenced to 0◦ at array broadside,
T is the transposition operation, and du = d− dk .

Assume that N array response snapshots are recorded, with
t = 1, . . . , N , according to the data model

y(t) = A(θ̄)s(t) + n(t), (1)

where A(θ̄) = [a(θ̄1), . . . , a(θ̄d)] ∈ Cm×d is the array
response matrix and a(θ̄i) ∈ C

m×1 defined as

a(θ̄i) =
[
1 ejφi . . . ej(m−1)φi

]T
(2)

is the steering vector corresponding to the i-th angle, viz.

φi = −2π∆sin(θ̄i), (3)

with ∆ being the ULA inter-sensor spacing in wavelengths.
Further, in (1), s(t) ∈ Cd×1 and n(t) ∈ Cm×1 are the source
signal and additive noise vectors at time t, respectively, and
they are assumed to be mutually independent zero-mean cir-
cular Gaussian random sequences with second-order moments
given by

E[s(t)s∗(τ)] = Pδ(t, τ) (4)

E[n(t)n∗(τ)] = σ2Iδ(t, τ). (5)

Here, ∗ denotes conjugate transposition and δ(t, τ) =
1 for t = τ , and 0 otherwise. Without loss of generality, we

can additionally partition A(θ̄)
△
= [Au(θ) Ak(ϑ)] with the

subscripts added for clarity. Further, let

R = E[y(t)y∗(t)] (6)

be the data covariance matrix, and define

R̂ =
1

N

N∑

t=1

y(t)y∗(t) (7)

as a sample version thereof. The superscriptˆdenotes a quantity
estimated from data.

3 DOA ESTIMATION

This section describes the two algorithms to which we apply
the PLEDGE framework [14]. None of these methods can
exploit the prior information ϑ; hence these algorithms will
estimate all the elements of the vector θ̄. Both algorithms are
Maximum Likelihood (ML) based methods that minimize a
subspace projection, and they effectively reduce (in the ULA
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case) the DOA finding problem to polynomial rooting. These
two methods should be used when the signal correlation is
unknown [2] and, respectively, when the sources are known
to be uncorrelated [3]. In these cases the methods can be
shown to be asymptotically statistically efficient (see [2], [3]
and references therein).

Let
R̂ = ÊsΛ̂sÊ

∗
s + ÊnΛ̂nÊ

∗
n (8)

be the eigendecomposition of (7), where Λ̂s is a diagonal

matrix comprising the d′ largest eigenvalues of R̂, with d′

being the rank of P, and Ês comprises the associated eigen-
vectors. Similarly, the m−d′ smallest eigenvalues are collected

in the diagonal matrix Λ̂n and Ên contains the associated
eigenvectors.

3.1 General signal correlation

Here there is no assumed structure for P. To review the
method of [2], in [16] the authors define a polynomial, based
on φ1, . . . , φd that correspond to the true DOAs, by

b0z
d + b1z

d−1 + . . .+ bd = b0

d∏

i=1

(z − ejφi). (9)

All the roots of (9) are by definition on the unit-circle, and thus
the coefficients can be chosen to be conjugate symmetric: bi =
b∗d−i, i = 0, 1, . . . , d [16]. While the conjugate symmetry does
not guarantee unit-circle roots, when it comes to estimating
the polynomial coefficients from data it is much simpler to
enforce this constraint than actually constraining the roots to
the unit circle.

Using the polynomial coefficients, define

B∗ =




bd . . . b1 b0 0 . . . 0

0 bd . . . b1 b0
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 bd . . . b1 b0


 (10)

with B∗ ∈ C(m−d)×m. The MODE (Method of Direction
Estimation) estimate is found by minimizing the function [2]

VMODE(b) = Tr[B
(
B̂∗B̂

)−1

B∗ÊsΛ̂Ê∗
s], (11)

where Λ̂ = Λ̂
−1

s (Λ̂s − σ̂2I)2, σ̂2 = 1
m−d′

Tr[Λ̂n] is a

consistent estimate of the noise power, and B̂ is constructed
from an estimate of b = [b0 b1 · · · bd]

T — typically,

the algorithm is initialized with B̂∗B̂ = I, giving a coarse

b̂, and then it is iterated one more time. Due to the special
structure of B it can be seen that (11) is a quadratic function of
the polynomial coefficients b. Thus we can equivalently write
(11) as

VMODE(b) = ‖Hb‖2, (12)

where H is estimated from the data and a function of b̂.
The exact structure of H is somewhat involved and not in
the primary scope of this article, but can be readily obtained
from [16] along with the modifications given by [2].

Minimizing (12) with respect to b subject to a non-triviality
constraint (i.e. b 6= 0) and the conjugate symmetry constraint
previously mentioned (which is a simple least squares or
eigen-decomposition problem) provides an estimate of the
polynomial coefficients b. Then, the angles of the roots of
the corresponding polynomial (9) gives estimates of (3) from
which the DOAs θ̄ are estimated.

3.2 Uncorrelated sources

If we have the a priori information that the sources are
uncorrelated we can devise a more accurate estimator. In what
follows, we give a brief summary of a statistically efficient
algorithm originally developed in [3]. This algorithm, which
we will call “DOA UC” (where UC stands for uncorrelated),
is based on minimizing the covariance-matching criterion

VUC(η) =
(
r̂− r(η)

)∗
W

(
r̂− r(η)

)
. (13)

In (13) r = vec(R), with vec(·) stacking the columns of a
matrix on top of each other, and r̂ is the sample estimate

thereof (7). Also η =
[
θ̄
T

pT σ2
]T

parameterizes r,

with p denoting the diagonal elements of (4), and W is
a suitably chosen weighting matrix. Following [3] and [17],

W = R̂−T ⊗ R̂−1 minimizes the asymptotic variance of the
(asymptotically unbiased) estimate given by minimizing (13)
(here, ⊗ denotes the Kronecker product).

In [3] it is shown how to successively solve (13) for the
parameters p and σ2, producing closed form estimates p̂ and
σ̂2. Introducing these estimates in (13), and using the same
polynomial parametrization b of the DOAs as in (9), (10), it
can be shown that (13) can be written as

VUC(b) = ‖H̃b‖2, (14)

where H̃ is given in [3]. Similarly to H in (12) H̃ is a function
of the data and the DOA and (14) can obviously — using

some initialization for the DOA-dependent terms in H̃ — be
minimized, in the same manner as (12).

4 USING PRIOR KNOWLEDGE

4.1 PLEDGE

As already mentioned the approach of incorporating prior
DOA information into the estimation is referred to as PLEDGE
(Prior knowLEDGE) [14]. This approach utilizes the fact that
the minimization variables of the criterion functions in (12) and
(14) are polynomial coefficients. Knowing some of the DOAs
is equivalent to knowing some of the roots of the polynomial
in (9); we can then partition this polynomial in two factors:
one fully known factor corresponding to the known roots, and
one factor that is unknown but has fewer unknown terms than
the original polynomial. Note that no information is lost in
this way: we are only constraining the polynomial to have
some of its roots at certain locations, defined by the known
DOAs. The estimates of the remaining unknown roots will then
presumably be more accurate.
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Formulating this mathematically we re-write (9) as

b0

d∏

i=1

(z − ejφi) = Pk(z)Pu(z), (15)

in which

Pu(z) = b̃0

du∏

i=1

(z − ejφi) = b̃0z
du + . . .+ b̃du (16)

and

Pk(z) = c0

d∏

i=du+1

(z − ejφi) = c0z
dk + . . .+ cdk

. (17)

Here, Pk(z) is the polynomial with dk zeros corresponding
to the known DOAs ϑ whereas Pu(z) has du = d − dk
zeros corresponding to the unknown DOAs θ. Note that the

coefficients c = [c0 . . . cdk
]
T

are given by ϑ via (3); thus
the prior DOA knowledge defines c. If (15) is expanded, it is
obvious that the polynomial coefficients b can be written as

a convolution of b̃ =
[
b̃0 b̃1 . . . b̃du

]T
and c. Thus we

can rewrite (15)-(17) in matrix form as

b = Cb̃, (18)

if we introduce the (Toeplitz structured) convolution matrix

CT =




c0 c1 . . . cdk
0 . . . 0

0 c0 c1 . . . cdk

. . .
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 c0 c1 . . . cdk


 ∈ C

(du+1)×(d+1),

(19)
the elements of which are given by c.

4.2 PLEDGE: General case

Substituting (18) in (12), we obtain the PLEDGE criterion
function

VP(b̃) = ‖HCb̃‖2 (20)

(hereafter we let the subscript P stand for “PLEDGE”).

The method of finding the unknown DOAs consists of the
following steps:

1) Form the C matrix from the known DOAs.

2) Perform an eigendecomposition of R̂ and, using

(B̂∗B̂)−1 = I as an initial estimate, form H as in [16]
and [2].

3) Find an estimate of b̃ by minimizing (20) subject to
‖b‖ = 1 and the conjugate symmetry constraint. Use this

estimate in (18) to form (B̂∗B̂)−1, and update H.
4) Minimize (20) once again subject to the same constraints

to find b̃, then find φi, i = 1, . . . , du, by rooting (16),
and finally the sought DOAs through (3).

4.3 PLEDGE: Uncorrelated sources

Substituting (18) in (14), we obtain the following PLEDGE
criterion function

VPUC = ‖H̃Cb̃‖2 (21)

(the subscript PUC denotes “PLEDGE uncorrelated”). This
criterion is minimized in the same way as for (20), that is:

1) Form C in (19) from the known DOAs
2) Form an initial DOA-independent H̃ based on the sample

data according to [3].

3) Find an initial estimate of b̃ by minimizing (21) subject
to ‖b‖ = 1 and the conjugate symmetry constraint; use

this initial DOA estimate to find a more accurate H̃.
4) Minimize (21), once again, subject to the same constraints

to find b̃, then obtain φi, i = 1, . . . , du, by rooting (16),
and finally the sought DOAs through (3).

4.4 Other methods

For comparison purposes, we also consider two prior-based
methods that are not using the PLEDGE concept. These are
C-MUSIC (as in Constrained MUSIC, see [7]), which is a
method based on an orthogonal projection. We also look at
a method based on an oblique projection; the method was
introduced in [10] as P-MUSIC (short for Prior MUSIC),
which was modified in [14] to remove an observed bias.
We denote this method MP-MUSIC (Modified P-MUSIC).
These MUSIC-based algorithms find the respective DOAs by
a rooting approach, along the lines of root-MUSIC [18].

4.4.1C-MUSIC: This algorithm is described in full in [7]. The
main idea is to use an orthogonal projection that removes
the known part of the signal subspace; this is done by pre-
and post-multiplying the sample covariance matrix with a
projection matrix. Accordingly, we apply a regular MUSIC-
algorithm to

R̂c = Π⊥
Ak

R̂Π⊥
Ak

(22)

where Π⊥
X = I−ΠX denotes the orthogonal projection onto

the null-space of X∗, ΠX = XX† = X(X∗X)−1X∗ is the
orthogonal projection onto the range space of X, and Ak is
composed of the steering vectors corresponding to the known

DOAs. The contribution of the known sources to R̂ has thus
been cancelled, whereas the eigenvectors of R̂c still contain
information on the unknown sources; see [7] for further details.

4.4.2MP-MUSIC: In [10] a criterion function is proposed
based on an oblique projection; it is then shown that this
criterion condenses to a minimization only involving an or-
thogonal projection. It can be inferred from [10] that the
resulting algorithm suffers from a bias, rendering it worse than
other methods, e.g., C-MUSIC. Thus a corrective measure was
suggested in [14], and here we denote the resulting algorithm
MP-MUSIC; we below briefly investigate the consequences of
this correction, which takes the form of removing the noise
from the sample covariance matrix. Thus let

R− σ2I = APA∗ = [Au Ak]

[
Pu Puk

P∗
uk Pk

] [
A∗

u
A∗

k

]
(23)
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in which Au contains the steering vectors corresponding to the
unknown sources, Pu and Pk are the square signal covariance
matrices related to the unknown and known emitters, respec-
tively, and Puk is the cross-correlation matrix of the signals
for the unknown and known emitters.

The obliquely projected criterion in [10] condensed to pre-
multiplying the (now modified) sample covariance matrix with
the same orthogonal projector as used in Section 4.4.1; hence,
look at

Π⊥
Ak

(
R− σ2I

)
= Π⊥

Ak
AuPuA

∗
u +Π⊥

Ak
AuPukA

∗
k. (24)

If in addition the known and unknown signals are uncorrelated
to one another, i.e. Puk = 0, and we use estimated quantities
in (24) then:

Π⊥
Ak

(
R̂− σ̂2I

)
= Π⊥

Ak
AuPuA

∗
u +Eǫ (25)

where Eǫ accounts for the error introduced by using estimated
quantities. Using the right singular-vectors of (25) in a standard
MUSIC algorithm then gives estimates of the unknown DOAs.

5 PLEDGE CRB

We now derive the CRB based on the prior-knowledge of
some of the DOAs. We derive it both for the general case
(which has been previously considered in [14]) and for the
case when the sources are known to be uncorrelated.

The derivation starts out by following [19]. Let

α = [θT ̺T σ2]T (26)

be the vector of unknown parameters in the model. Here, θ
is again the vector of unknown DOAs, ̺ is the vector made
from {Pii} and {Re(Pij), Im(Pij) ; i > j}, and σ2 is the
noise variance. Under the assumptions in Section 2, the (k, l)th
element of the Fisher Information Matrix for the parameter
vector α is given by

FIMk,l = N Tr

(
∂R

∂αk
R−1 ∂R

∂αl
R−1

)
. (27)

This can be written in matrix form as

1

N
FIM =

(
∂r

∂αT

)∗ (
R−T ⊗R−1

)( ∂r

∂αT

)
, (28)

where

r = vec (R) = (Ac ⊗A) vec(P) + σ2 vec(I), (29)

and where the superscript c denotes complex conjugation.
Introduce G, V, and u via

W1/2

[
∂r

∂θT

∂r

∂̺T

∂r

∂σ2

]

△
= [ G V u ] , (30)

where W1/2 = R−T/2 ⊗R−1/2, and also let

[ V u ]
△
= ∆. (31)

Then we can write (28) as

1

N
FIM =

[
G∗

∆∗

]
[ G ∆ ] . (32)

Since we are interested in a bound on the angle estimates,
we want an expression for the top-left block of the inverse
of the partitioned matrix in (32). Using a standard result on
partitioned matrix inversion gives

1

N
CRB−1

P (θ) = G∗G−G∗∆(∆∗∆)−1∆∗G

= G∗Π⊥
∆G. (33)

5.1 Correlated sources

Since only some of the DOAs are considered unknown, the
G in the present derivation differs from the one in [19]. This
difference propagates to the final result and managing it is in
essence the contribution of this section.

From (33), following [19], it can be shown that

Π⊥
∆ = Π⊥

V
− Π⊥

V
uu∗Π⊥

V

u∗Π⊥
Vu

. (34)

By evaluating the derivatives in (30), and through some further
algebra, one finds

u∗Π⊥
V
gk = 0, (35)

where gk is the kth column of G. This result allows us to
rewrite the individual elements of (33) as

1

N

[
CRB−1

P (θ)
]
k,l

= g∗
kΠ

⊥
V
gl. (36)

By further calculations we arrive at

1

N

[
CRB−1

P (θ)
]
k,l

=
2

σ2
Re

(
(D∗

uΠ
⊥
A
Du)k,l(P̄

∗
uA

∗R−1AP̄u)l,k

)
, (37)

where

Du =
[
∂a(θ1)
∂θ1

. . .
∂a(θdu)
∂θdu

]
, (38)

and P̄u is the d × du sub-matrix of (4) associated with the
unknown sources.

Finally, we can write (37) in matrix form as

CRBP(θ)

=
σ2

2N

[
Re

(
(D∗

uΠ
⊥
A
Du)⊙ (P̄∗

uA
∗R−1AP̄u)

T
)]−1

(39)

where ⊙ is the Schur (element-wise) product.

5.2 Uncorrelated sources

Assuming the sources to be uncorrelated leads to a diagonal
P, which reduces the number of unknown parameters. We then
have that ̺ in (26) is equal to the diagonal entries p of (4),
and the vector of unknown parameters becomes

αUC = [θT pT σ2]T. (40)
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In this case the derivatives of (30) corresponding to αUC are
given by:

GUC = W1/2 ∂r

∂θT

= W1/2 [(Dc
u ◦Au) + (Ac

u ◦Du)]Pu

△
= W1/2DP, (41)

∆UC = W1/2

[
∂r

∂pT

∂r

∂σ2

]

= W1/2 [Ac ◦A vec(I)]
△
= W1/2Dn, (42)

where ◦ is the Khatri-Rao product (column-wise Kronecker
product), and Pu is the square matrix with the unknown source
powers on the diagonal. Using these results in (33) gives

CRBPUC(θ) =
1

N

[
D∗

PW
1/2Π⊥

W1/2Dn

W1/2DP

]−1

. (43)

5.3 Comparison to no-prior bounds

Due to the model structures being nested, we immediately
have, for sources of arbitrary correlation, that

CRBSML ≥ CRBP, (44)

where the notation ≥ implies that the difference CRBSML −
CRBP is positive semi-definite. Here, CRBSML denotes the
bound when there is no prior information on the DOAs [19] .

Similarly, if the sources are known to be uncorrelated, the
relation

CRBSML ≥ CRBUC ≥ CRBPUC (45)

is true, where CRBUC denotes the bound without prior DOA
knowledge, but when the sources are known to be uncorrelated
[13]. These relations follow from the general theory behind the
CRB by noting the following. The unknown parameters for
the tighter bounds represent a strict subset of the parameter
vector for the wider bound; each successive reduction of the
parameter set must produce a bound which is smaller than or
equal to a bound obtained for the entire parameter vector. A
more quantitative comparison of the different CRBs is quite
involved and beyond the scope of this paper.

6 SIMULATED DATA EXAMPLES

Reproducible research: to reproduce the results of this
simulation section, please see the first author’s home-
page: http://www.ee.kth.se/~wirfalt/. We per-
form Monte Carlo simulations to evaluate the performance of
the studied estimators and compare the results to the standard
MODE algorithm [2] and the DOA UC [3]. As previously
stated, the latter methods are asymptotically optimal in the case
of no prior DOA knowledge. For reference, we also include
the prior-based methods mentioned in Section 4.4, from [10]
and [7].

In each realization, N simulated snapshots of the data model

(1) are used to form the sample covariance matrix R̂ in (7). For

each snapshot, s(t) is a realization of a zero-mean temporally-
white complex-Gaussian noise process with spatial covariance
matrix P. Likewise, n(t) is a realization of a similarly defined
process but with spatial covariance matrix σ2I.

In the simulated scenarios, we vary the parameters of the
model (1); we vary the number of sources d and their locations
θ̄. We also choose P as to study different properties of the
estimators, e.g. SNR and correlation dependence. We restrict
ourselves to studying DOAs that are closely spaced since this
is the more difficult estimation scenario. In the case of widely
spaced DOAs, traditional methods already produce accurate
estimates; indeed, as evidenced in e.g. Fig. 3(a), when the
DOA separation grows large the prior information does not
significantly enhance the accuracy of the estimators.

The estimated DOAs θ̂ are compared to the true values
θ, and for each Monte Carlo simulation the squared error is
recorded. The performance measure in our simulations is the
root-mean-square error, which for the unknown angle θi is
computed as

RMSEi =

√√√√ 1

L

L∑

k=1

(
θ̂i,k − θi

)2

, i = 1, . . . , du, (46)

where θ̂i,k denotes the kth estimate of the ith angle, and L =
1000 is the number of Monte Carlo realizations.

Since some of the algorithms are not designed to exploit any
prior information, they will inherently attempt to estimate all
d DOAs θ̄, including the known ones. Thus, when calculating

the RMSEs of θ̂ for those algorithms, the dk estimates closest
to ϑ are associated with these known angles, and the remaining
du angles are compared to the unknown angles θ.

Unless mentioned otherwise, we let all source signals have
the same power (i.e., the diagonal elements of P are the
same); this is to simplify the scenarios such that the amount
of parameters that are changed are kept limited. In most of the
simulations below, the source SNR is given by the abscissa.

6.1 Uncorrelated sources

In the first simulation we investigate a scenario with
closely spaced, uncorrelated sources located at θ̄ =

[10◦ 15◦ 12◦ 25◦]
T △

= [θ1 θ2 ϑ1 ϑ2]
T

; ϑ =

[12◦ 25◦]
T

is assumed to be known a priori. The number of
sensors is m = 10, and the number of snapshots N = 1000.

We compare the accuracy of all the estimators pre-
sented in the article: “MODE” from Section 3.1 and [2];
“MODE PLEDGE” as in Section 4.2 and [14]; “C-MUSIC”
from Section 4.4.1 and [7]; “DOA UC” from Section 3.2
and [3]; “PLEDGE UC” as described in Section 4.3 (see
also [15]); and “MP-MUSIC” as outlined in Section 4.4.2,
[10], and [14]. In addition to the above methods, we also
show the bounds corresponding to different amounts of prior
knowledge: “CRBSML” [19] corresponding to no prior knowl-
edge; “CRBP” which assumes some source DOAs to be
known, see Section 5.1 and [14]; “CRBUC ” corresponding to
the knowledge of sources being uncorrelated from [13]; and
finally “CRBPUC” which assumes knowledge of all sources
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being uncorrelated and some DOAs known, given by (43) in
Section 5.2.

For uncorrelated sources, we have

P = diag(p1, . . . , pd), (47)

where diag(·) denotes the diagonal matrix with the arguments
on the diagonal. For simplicity, pi = pj , i, j = 1, . . . , d,
corresponding to all sources being equipowered; we also define
SNRi =

pi

σ2 .

The benefits of using all the available prior information are
clearly illustrated in Fig. 1(a) — for a given accuracy, the
required SNR is reduced by roughly 15 dB when comparing
PLEDGE UC to DOA UC, and by 20 dB when comparing to
MODE.

Note from the same figure that MP-MUSIC gives poor
estimates; in particular, the RMSEs of its estimates are not
decreasing with increasing SNR. The method exhibits such a
saturation behavior in all scenarios. This may be due to the fact
that the method relies heavily on the assumption that Puk = 0
(see (24)-(25)). This may well hold in theory but not in finite
samples and in such cases the right singular vectors of (25)
are perturbed by contributions from Ak (cf. the last term in
(24)). In other scenarios (not shown), the threshold at which
the RMSE saturates is quite low, and the method can then be
quite accurate. However, due to the behavior shown in Fig. 1(a)
we will not consider this method any further.

MODE PLEDGE, which does not exploit the prior infor-
mation about the correlation state, exhibits a slightly lower
resolution threshold than MODE. C-MUSIC is somewhat less
accurate than MODE PLEDGE.

The method DOA UC, which uses the prior information that
the sources are uncorrelated, behaves very similarly to MODE,
except it reaches the uncorrelated, lower, CRBUC; we thus see
the benefits of utilizing the correlation state information in the
estimator.

At high SNRs, the benefit of using the prior knowledge
diminishes as is visible in the figure; when the SNR grows very
large (not shown) all bounds converge to the same variance,
and hence the estimators are equally accurate. Note however
that, e.g., CRBPUC always has a negative slope — a higher
unknown-source SNR is always beneficial.

In Fig. 1(b) we repeat the simulation, but this time fix
the SNR (for all sources) at 25 dB and vary the number of
snapshots, N . PLEDGE UC is markedly superior to the other
methods and can, as compared to MODE, decrease the number
of samples required for a specific accuracy by roughly a factor
of 50. Note that the simulated scenario is difficult for MODE:
it requires about N = 5000 samples in order to be efficient.
In addition, we see that C-MUSIC reaches the performance
bound for slightly lower values of N than MODE PLEDGE.

6.2 Unknown source correlation

In the second case we explore a situation with coherence
between the sources; accordingly, the spatial covariance matrix

of the emitted signals is

P =

[
p1 p12 p13
pc12 p2 p23
pc13 pc23 p3

]
(48)

where pij = ρij
√
pipj , with ρij being the correlation coeffi-

cient between the sources i and j (|ρij | ≤ 1). The sources

are now located at θ̄ = [10◦ 15◦ 12◦]
T

with ϑ = 12◦

assumed to be known a priori. In (48), the entries are ordered
as in θ̄; hence, for example, p12 corresponds to the correlation
between the sources at 10 and 15 degrees. The correlation
coefficient ρ13 in Fig. 2(a) and Fig. 2(b) is chosen to maximize
the difficulty of this specific simulation scenario in the sense
that the CRBSML is large for every angle. The correlation
is assumed unknown; we thus omit the estimators explicitly
assuming the sources to be uncorrelated from the analysis
of this scenario, along with the corresponding bounds. For
simplicity we again assume the sources to be equipowered,
giving p1 = p2 = p3. In the interest of brevity, in Fig. 2 we
only present the results for θ1; the results for θ2 are similar.

It can be seen from Fig. 2 that MODE PLEDGE out-
performs the other methods, and that MODE PLEDGE is
significantly more accurate than MODE in both cases. This
can be contrasted to Fig. 1(a), where the gain was not so
pronounced. Hence it can be inferred that the major benefit
of MODE PLEDGE is the removal of the correlation between
known and unknown sources, rather than that the estimator has
one less parameter to estimate.

It appears as if the correlation between the unknown sources
and the known source has been cancelled through the exploita-
tion of prior knowledge in C-MUSIC as well — in Fig. 2(a)
C-MUSIC can accurately estimate the unknown source(s) even
though |ρ13| = 1. On the other hand, C-MUSIC completely
fails in Fig. 2(b) as in that case there exists source correlation
even after nullifying the known source — this is in agreement
with the general behavior of the MUSIC-algorithm, which
is well-known to fail when the sources are coherent. The
fact that the correlation has indeed been cancelled can be
realized by comparing (24) and (22); the parts of P related
to the known sources, including potential correlation with
the unknown sources, vanish due to the orthogonal projectors

operating on both sides of R̂.

As expected (and desired) MODE PLEDGE can handle both
cases optimally. C-MUSIC can be seen in Fig. 2(a) to suffer
from a higher threshold SNR than MODE PLEDGE; however,
it passes quickly through the transition region to an asymptotic
accuracy equivalent to that of MODE PLEDGE for larger SNR
values. Additionally, the large decrease in CRBP as compared
to CRBSML can be traced to the correlation cancellation; the
estimates using prior knowledge are not perturbed by the
coherence between the sources at 10 and 12 degrees.

Note also that the theoretical performance bound is attained
by MODE PLEDGE already at low SNRs — however, the
CRB at the lowest SNRs is too large to make the estimates
meaningful (presumably due to the closely spaced sources).
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Fig. 1. Uncorrelated sources: The plots show the RMSE (of θ̂1) for the methods presented in the article, along with the CRBs for the different scenarios.
θ = [10◦ 15◦]T, ϑ = [12◦ 25◦]T. Equipowered sources, m = 10, and averages of 1000 independent Monte Carlo realizations.
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(a) θ2 uncorrelated with the other (mutually coherent) sources, i.e. ρ12 =
ρ23 = 0; ρ13 = exp(−jπ/12).
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(b) All sources coherent: ρ12 = ρ13 = exp(−jπ/48), ρ23 = 1.

Fig. 2. Unknown source correlation: sources located at θ̄ = [10◦ 15◦ 12◦]T
△
= [θ1 θ2 ϑ]T. RMSE of θ̂1. Number of snapshots N = 1000, m = 6,

equipowered sources, 1000 Monte Carlo realizations. Non-zero correlation coefficients are chosen to maximize the difficulty of the estimation scenario.

6.3 Error in prior knowledge

Here we study the case when there is an error in the
prior DOA knowledge. To circumvent some of the issues of
DOA association in this case we consider only two sources
located at θ = 10◦ and ϑ = 12◦, or ϑ = 11◦ depending on
the correlation state — when the sources are coherent (with
ρ = exp(−jπ/8)), we increase the separation to simplify the
scenario. In Fig. 3 we vary the assumed location of ϑ and study
the impact on performance. As before, m = 6, SNR= 25 dB,
and N = 1000.

Even though there are errors in the prior knowledge, the

PLEDGE methods can still give enhanced estimates as long as
the error is small when compared to the standard RMSE; this
is seen in both Fig. 3(a) and Fig. 3(b). Thus, since the studied
methods are asymptotically efficient, it is possible to judge
whether it is advantageous to utilize a prior DOA-knowledge,
with a given accuracy, based on the CRB of the source to be
estimated. A prior information with a smaller variance than the
estimate’s CRB gives a strict statistical performance increase
(in the sense of a smaller variance) in the estimated DOA. As
can be seen from e.g. Fig. 3(a), in some cases errors larger
than this bound can also translate into an increased estimator
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(b) Uncorrelated sources, ϑ = 11◦

Fig. 3. Error in prior knowledge: RMSE of the estimates of θ = 10◦ when varying the assumed known location as shown. Equipowered sources with
SNR= 25 dB, m = 6, N = 1000 and 1000 Monte Carlo realizations.

accuracy.
Note that in Fig. 3(a) MODE and in Fig. 3(b) DOA UC

suffer when the known DOA is believed to be closer to the
unknown one than it actually is — this is due to the angle
association as explained in the fifth paragraph of Section 6.

6.4 Varying known-source properties

In this scenario we vary the separation between the known
source and the unknown one, and also the known source power.

In Fig. 4(a) we vary the known DOA and, as can be seen,
PLEDGE UC can offer dramatic accuracy increases. This
method can correctly estimate and resolve the two sources in
the studied case for very small separations.

In Fig. 4(b), we vary the power of the known source. When
the known source is significantly weaker than the unknown
one, the methods not exploiting prior angular information have
problems: they easily find the unknown source, but may asso-
ciate it with the known one. The prior-based methods however
do not suffer from this dramatic loss of accuracy. Once again,
PLEDGE UC is significantly outperforming the other methods,
and attains the accuracy bound for when there is only one
source present (which we denoted CRB1S in Fig. 4(b)). It
can thus be seen that PLEDGE UC correctly accounts for the
influence the known source has on the estimation problem;
if the known source is too weak to affect the estimation of
the unknown source, PLEDGE UC has in effect reduced the
number of sources in the received data to only contain the
unknown one. This is obviously a very desirable property for
a prior-using method.

6.5 A note on the computational complexity of the algorithms

The algorithms investigated all showed execution times on
the order of milliseconds on standard PCs. See Table I where
we compare the mean time each algorithm needed to estimate

the unknown parameters in the scenario shown in Fig. 1(a).
The methods are implemented in MATLAB to conceptually
agree with their source publications; this has the effect that
the implementations are not optimized for computational ef-
ficiency. Note that the algorithms scale differently with the
scenario-specific parameters (i.e., m, d, etc). To illustrate this
effect we also include simulation times for when m = 20 in
Table I.

TABLE I. MEAN EXECUTION TIMES, MILLISECONDS.

m = 10 m = 20

MODE: 0.8 2.2

MODE PLEDGE: 1.1 2.4
DOA UC: 2.1 8.5

PLEDGE UC: 2.2 8.6

C-MUSIC: 1.0 8.1
MP-MUSIC: 0.5 4.3

In Table I it can be seen that the PLEDGE methodology
introduces a small computational burden; using PLEDGE in
the MODE algorithm increased the execution time by about
0.3 ms or 40%, whereas for m = 20 the increase was about
the same, 0.2 ms, which in this case translates to about 10%.
The extra computational time required when using PLEDGE
in DOA UC was 0.1 ms in both cases which translates to an
increase in computational burden of 5% and 1%, respectively.

7 EXPERIMENTAL DATA APPLICATION

In this section we use experimental data from the University
of Wyoming Source Tracking Array Testbed (UW STAT)
[20] (”dataset 4”) in order to test the estimators on actual
data. The data are collected using a six sensor ultrasonic
ULA, operating in a narrow-band setup, with two uncorrelated
sources one of which is stationary and that we here consider
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(b) Varying the strength of source at ϑ = 11◦ .

Fig. 4. Varying known-source properties: RMSE of the estimates of θ = 10◦ when varying the properties of the known source. Uncorrelated sources,
SNRθ = 25 dB, m = 6, N = 1000 and 1000 Monte Carlo realizations.

known. The sources are each emitting 200 Hz bandlimited
noise, and the inter-sensor spacing is 2.1 signal wavelengths.
Such a spacing provides an unambiguous array response in
the region of interest (approximately ±15◦), while enhancing
resolution in this region compared to a six-sensor ULA with
half-plane field of view. With a sample rate of 800 Hz, but
a signal bandwidth of only 200 Hz, we in effect do not have
independent samples. This means that the effective number of
snapshots, as compared to a theoretical analysis, is reduced by
a factor of 2.

The data-dependent input to all the studied algorithms is

the covariance matrix R̂ in (7). A problem in this case is
that each data vector from the sensors represents a certain
DOA, since one target is non-stationary. Thus when forming

R̂, data vectors representing different DOAs are combined into

R̂. From this R̂, the algorithms will of course find a single
DOA for each source. Hence, in order to achieve meaningful
results the source movement, or the change in the true DOA,

has to be small over the interval of snapshots used to form R̂.

In order to take this fact into account a recursive update of R̂

is used. Accordingly, R̂ is updated as

R̂(n) = λR̂(n− 1) + (1− λ)y(n)y∗(n), R̂(0) = 0. (49)

Thus, at time instant n, the DOA vector θ̄(n) is estimated

based on R̂(n). In (49) the forgetting parameter λ is chosen

based upon how many past samples R̂(n) is desired to
effectively contain, according to the approximative relation:
λ = 1 − 2

N . We use λ = 0.96, approximately corresponding
to a rectangular window size of N = 50.

The true source trajectories as a function of time can

be seen in Fig. 5(a), and the absolute error |θ̂(n) − θ(n)|
of the estimates in Fig. 5(b) and Fig. 5(c), with Fig. 5(b)
corresponding to the algorithms that do not exploit information
on the source correlation, and Fig. 5(c) showing the ones

utilizing this information. We plot the absolute error of the
estimated angle at each time instant. We do not consider MP-
MUSIC, as it was concluded in Section 6.1 that it is not robust.

In the beginning of the data (n < 300) all algorithms
show a relatively small error. As we proceed in time the
moving source is approaching the stationary one. The source
separation decreases and we can see that the algorithms suffer
in accuracy; at first, this manifests as an increasing bias,
which shows up as a gradual increase in absolute error, but
eventually the detection breaks down and no useful information
is provided by the estimators.

In Fig. 5(b), it can be seen that usage of the prior information
through the MODE PLEDGE algorithm has a noticeable effect
but is not as beneficial as one might have hoped. Comparing to
Fig. 1, this result is not so surprising: the region of substantial
improvement is small for MODE PLEDGE when the sources
are uncorrelated.

PLEDGE UC, as seen in Fig. 5(c), improves the estimation
accuracy in some parts of the data sample — note that while
its detection breaks down at approximately the same angular
separation as for the other algorithms, it resumes tracking
sooner giving a larger region of reasonable DOA estimation.

C-MUSIC is about as accurate as MODE PLEDGE; at some
time instances it is better, while worse at others.

When the source DOAs are rather close to each other, we
see from the figures that the prior-based methods fail similarly
to the conventional methods. The PLEDGE methods remove,
or filters out, the source at the known direction; however as
the unknown source comes too close to the known one, the
data from the unknown source is filtered out as well. Thus
we cannot circumvent the fact that too closely spaced sources
are indistinguishable. In other words the PLEDGE method
causes the unknown source SNR to decrease when it comes
too close to the known source. This can be contrasted to the
situation of the conventional methods, in which the received
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(a) True DOAs of the two sources, as a function of sample number. Dataset 4 from [20].
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(c) Methods exploiting the fact that the sources are uncorrelated.

Fig. 5. Real-data scenario: (a) true positions, and (b), (c) absolute error of DOA estimates (λ = 0.96). Known source fixed at ϑ = −5.7◦, as evident from (a).

data transitions into an apparent scenario with a single source
of double power in the direction of the merged sources.

By using the Empirical Root Mean Square Error, ERMSE,

defined according to

ERMSE =

√√√√ 1

M

M∑

k=1

(
θ̂k − θ

)2

(50)

with M being the number of measured DOAs, we can aggre-
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gate the results showed in Fig. 5. We thus find that MODE,
MODE PLEDGE, and C-MUSIC gives ERMSE values of
2.7◦, 2.2◦, and 3.4◦, respectively. The methods exploiting that
the signals are uncorrelated, DOA UC and PLEDGE UC,
gives ERMSE values of 3.3◦ and 2.3◦, respectively. We can
thus quantify the improvement in estimation accuracy given
by the PLEDGE framework; however, in this particular case,
the methods exploiting the uncorrelated nature of the source
signals (i.e., DOA UC and PLEDGE UC) failed to improve
the estimation, as compared to the methods that disregard this
information. This is likely due to the real signals not satisfying
the data model (1) — the data were acquired from moving
sources and averaged according to (49), which is not what the
methods were designed for. It is plausible that the UC methods,
which are exploiting more of the structure in the received data,
are more sensitive to such model imperfections.

8 CONCLUSIONS

We have closely examined a prior-knowledge-based frame-
work that uses known positions to facilitate the estimation
of unknown ones. We have shown how to exploit such prior
DOA-knowledge in a manner that gives asymptotically optimal
estimates whether the impinging signals are correlated or not.
Through numerical simulations we have shown that in most
scenarios a significant accuracy increase can be expected;
this benefit is especially pronounced in the region where the
estimator transitions to its asymptotic accuracy.

We also applied the methodology to a real-world scenario
with one known DOA and one unknown time-varying DOA.
Even though the methods are designed to analyze data received
from a stationary target, we saw improvements in the angular
estimates.
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[15] P. Wirfält, M. Jansson, G. Bouleux, and P. Stoica, “Prior-exploiting
direction-of-arrival algorithm for partially uncorrelated source signals,”
in IEEE Int. Conf. on Acoust., Speech and Signal Process., Vancouver,
Canada, May 2013, pp. submitted, pre–print available at.

[16] P. Stoica and K. Sharman, “Novel eigenanalysis method for direction
estimation,” IEE Proc. Part F Radar and Signal Process., vol. 137,
no. 1, pp. 19–26, Feb. 1990.

[17] H. Li, P. Stoica, and J. Li, “Computationally efficient maximum
likelihood estimation of structured covariance matrices,” IEEE Trans.
Signal Process., vol. 47, no. 5, pp. 1314–23, May 1999.

[18] A. Barabell, “Improving the resolution performance of eigenstructure-
based direction-finding algorithms,” in IEEE Int. Conf. on Acoust.,
Speech and Signal Process., vol. 8, Boston, Massachusetts, USA, Apr.
1983, pp. 336–339.

[19] P. Stoica, E. Larsson, and A. Gershman, “The stochastic CRB for array
processing: a textbook derivation,” IEEE Signal Process. Lett., vol. 8,
no. 5, pp. 148–150, May 2001.

[20] J. Pierre, E. Scott, and M. Hays, “A sensor array testbed for source
tracking algorithms,” in IEEE Int. Conf. on Acoust., Speech and Signal
Process., Munich, Germany, Apr. 1997, pp. 3769–3772.


