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Abstract

This paper focuses on Sequential Monte Carlo approximations of smoothing distributions in
conditionally linear and Gaussian state spaces. To reduce Monte Carlo variance of smoothers, it
is typical in these models to use Rao-Blackwellization: particle approximation is used to sample
sequences of hidden regimes while the Gaussian states are explicitly integrated conditional on
the sequence of regimes and observations, using variants of the Kalman filter / smoother.
The first successful attempt to use Rao-Blackwellization for smoothing extends the Bryson-
Frazier smoother for Gaussian linear state space models using the generalized two-filter formula
together with Kalman filters / smoothers. More recently, a forward backward decomposition of
smoothing distributions mimicking the Rauch-Tung-Striebel smoother for the regimes combined
with backward Kalman updates has been introduced. This paper investigates the benefit of
introducing additional rejuvenation steps in all these algorithms to sample at each time instant
new regimes conditional on the forward and backward particles. This defines particle based
approximations of the smoothing distributions whose support is not restricted to the set of
particles sampled in the forward or backward filter. These procedures are applied to commodity
markets which are described using a two factor model based on the spot price and a convenience
yield for crude oil data.

1 Introduction

State space models are bivariate stochastic processes {(Yi, Zi)}i≥1 where the state sequence (Zi)i≥1

is a Markov chain which is only partially observed through the sequence (Yi)i≥1. Conditionally
on the state sequence (Zi)i≥1 the observations are independent and for all ℓ ≥ 1 the conditional
distribution of Yℓ given (Zi)i≥1 depends on Zℓ only. These models are used in a large variety of
disciplines such as financial econometrics, biology, signal processing, see [DM13] and the references
therein. In general state space models, bayesian filtering and smoothing problems, i.e. the com-
putation of the posterior distributions of a sequence of states (Zi, . . . , Zp) for 1 ≤ i ≤ p ≤ ℓ given
observations (Y1, . . . , Yℓ), are challenging tasks. Filtering refers to the estimation of the distribu-
tions of the hidden state Zi given the observations (Y1, . . . , Yi) up to time i, while fixed-interval
smoothing stands for the estimation of the distribution of sequence of states (Zi, . . . , Zp) given
observations (Y1, . . . , Yℓ) with 1 ≤ i ≤ p < ℓ.
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When the state and observation models are linear and Gaussian, filtering can be solved explicitly
using the Kalman filter [Kal60]. Exact solutions of the fixed-horizon smoothing problem can be
obtained using either the Rauch-Tung-Striebel smoother [RST65] or the Bryson-Frazier two-filter
smoother [BF63]. This paper focuses on Conditionally Linear and Gaussian Models (CLGM) given
for i ≥ 2 by:

Zi = dai
+ Tai

Zi−1 +Hai
εi , (1)

where:

- (εi)i≥2 is a sequence of independent and identically distributed (i.i.d.) m-dimensional Gaussian
vectors with zero mean and identity covariance.

- (ai)i≥1 is a homogeneous Markov chain taking values in a finite space {1, . . . , J}, called regimes,
with initial distribution π and transition matrix Q.

- (Hj)1≤j≤J are m×m positive-definite matrices, (dj)1≤j≤J m-dimensional vectors and (Tj)1≤j≤J

m×m positive-definite matrices.

- Z1 is a m-dimensional Gaussian random variable with mean µ1 and variance Σ1 independent of
(εi)i≥2.

Let n be the number of observations. At each time step 1 ≤ i ≤ n, the observation Yi is given by:

Yi = cai
+Bai

Zi +Gai
ηi , (2)

where:

- (ηi)i≥1 is a i.i.d. sequence of p-dimensional Gaussian vectors, independent of (εi)i≥2 and Z1.

- (Gj)1≤j≤J are p × p positive-definite matrices, (cj)1≤j≤J p-dimensional vectors and (Bj)1≤j≤J

p×m matrices.

CLGM play an important role in many applications; see [Sar13] and the references therein for an
up-to-date account. A crucial feature of these models is that, conditional on the regime sequence
(a1, . . . , an), both the state equation and the observation equation are linear and Gaussian, which
implies that conditional on the sequence of regimes and on the observations, the filtering and the
smoothing distributions of the continuous states (Z1, . . . , Zn) can be computed explicitly.

To exploit this specific structure, it has been suggested in the pioneering works of [CL00, DGA00]
to solve the filtering problem by combining Sequential Monte Carlo (SMC) methods to sample the
regimes with the Kalman filter to compute the conditional distribution of the states sequence
(Zi)1≤i≤n conditional on the regimes and on the observations. This is a specific instance of Rao-
Blackwellized Monte Carlo filters, often referred to as the Mixture Kalman Filter. Improvements of
these early filtering techniques have been introduced in [DGK01, SGN05].

The use of Rao-Blackwellization to solve the smoothing problem has been proved to be more chal-
lenging and has received satisfactory solutions only recently. The first forward-backward smoother
proposed in the literature [FGDW02] was not fully Rao-Blackwellized as it required to sample the
hidden linear states in the backward pass. An alternative approach, based on the so-called struc-
tural approximation of the model suggested in an early paper by [Kim94], was proposed by [Bar06]
to avoid to sample a continuous state in the backward pass. This approximation is rather ad-hoc
and the resulting smoother is not consistent when the number of particles goes to infinity. The
inaccuracy introduced by the approximation might be difficult to control.
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The first fully Rao-Blackwellized SMC smoother which should lead to consistent approximations
when the number of particles grows to infinity was proposed by [BDM10] and extends the Bryson-
Frazier smoother for Gaussian linear state space models using the generalized two-filter formula
with Rao-Blackwellization steps for the forward and the backward filters. This two-filter approach
combines a forward filter with a backward information filter which are approximated numerically
using SMC for the regime sequence and Kalman filtering techniques for the hidden linear states.

More recently, [SBG12, LBGS13, LBS+16] introduced a Rao-Blackwellized smoother based on
the forward-backward decomposition of the FFBS algorithm with Rao-Blackwellization steps both
in the forward and backward time directions. The update of the smoothing distribution of the regime
given the observations shares some striking similarities with the Rauch-Tung-Striebel smoothing
procedure, which is at the heart of the FFBS procedure. The Rao-Blackwellization requires to
update backward in time the smoothing distribution of the states given the regimes and the obser-
vations, which is achieved by using an à la Kalman backward update.

In this paper, we propose to improve the performance of the algorithms introduced in [BDM10]
and in [SBG12, LBGS13, LBS+16] by using additional Rao-Blackwellization steps which allows to
sample new particles in the backward pass. This approach may be seen as an extension of the ideas
of [FC03] for Rao-Blackwellized smoothers. In [BDM10], for all 1 ≤ i ≤ n, the sampled forward and
backward sequences are merged to approximate the posterior distribution of (ai, zi). This provides
an approximation whose support is restricted to the particles produced at time i by the backward
particle filter. As noted in [FWT10, Secion 2.6], these two-filter smoothers are prone to suffer from
degeneracy issues when the algorithm associates forward particles at time i − 1 with backward
particles at time i. We propose to approximate the marginal smoothing distribution of (ai, zi) by
merging the sampled forward and backward trajectories at times i − 1 and i + 1 and integrating
out all possible paths between time i − 1 and time i and between time i and time i + 1 instead
of sampling random variables. Similarly, in the backward pass of [SBG12, LBGS13, LBS+16], a
regime ãi is sampled at time 1 ≤ i ≤ n−1 using the particles produced by the forward filter at time
i. In this case, particle rejuvenation may be introduced by using the forward weighted samples at
time i − 1 and extending these trajectories at time i with a Kalman filter for all possible values of
the regime. Then, ãi is sampled in {1, . . . , J} using an appropriately adapted weight.

The paper is organized as follows. The algorithms introduced in [BDM10] and in [SBG12,
LBGS13, LBS+16] as long as the proposed rejuvenation associated with each method are presented
in Section 2. The performance of all these methods is illustrated in Section 3 with simulated data.
In Section 4, an application to commodity markets is presented; the performance of our procedure is
illustrated with crude oil data. A detailed derivation of the algorithms is provided in the Appendix.

2 Rao-Blackwellized smoothing algorithms

This section details the Sequential Monte Carlo algorithms which can be used to approximate the
conditional distribution of the states (a1, . . . , an) or the marginal distributions of (ai, zi) given
the observations (Y1, . . . , Yn). For all m × m matrix let |A| be the determinant of A. If A is a
positive-definite matrix, for all z ∈ R

m define

‖z‖
2
A := z′A−1z ,

where for any vector or matrix z, z′ denotes the transpose matrix of z. Let m(ai, zi−1; zi) be
the probability density of the conditional distribution of Zi given (ai, Zi−1) and g(ai, zi; yi) be the
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probability density of the conditional distribution of Yi given (ai, Zi):

m(ai, zi−1; zi) :=
∣∣2πHai

∣∣−1/2
exp

{
−
1

2
‖zi − dai

− Tai
zi−1‖

2
Hai

}
, (3)

g(ai, zi; yi) :=
∣∣2πGai

∣∣−1/2
exp

{
−
1

2
‖yi − cai

−Bai
zi‖

2
Gai

}
, (4)

where
Gj := GjG

′
j , Hj := HjH

′
j .

All the algorithms considered in this paper are based on forward-backward or two-filter decompo-
sitions of the smoothing distributions and share the same forward filter presented in Section 2.1.

2.1 Forward filter

The SMC approximation pN (a1:i, zi|y1:i) of p(a1:i, zi|y1:i) may be obtained using a standard Rao-
Blackwellized algorithm. The procedure produces a sequence of trajectories (ak1:i)1≤k≤N associated

with normalized importance weights (ωk
i )1≤k≤N (

∑N
k=1 ω

k
i = 1) used to define the following ap-

proximation of p(a1:i, zi|y1:i):

pN (a1:i, zi|y1:i) =

N∑

k=1

ωk
i p(zi|a

k
1:i, y1:i) δak

1:i
(a1:i) , (5)

where δ is the Dirac delta function. In this equation, the conditional distribution of the hidden
state zi given the observations y1:i and a trajectory ak1:i is a Gaussian distribution whose mean µk

i

and variance P k
i may be obtained by using the Kalman filter update.

Initialization
At time i = 1, write, for all 1 ≤ j ≤ J ,

µj
1|0 = cj +Bjµ1 and P j

1|0 = BjΣ1B
′
j +Gj .

(ak1)1≤k≤N are sampled independently in {1, . . . , J} with probabilities proportional to

πjp(a1 = j|y1) ∝ πj |P
j
1|0|

−1/2 exp
{
−(y1 − µj

1|0)
′(P j

1|0)
−1(y1 − µj

1|0)/2
}
.

Then, µk
1 and P k

1 are computed using a Kalman filter:

Kk
1 = Σ1B

′
ak
1

(
Bak

1
Σ1B

′
ak
1

+Gak
1

)−1

,

µk
1 = µ1 +Kk

1

(
Y1 − cak

1
−Bak

1
µ1

)
,

P k
1 =

(
Im −Kk

1Bak
1

)
Σ1 ,

where for all positive integer p, Ip is the p×p identity matrix. Each particle particle ak1 is associated
with the importance weight ωk

1 = 1/N .
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Iterations
Several procedures may be used to extend the trajectories (ak1:i−1)1≤k≤N at time i. For all sampled
trajectories (ak1:i−1)1≤k≤N and all 1 ≤ j ≤ J , [CL00] used the incremental weights:

γj,ki = p(yi|ai = j, ak1:i−1, y1:i−1)Q(aki−1, j) .

The conditional distribution of Yi given a
k
1:i−1, ai and Y1:i−1 is a Gaussian distribution with mean

cai
+Bai

µk
i|i−1(ai) and variance Bai

P k
i|i−1(ai)B

′
ai

+Gai
where

µk
i|i−1(ai) = dai

+ Tai
µk
i−1 ,

P k
i|i−1(ai) = Tai

P k
i−1T

′
ai

+Hai
.

Therefore,

γj,ki ∝ Q(aki−1, j)|BjP
j,k
i|i−1B

′
j +Gj |

−1/2 exp

{
−
1

2

∥∥∥yi − cj −Bjµ
j,k
i|i−1

∥∥∥
2

BjP
j,k

i|i−1
B′

j
+Gj

}
,

where:

µj,k
i|i−1 = µk

i|i−1(j) = dj + Tjµ
k
i−1 , (6)

P j,k
i|i−1 = P k

i|i−1(j) = TjP
k
i−1T

′
j +Hj . (7)

In [CL00], for all 1 ≤ k ≤ N , an ancestral path is chosen with probabilities proportional to
(ωk

i−1)1≤k≤N . Then, the new regime aki is sampled in {1, . . . , J} with probabilities proportional

to (γj,ki )1≤j≤J . A drawback of this method is that only ancestral paths that have been selected
using the importance weights (ωk

i−1)1≤k≤N are extended at time i. Following [BGM08], this may be
improved by considering all the offsprings of all ancestral trajectories (ak1:i−1)1≤k≤N . Each ancestral
path has J offsprings at time i, it is thus necessary to choose a given number of trajectories at time i
(for instance N) among the NJ possible paths. To obtain the weight associated with each offspring
write the following approximation of p(a1:i|y1:i) based on the weighted samples at time i− 1:

pN(a1:i|y1:i) ∝

N∑

k=1

ωk
i−1Q(aki−1, ai)p(yi|a

k
1:i−1, ai, y1:i−1)δak

1:i−1
(a1:i−1) ,

∝

N∑

k=1

J∑

j=1

ωk
i−1γ

j,k
i δ(ak

1:i−1
,j)(a1:i) .

Therefore, each ancestral trajectory of the form (ak1:i−1, j), 1 ≤ k ≤ N , 1 ≤ j ≤ J , is associated

with the normalized weight ω̃j,k
i ∝ ωk

i−1γ
j,k
i . Several random selection schemes have been proposed

to discard some of the possible offsprings to maintain an average number of N particles at each
time step. Following [BGM08], we might choose between the Kullback-Leibler Optimal Selection
(KL-OS) or the Chi-Squared Optimal Selection (CS-OS) to associate a new weight to each of the
NJ trajectories. If the new weight is 0, then the corresponding particle can be removed.

KL-OS: λ is chosen as the solution of :

N∑

k=1

J∑

j=1

min
(
ω̃j,k
i /λ, 1

)
= N .
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For all 1 ≤ j ≤ J and 1 ≤ k ≤ N , if ω̃j,k
i ≥ λ then the new weight Ω̃j,k

i is Ω̃j,k
i = ω̃j,k

i and if

ω̃j,k
i < λ:

Ω̃j,k
i =

{
λ with probability ω̃j,k

i /λ ,

0 with probability 1− ω̃j,k
i /λ .

CS-OS: λ is chosen as the solution of :

N∑

k=1

J∑

j=1

min

(√
ω̃j,k
i /λ, 1

)
= N .

For all 1 ≤ j ≤ J and 1 ≤ k ≤ N , if ω̃j,k
i ≥ λ then the new weight Ω̃j,k

i is Ω̃j,k
i = ω̃j,k

i and if

ω̃j,k
i < λ:

Ω̃j,k
i =





√
ω̃j,k
i λ with probability

√
ω̃j,k
i /λ ,

0 with probability 1−

√
ω̃j,k
i /λ .

Then, in both cases, all particles such that Ω̃j,k
i = 0 are discarded and for all the other trajectories

defined as an ancestral path (ak1:i−1) extended by aki = j, the new corresponding weight ω in (5) is

given by the normalized weight Ω̃j,k
i . In the numerical sections of this paper, the Kullback-Leibler

Optimal Selection (KL-OS) scheme is used.

2.2 FFBS based algorithms

2.2.1 FFBS algorithms of [SBG12, LBGS13, LBS+16]

[SBG12, LBGS13, LBS+16] proposed a Rao-Blackwellized procedure to sample the regime backward
in time following the same steps as in the Forward Filtering Backward Smoothing algorithm [HK98,
DGA00]. The algorithm relies on the decomposition given, for all 1 ≤ i ≤ n− 1, by:

p(a1:n|y1:n) = p(a1:i|ai+1:n, y1:n)p(ai+1:n|y1:n) .

This decomposition is similar to the Rauch-Tung-Striebel decomposition of the filtering distribution.
The first factor on the right hand side of the previous equation is nevertheless more difficult to handle
because it itself relies on all the observations. As noted by [SBG12], this term can be computed
recursively by considering the following decomposition:

p(a1:i|ai+1:n, y1:n) ∝ p(yi+1:n, ai+1:n|a1:i, y1:i)p(a1:i|y1:i) . (8)

The second factor in the last equation may be approximated using the ancestral trajectories
(ak1:i)1≤k≤N and the associated importance weights (ωk

i )1≤k≤N produced by the forward filter.
Therefore, p(a1:i|ai+1:n, y1:n) may be approximated by:

pN(a1:i|ai+1:n, y1:n) =

N∑

k=1

ω̃k
i|nδak

1:i
(a1:i) with ω̃k

i|n ∝ ωk
i p(yi+1:n, ai+1:n|a

k
1:i, y1:i) .

Then, a trajectory ã1:n approximatively distributed according to p(a1:n|y1:n) may be sampled fol-
lowing these steps:
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- Set ãn = akn with probabilities proportional to (ωk
n)1≤k≤N .

- For all 1 ≤ i ≤ n− 1, set ãi = aki with probabilities proportional to (ω̃k
i|n)1≤k≤N .

This algorithm requires to compute the quantity p(yi+1:n, ai+1:n|a
k
1:i, y1:i). This predictive quantity

is available analytically using Kalman filtering techniques. However, this has to be done for each
trajectory (ak1:i)1≤k≤N , which leads to an algorithm with a prohibitive computational complexity.
[LBS+16] proposed a procedure computationally less intensive by conditioning with respect to zi
and then marginalizing with respect to this variable:

p(yi+1:n, ai+1:n|a
k
1:i, y1:i) =

∫
p(yi+1:n, ai+1:n|zi, a

k
i )p(zi|a

k
1:i, y1:i)dzi . (9)

This is similar to the two-filter decomposition of the smoothing distribution, see Section 2.3. By
[LBS+16],

p(yi+1:n, ai+1:n|zi, ai) ∝ Q(ai, ai+1) exp {−(z′iΩi(ai+1:n)zi − 2λ′i(ai+1:n)zi)/2} ,

where the proportionality is with respect to (ai, zi) and

p(yi:n, ai+1:n|zi, ai) ∝ exp
{
−(z′iΩ̂i(ai:n)zi − 2λ̂′i(ai:n)zi)/2

}
,

where the proportionality is with respect to zi. These quantities may be computed recursively
backward in time with:

Ω̂n(an) = B′
an
G

−1

an
Ban

,

λ̂n(an) = B′
an
G

−1

an
(yn − can

) .

Then, for 1 ≤ i ≤ n − 1, define mi+1 = λ̂i+1 − Ω̂i+1dai+1
and Mi+1 = H ′

ai+1
Ω̂i+1Hai+1

+ Im and
write

Ωi(ai+1:n) = T ′
ai+1

(Im − Ω̂i+1(ai+1:n)Hai+1
M−1

i+1H
′
ai+1

)Ω̂i+1(ai+1:n)Tai+1
,

λi(ai+1:n) = T ′
ai+1

(Im − Ω̂i+1(ai+1:n)Hai+1
M−1

i+1H
′
ai+1

)mi+1 .

As p(yi:n, ai+1:n|zi, ai) = p(yi|zi, ai)p(yi+1:n, ai+1:n|zi, ai),

Ω̂i(ai:n) = Ωi(ai+1:n) +B′
ai
G

−1

ai
Bai

,

λ̂i(ai:n) = λi(ai+1:n) +B′
ai
G

−1

ai
(yi − cai

) .

Then, by (9),

p(yi+1:n, ai+1:n|a
k
1:i, y1:i) ∝ Q(aki , ai+1)|Λ

k
i (ai+1:n)|

−1/2 exp
{
−ηki (ai+1:n)/2

}
, (10)

where the proportionality is with respect to ak1:i and

Λk
i (ai+1:n) = (Γk

i )
′Ωi(ai+1:n)Γ

k
i + Im ,

ηki (ai+1:n) = ‖µk
i ‖

2
Ω−1

i
(ai+1:n)

− 2λ′i(ai+1:n)µ
k
i − ‖(Γk

i )
′(λi(ai+1:n)− Ωi(ai+1:n)µ

k
i )‖

2
Λi(ai+1:n)

,

7



Ngoc Minh Nguyen et al. Conditionally Linear and Gaussian models

where P k
i = Γk

i (Γ
k
i )

′. Therefore,

ω̃i|n ∝ ωk
i Q(aki , ai+1)|Λ

k
i (ai+1:n)|

−1/2 exp
{
−ηki (ai+1:n)/2

}
.

If (ãk1:n)1≤k≤Ñ are independent copies of ã1:n, the SMC approximation of [LBS+16] of the joint
smoothing distribution of the regime is:

pLbscg
Ñ

(a1:n|Y1:n) =
1

Ñ

Ñ∑

k=1

δãk
1:n

(a1:n) .

2.2.2 Particle rejuvenation of FFBS algorithms

The crucial step of the FFBS algorithm is the decomposition (8) which allows to extend a backward
trajectory ãi+1:n by choosing a particle in the set (aki )1≤k≤N produced by the forward filter (and
discarding the states ak1:i−1). An improved version of this FFBS algorithm which is not constrained
to sample states in the support (aki )1≤k≤N may be defined for all 2 ≤ i ≤ n− 1 by writing:

p(a1:i|ai+1:n, y1:n) ∝ p(yi+1:n, ai+1:n|a1:i, y1:i)p(a1:i|y1:i) ,

∝ p(yi+1:n, ai+1:n|a1:i, y1:i)

∫
p(a1:i−1, zi−1|y1:i−1)Q(ai−1, ai)

m(ai, zi−1; zi)g(ai, zi; yi)dzi−1:i .

Replacing p(a1:i−1, zi−1|y1:i−1) in the integral by the particle approximation obtained during the
forward pass and using Kalman filtering techniques for each trajectory (ak1:i−1)1≤k≤N and each
ai ∈ {1, . . . , J} yields:

∫
pN (a1:i−1, zi−1|y1:i−1)Q(ai−1, ai)m(ai, zi−1; zi)g(ai, zi; yi)dzi−1:i ∝

N∑

k=1

ωk
i|i−1(ai)δak

1:i−1
(a1:i−1) ,

where

ωk
i|i−1(ai) = ωk

i−1Q(aki−1, ai)|Σ
k
i|i−1(ai)|

−1/2exp

{
−
1

2
‖yi − yki|i−1(ai)‖Σk

i|i−1
(ai)

}
,

yki|i−1(ai) = cai
+Bai

(dai
+ Tai

µk
i−1) and Σk

i|i−1(ai) = Bai
(Tai

P k
i−1T

′
ai

+Hai
)B′

ai
+Gai

.

On the other hand, for all 1 ≤ k ≤ N , p(yi+1:n, ai+1:n|a
k
1:i−1, ai, y1:i) is computed as in (10) with

all possible values ai ∈ {1, . . . , J} and not only the regime of the filtering pass (aki )1≤k≤N . This
means that a Kalman filter must be used for each trajectory ak1:i−1 which may be extended by
ai ∈ {1, . . . , J}. Denote by µk

i|i−1(ai) and P
k
i|i−1(ai) the mean and covariance matrix of the law of

zi given (ak1:i−1, ai) obtained as in (6) and (7). Then,

p(yi+1:n, ai+1:n|a
k
1:i−1, ai, y1:i) = Q(ai, ai+1)|Λ

k
i|i−1(ai:n)|

−1/2 exp
{
−ηki|i−1(ai:n)/2

}
, (11)

where the proportionality is with respect to (ak1:i−1, ai) and

Λk
i|i−1(ai:n) = (Γk

i|i−1(ai))
′Ωi(ai+1:n)Γ

k
i|i−1(ai) + Im ,

ηki|i−1(ai:n) = ‖µk
i|i−1(ai)‖

2
Ω−1

i
(ai+1:n)

− 2λ′i(ai+1:n)µ
k
i|i−1(ai)

− ‖(Γk
i|i−1(ai))

′(λi(ai+1:n)− Ωi(ai+1:n)µ
k
i|i−1(ai))‖

2
Λi(ai+1:n)

,

8



Ngoc Minh Nguyen et al. Conditionally Linear and Gaussian models

where Γk
i|i−1(ai) is defined as P k

i|i−1(ai) = Γk
i|i−1(ai)(Γ

k
i|i−1(ai))

′. The distribution p(a1:i|ai+1:n, y1:n)
is then approximated by :

pN (a1:i|ai+1:n, y1:n)

∝

N∑

k=1

ωk
i|i−1(ai)Q(ai, ai+1)|Λ

k
i|i−1(ai:n)|

−1/2 exp
{
−ηki|i−1(ai:n)/2

}
δak

1:i−1
(a1:i−1) . (12)

By integrating over all possible paths a1:i−1, ãi is sampled in {1, . . . , J}. This particle rejuvenation
step allows to explore states which are not in the support of the particles produced by the forward
filter and improves the accuracy and the variance of the original FFBS algorithm, see Section 3 for
numerical illustrations.

Another modification of the FFBS algorithm based on a Markov chain Monte Carlo (MCMC)
sampling step was introduced in [LBS+16, Section 5.2]. Instead of sampling from (12), [LBS+16,
Section 5.2] proposed to draw a forward path a1:i−1 in (ak1:i−1)1≤k≤N and a sate ai in {1, . . . , J}
according to:

q̃(a1:i|ai+1:n, y1:n) =
N∑

k=1

ϑ̃ki−1q̃(ai|a
k
1:i−1, ai+1:n, y1:n)δak

1:i−1
(a1:i−1) ,

where (ϑ̃ki−1)1≤k≤N are adjustment multipliers and q̃(ai|a
k
1:i−1, ai+1:n, y1:n) is a proposal kernel

chosen by the user. This means that an ancestral path a⋆1:i−1 is sampled in (ak1:i−1)1≤k≤N with

weights (ϑ̃ki−1)1≤k≤N and a⋆i is sampled from q̃(·|a⋆1:i−1, ai+1:n, y1:n). Then, the proposed sequence
a⋆1:i is accepted or rejected using the usual Metropolis-Hastings acceptance ratio. The choice of
MCMC rejuvenation has interesting practical consequences as the computation of the acceptance
ratio only requires to compute the posterior probability (11) for the proposed sequence a⋆1:i while
our technique is based on the computation of (11) for all combinations of sequences (ak1:i)1≤k≤N

and states ai ∈ {1, . . . , J}. Sampling from (12) is computationally more intensive, especially when
N is large, but our method is based on a direct approximation of p(a1:i|ai+1:n, y1:n) based on
(ak1:i−1)1≤k≤N and ai+1:n instead of approximate MCMC draws.

2.3 Rao-Blackwellized Two-filter Smoother

2.3.1 Rao-Blackwellized Two-filter Smoother of [BDM10]

Contrary to the previous methods, two-filter based smoothers are designed to compute approx-
imations of marginal smoothing distributions (usually the posterior distribution of one or two
consecutive regimes given all the observations). [BDM10] introduced the following decomposition
of the smoothing distributions for all 2 ≤ i ≤ n:

p(ai, zi|y1:n) ∝ p(ai, zi|y1:i−1)p(yi:n|ai, zi) . (13)

The first term on the right hand side may be approximated using the forward filter by noting that:

p(ai, zi|y1:i−1) =
∑

ai−1

∫

zi−1

p(ai−1, zi−1|y1:i−1)m(ai, zi−1; zi)Q(ai−1, ai)dzi−1 .

9
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In the forward pass described in Section 2.1, a set of possible sequences of regimes ak1:i−1 associated
with importance weights ωk

i−1, 1 ≤ k ≤ N are sampled to approximate p(ai−1, zi−1|y1:i−1). This
provides a normalized approximation pN(ai, zi|y1:i−1) of p(ai, zi|y1:i−1). Define

Ωk
i−1(ai) = Tai

P k
i−1T

′
ai

+Hai
, µk

i−1(ai) = dai
+ Tai

µk
i−1 , r

k
i−1(ai) = (Ωk

i−1(ai))
−1µk

i−1(ai) ,

ωk
f,i(ai) = ωk

i−1Q(aki−1, ai)
∣∣2πΩk

i−1(ai)
∣∣−1/2

exp

{
−
1

2

∥∥µk
i−1(ai)

∥∥2
Ωk

i−1
(ai)

}
.

Then,

pN (ai, zi|y1:i−1) =
N∑

k=1

ωk
f,i(ai) exp

{
−
1

2
‖zi‖

2
Ωk

i−1
(ai)

+ z′ir
k
i−1(ai)

}
. (14)

As the function (ai, zi) 7→ p(yi:n|ai, zi) is not a probability density function, approximating the
second term of (13) using SMC samples is not straightforward. The backward filter uses artificial
densities to introduce a surrogate target density function which may be approximated recursively
using SMC methods. Then, the forward and backward weighted samples are combined using (13)
to approximate p(ai, zi|y1:n). Following [BDM10], for any probability densities (γi)1≤i≤n, define
the following joint probability densities:

p̃n(an, zn, yn) := γn(an, zn)g(an, zn; yn) , p̃n(yn) :=
J∑

an=1

∫
γn(an, zn)g(an, zn; yn)dzn ,

and, for all 1 ≤ i ≤ n− 1,

p̃i(ai:n, zi:n, yi:n) := γi(ai, zi)p(yi:n|ai:n, zi:n)p(ai+1:n, zi+1:n|ai, zi) ,

p̃i(yi:n) :=

J∑

ai:n=1

∫
γi(ai, zi)p(yi:n|ai:n, zi:n)p(ai+1:n, zi+1:n|ai, zi)dzi:n .

Note that this choice differs slightly from [BDM10] where it is advocated to set γi as the product
of two independent densities γai (ai) and γ

z
i (zi). As the accuracy of the algorithm relies heavily on

a proper tuning of this artificial density, a more general choice of γi is considered in this paper.
By Lemma 1, these probability densities may be used to approximate the quantities p(yi:n|ai, zi),
1 ≤ i ≤ n, in (13).

Lemma 1. For all 1 ≤ i ≤ n− 1,

p̃i(ai, zi|yi:n) = p(yi:n|ai, zi)γi(ai, zi)/p̃i(yi:n) , (15)

p̃i(ai, zi|yi:n) = γi(ai, zi)

J∑

ai+1:n=1

p̃i(ai:n|yi:n)p(yi:n|ai:n, zi)∫
γi(ai, z

′)p(yi:n|ai:n, z′)dz′
. (16)

Proof. The proof is postponed to Appendix A.

By definition of p̃i for all 1 ≤ i ≤ n,

p̃i(ai:n, zi|yi:n) ∝ γi(ai, zi)

∫
p(yi:n|ai:n, zi:n)p(ai+1:n, zi+1:n|ai, zi)dzi+1:n ,

∝ γi(ai, zi)

{
n−1∏

u=i

Q(au, au+1)

}
p(yi:n|zi, ai:n) .

10
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This yields:

p̃i(ai:n|yi:n) ∝

{
n−1∏

u=i

Q(au, au+1)

}∫
γi(ai, zi)p(yi:n|zi, ai:n)dzi .

A set of weighted trajectories (ãℓi:n)1≤ℓ≤N with importance weights (ω̃ℓ
i )1≤ℓ≤N , 1 ≤ i ≤ n, may

then be sampled recursively backward in time to produce a SMC approximation of p̃(ai:n|yi:n) as
follows.

- For 1 ≤ ℓ ≤ N , sample ãjn ∼ q̃n(·) and set:

ω̃ℓ
n ∝

∫
γn(ã

ℓ
n, z

′)g(ãℓn, z
′; yn)dz

′

q̃n(ãℓn)
.

- For all 1 ≤ i ≤ n− 1, resample the set (ãℓi+1:n)1≤j≤N using the normalized weights (ω̃ℓ
i+1)1≤j≤N .

Then, for 1 ≤ ℓ ≤ N , sample ãji ∼ q̃i(ã
ℓ
i+1:n, ·) and set:

ω̃ℓ
i ∝

Q(ãℓi , ã
ℓ
i+1)

∫
γi(ã

ℓ
i , z

′)p(yi:n|ã
ℓ
i:n, z

′)dz′

q̃i(ãℓi+1:n, ã
ℓ
i)
∫
γi+1(ã

ℓ
i+1, z

′)p(yi+1:n|ãℓi+1:n, z
′)dz′

.

To obtain uniformly weighted samples at each time step, in the numerical experiments we use:

q̃n(·) =

∫
γn(·, z

′)g(·, z′; yn)dz
′ and q̃i(ã

ℓ
i+1:n, ·) =

Q(·, ãℓi+1)
∫
γi(·, z

′)p(yi:n|(·, ã
ℓ
i+1:n), z

′)dz′∫
γi+1(ã

ℓ
i+1, z

′)p(yi+1:n|ãℓi+1:n, z
′)dz′

.

By (15) and (16),

p(yi:n|ai, zi) =
p̃i(yi:n)p̃i(ai, zi|yi:n)

γi(ai, zi)
= p̃i(yi:n)

J∑

ai+1:n=1

p̃i(ai:n|yi:n)p(yi:n|ai:n, zi)∫
γi(ai, z

′)p(yi:n|ai:n, z′)dz′
,

which suggests the following particle approximation pN (yi:n|ai, zi) of p(yi:n|ai, zi):

pN(yi:n|ai, zi) = p̃i(yi:n)

N∑

ℓ=1

ω̃ℓ
ip(yi:n|ã

ℓ
i:n, zi)∫

γi(ã
ℓ
i , z

′)p(yi:n|ãℓi:n, z
′)dz′

δãℓ
i
(ai) . (17)

The conditional likelihood of the observations given the sequence of states p(yi:n|ai:n, zi) can be
computed explicitly using a Gaussian backward smoother; these computations are summarized in
Lemma 2. In the numerical experiments, γi(ai, zi) is set as a mixture of Gaussian distributions.
Note that for such a choice, the integral

∫
γi(ai, z

′)p(yi:n|ai:n, z
′)dz′ may be computed explicitly, see

Lemma 3. Then, combining (17) and (14) with (13) provides an approximation of p(ai, zi|y1:n) by
merging the forward particles (aki−1)1≤k≤N with the backward particles (ãki+1)1≤k≤N , the support
of this SMC approximation of p(ai, zi|y1:n) being (ãki+1)1≤k≤N .

As noted in [FWT10, Secion 2.6], two-filter smoothers are prone to suffer from degeneracy issues
when the algorithm associates forward particles at time i−1 with backward particles at time i. The
authors illustrate this issue in the case where the hidden state is an AR(2) process. To overcome the
weakness of such standard two-filter approaches the particle rejuvenation proposed in Section 2.3.2
follows the idea introduced in [FWT10] where new particles at time i are sampled conditional

11
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on (ak1:i−1)1≤k≤N and on (ãki+1:n)1≤k≤N and appropriately weighted. This allows to produce new
particles at time i and to obtain a SMC approximation of p(ai, zi|y1:n) whose support is not re-
stricted to (ãki+1)1≤k≤N . Section 2.3.2 exploits this idea in the specific case of linear and Gaussian
models where explicit computations allows to produce an approximation using (ak1:i−1)1≤k≤N and
(ãki+1:n)1≤k≤N with support {1, . . . , J} and without any additional sampling steps.

2.3.2 Particle rejuvenation of two-filter based algorithms

For 2 ≤ i ≤ n− 1, particle rejuvenation relies on the explicit marginalization:

p(ai, zi|y1:n) =
∑

ai−1

∑

ai+1

∫

zi−1

∫

zi+1

ψn
i (ai−1:i+1, zi−1:i+1)dzi−1dzi+1 , (18)

where ψn
i (ai−1:i+1, zi−1:i+1) is the smoothing distribution of the hidden regimes and states be-

tween time indices i − 1 and i + 1. Note that the EM algorithm requires the approximation
of p(ai−1, zi−1, ai−1, zi−1|y1:n) in the E-step, this may be obtained following the same steps by
marginalizing explicitly the linear states at time i− 2 and i+ 1. Intermediate computations follow
the same steps as for the approximation of p(ai, zi|y1:n). First, ψ

n
i may be decomposed as follows:

ψn
i (ai−1:i+1, zi−1:i+1) ∝ p(yi+1:n|ai+1, zi+1)p(ai−1, zi−1|y1:i−1)Q(ai−1, ai)m(ai, zi−1; zi)

× g(ai, zi; yi)Q(ai, ai+1)m(ai+1, zi; zi+1) ,

where the proportionality is with respect to (ai−1:i+1, zi−1:i+1). Then, by (18), the smoothing
distribution p(ai, zi|y1:n) may be written as

p(ai, zi|y1:n) ∝ p(ai, zi|y1:i−1)g(ai, zi; yi)ti(ai, zi, yi+1:n) , (19)

where m and g are defined in (3) and (4) and

ti(ai, zi, yi+1:n) =
∑

ai+1

∫

zi+1

m(ai+1, zi; zi+1)Q(ai, ai+1)p(yi+1:n|ai+1, zi+1)dzi+1 . (20)

The backward pass described in Section 2.3.1 produces a sequence of states ãℓi+1:n associated with
importance weights ω̃ℓ

i+1, 1 ≤ ℓ ≤ N which are used to approximate p(yi+1:n|ai+1, zi+1). Plug-
ging this approximation into (20) provides an approximation tNi (ai, zi, yi+1:n) of ti(ai, zi, yi+1:n)
integrating over all possible choices (ai+1, zi+1). These steps are then combined to form a non
normalized SMC approximation of p(ai, zi|y1:n) using (19). The normalization of the SMC approx-
imation of p(ai, zi|y1:n) is obtained by integrating over the states ai, zi, when p(ai, zi|y1:i−1) and
ti(ai, zi, yi+1:n) are replaced by pN (ai, zi|y1:i−1) and t

N
i (ai, zi, yi+1:n) in (19). Our procedure allows

to construct sequence of regimes with non-degenerated importance weights in the combination step.
This procedure improves significantly [BDM10] where no marginalization of p(ai, zi|y1:n) over the
states at times i−1 and i+1 is performed and where the proposed forward and backward paths are
directly merged. This method often leads to importance weights which are close to be numerically
degenerated. By Lemma 2, the SMC approximation pN(yi:n|ai, zi) of p(yi:n|ai, zi) is then given by:

pN (yi:n|ai, zi) = p̃i(yi:n)
N∑

ℓ=1

δãℓ
i
(ai)ω̃

ℓ
i∫

γi(ã
ℓ
i , z

′)p(yi:n|ãℓi:n, z
′)dz′

exp

{
−
1

2
‖zi‖

2
P̃ ℓ

i
+ z′iν̃

ℓ
i −

1

2
c̃ℓi

}
, (21)

12
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where (P̃ ℓ
i )

−1 := P̃−1
i (ãℓi:n), ν̃

ℓ
i := ν̃i(ã

ℓ
i:n) and c̃

ℓ
i := c̃ℓi(ã

ℓ
i:n) are defined in Lemma 2. Define

∆ℓ
i+1 :=

(
Im +H ′

ãℓ
i+1

(P̃ ℓ
i+1)

−1Hãℓ
i+1

)−1

,

δℓi+1 := ν̃ℓi+1 +H
−1

ãℓ
i+1

(dãℓ
i+1

+ Tãℓ
i+1
zi) .

Then, by (20), the SMC approximation tNi (ai, zi, yi+1:n) of ti(ai, zi, yi+1:n) is given by:

tNi (ai, zi, yi+1:n) =

J∑

ai+1=1

∫

zi+1

m(ai+1, zi; zi+1)Q(ai, ai+1)p
N (yi+1:n|ai+1, zi+1)dzi+1 ,

= p̃i+1(yi+1:n)
N∑

ℓ=1

C−1
i (ãℓi+1:n)Q(ai, ã

ℓ
i+1)ω̃

ℓ
i+1|H ãℓ

i+1
|−1/2|Hãℓ

i+1
∆ℓ

i+1H
′
ãℓ
i+1

|1/2

× exp

{
1

2
(δℓi+1)

′Hãℓ
i+1

∆ℓ
i+1H

′
ãℓ
i+1

δℓi+1 −
1

2

∥∥∥dãℓ
i+1

+ Tãℓ
i+1
zi

∥∥∥
2

H
ãℓ
i+1

}
,

=

N∑

ℓ=1

ω̃ℓ
b,i(ai) exp

{
−
1

2
‖zi‖

2
S̃ℓ
i+1

+ z′is̃
ℓ
i+1

}
, (22)

where

Ci(ã
ℓ
i+1:n) := exp

{
c̃ℓi+1/2

}∫

zi+1

γi+1(ã
ℓ
i+1, z)p̃(yi+1:n|ã

ℓ
i+1:n, z)dz ,

ω̃ℓ
b,i(ai) = p̃i+1(yi+1:n)Ci(ã

ℓ
i+1:n)

−1Q(ai, ã
ℓ
i+1)ω̃

ℓ
i+1|H ãℓ

i+1
|−1/2|Hãℓ

i+1
∆ℓ

i+1H
′
ãℓ
i+1

|1/2

× exp{−d′ãℓ
i+1

H
−1

ãℓ
i+1
dãℓ

i+1
/2} exp{(ν̃ℓi+1 +H

−1

ãℓ
i+1
dãℓ

i+1
)′Hãℓ

i+1
∆ℓ

i+1H
′
ãℓ
i+1

(ν̃ℓi+1 +H
−1

ãℓ
i+1
dãℓ

i+1
)/2} ,

(S̃ℓ
i+1)

−1 = T ′
ãℓ
i+1

H
−1

ãℓ
i+1

(Tãℓ
i+1

−Hãℓ
i+1

∆ℓ
i+1H

′
ãℓ
i+1

H
−1

ãℓ
i+1
Tãℓ

i+1
) ,

s̃ℓi+1 = T ′
ãℓ
i+1

H
−1

ãℓ
i+1

(Hãℓ
i+1

∆ℓ
i+1H

′
ãℓ
i+1

(ν̃ℓi+1 +H
−1

ãℓ
i+1
dãℓ

i+1
)− dãℓ

i+1
) .

In the numerical experiments, γi(ai, zi) is set as a mixture of Gaussian distributions. As explained
in Section 2.3.1, the integral

∫
zi+1

γi+1(ã
ℓ
i+1, z)p̃(yi+1:n|ã

ℓ
i+1:n, z)dz may be computed explicitly, see

Lemma 3.

3 Simulated data

This section highlights the improvements brought by the additional Rao-Blackwellization steps
for the two-filter and the FFBS approximations of the marginal smoothing distributions in the
case where the number of states is J = 2. The transition matrix Q is such that the probability
of switching from one regime to the other is small, as expected for the WTI crude oil data, see
Section 4. First, the algorithms are applied to a simple one-dimensional model with:

π1 = π2 = 0.5; d1 = 0.5 d2 = 0; c1 = 0.1 c2 = 0 ,

Q =

(
0.99 0.01
0.03 0.97

)
T1 = T2 = 1 H1 = H2 = 0.1 ,
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Figure 1: Posterior probabilities estimation error for all algorithms.

B1 = B2 = 1 G1 = 0.3 G2 = 0.1 .

The original FFBS algorithm of [LBS+16] and the FFBS algorithm with rejuvenation proposed
in this paper are used with N = Ñ = 25. For comparable computational costs, the two-filter
method of [BDM10] and the method with rejuvenation are run with N = 100. The artificial
distributions are chosen as γi(ai, zi) = pN (ai, zi|y1:i−1) where pN (ai, zi|y1:i−1) is defined by (14).
All these algorithms are compared to the estimation obtained with the proposed FFBS algorithm
with rejuvenation and 5000 particles considered as a benchmark value. Figure 1 displays the mean
estimation error over 100 independent Monte Carlo runs. The estimation error is defined as the
absolute difference between the benchmark value and the estimations given by all algorithms. In
addition, Figure 2 displays the empirical variance of the estimation for each algorithm. Figure 1 and
Figure 2 illustrate that in both cases the additional rejuvenation step improves the accuracy and the
variability of SMC smoothers. In addition, even with a sharp choice for the artificial distributions
γi, 1 ≤ i ≤ n, FFBS based methods outperform two-filter based smoothers for this model.

4 Application to CME crude oil (WTI)

4.1 Model

Modeling commodity prices is a crucial step to valuate contingent claims related to energy markets
and to optimize storage or extraction strategies. In [GE90, Sch97], the authors proposed a model
where the spot price of a commodity(St, t ≥ 0) depends on a second factor (δt, t ≥ 0), referred to as
the instantaneous convenience yield. This factor plays the role of dividends in equity markets and
models the benefit of holding the physical commodity or the storage and maintenance costs required
to keep the commodity. In this model, this convenience yield is described as an Ornstein-Uhlenbeck
process:

dSt = (r − δt)Stdt+ σStdW
1
t ,

dδt = κ(α− δt)dt+ ηdW 2
t , d〈W 1

t ,W
2
t 〉 = ρdt ,
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Figure 2: Empirical variances of the estimation of P(ak = 1|Y1:n) for all algorithms.

where the parameter (r, σ, κ, α, η, ρ) are constant and ((W 1
t ,W

2
t ), t ≥ 0) are standard Brownian

motions. This model appears to be too restrictive as energy markets are not likely to revert to
a single equilibrium value. This assumption is relaxed using Markov switching models to allow
several possible regimes for the spot price and the convenience yield. Following [Alm16], the spot
price and convenience yield are described in this paper as:

dSt = (r − δt)Stdt+ σat
StdW

1
t ,

dδt = κ(αat
− δt)dt+ ηat

dW 2
t , d〈W 1

t ,W
2
t 〉 = ρat

dt ,

where (at)t≥0 is a finite state space Markov process. This model allows to exhibit fundamental
features of commodity future prices, which typically display different regimes of volatility and/or
convenience yield. A two-regime model is already sufficient to produce stylized effects such as
contango (increase of future prices) and backwardation (decrease of future prices). Assuming that
the switching rate between regimes is negligible compared to the inverse of the discretization period,
the discretized version of the spot price and convenience yield Zi = (lnSi, δi) (the sampling period
is taken to be 1) is modeled as a CLGM. The explicit integration of this SDE detailed in Lemma 4
yields the following discrete time model for (Zi)i≥2:

Zi = dai−1
+ TZi−1 +Hai−1

εi ,
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where (with Hai−1
:= Hai−1

H ′
ai−1

and τ = ti − ti−1):

dai−1
:=

([
µ− αai−1

− σ2
ai−1

/2
]
τ + αai−1

[1− e−κτ ]/κ

αai−1
[1− e−κτ ]

)
,

T :=

(
1 −[1− e−κτ ]/κ
0 e−κτ

)
,

Hai−1
(1, 1) = σ2

ai−1
τ + η2ai−1

{
τ + (1− e−2κτ )/(2κ)− 2(1− e−κτ )/κ

}
/κ2

− 2ρai−1
ηai−1

σai−1

{
τti − (1− e−κτ )/κ

}
/κ ,

Hai−1
(1, 2) =

(
ρai−1

ηai−1
σai−1

− η2ai−1
/κ
) (

1− e−κτ
)
/κ+ η2ai−1

(
1− e−2κτ

)
/(2κ2) ,

Hai−1
(2, 1) = Hai−1

(1, 2) , Hai−1
(2, 2) = η2ai−1

(
1− e−2κτ

)
/(2κ) .

The observations are Wednesday future contracts of the West Texas Intermediate crude oil (WTI)
traded in the Chicago Mercantile Exchange (CME) from 11 January 1995 to 13 November 2013.
The contracts are numbered F1, F2, . . . , F36 where F1 (or front month) is the earliest delivery future
contract, F2 is the second earliest delivery future contract and so on. Among these 36 contracts,
the four future contracts: F1, F4, F6, F13 are used since their trading volumes and their impacts on
the Term Structures are the most important (F1 is the most liquid contract, F13 characterizes the
gap between prices over a one year period, F4 and F6 are intermediate future contracts that are
mostly traded). As in [Alm16], we consider that each future contract has a fixed time to maturity:
F1, F4, F6, F13 have time to maturity 4, 16, 26, 56 weeks. Our time series contains n = 975 weekly
data with 534 in backwardation and 441 in contango (the backwardation effect is more frequent with
crude oil data). At each time ti = iτ , with τ = 0.0192, the observations of the p = 4 future prices

are Yi := (ln(F
(market)
iτt,m1

), . . . , ln(F
(market)
iτt,mp

))′, where Fti,m is the future price at ti for a maturity m
weeks. A closed form solution for Fti,m may be written:

Fti,m := exp (Am(ai) + BmZi) ,

where B0 =
(
1 0

)
and Bm = Bm−1T so that Bm =

(
1 − (1− e−κmτt) /κ

)
and for all 1 ≤ j ≤ J ,

A0(j) = 0, and

Am(j) = ln

(
J∑

k=1

Q(j, k) exp(Am−1(k))

)
+ Bm−1dj +

1

2
Bm−1HjB

′
m−1 .

Therefore, the observations of the logfuture prices are given, for all 1 ≤ i ≤ n, by:

Yi = cai
+BZi +Gηi ,

where ηi is a standard multivariate Gaussian random variable and:

c′j = [Am1
(j), . . . ,Amp

(j)] , B′ = [B′
m1
, . . . ,B′

mp
] , G = diag(g1, . . . , gd) .

The model depends of the parameters:

θ := {π,Q, µ1,Σ1, κ, (αj)1≤j≤J , (σj)1≤j≤J , (ηj)1≤j≤J , (ρj)1≤j≤J , (gℓ)1≤ℓ≤d} .
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The aim of this section is to estimate θ and the posterior probabilities P(ak = j|Y1:n), 1 ≤ k ≤ n,
1 ≤ j ≤ J . Given the observations Y1:n, the EM algorithm introduced in [DLR77] maximizes the
incomplete data log-likelihood θ 7→ ℓnθ defined by

ℓnθ (Y1:n) := log

(
J∑

a1=1

. . .

J∑

an=1

∫
pθ(a1:n, z1:n, Y1:n) dz1:n

)
,

where the complete data likelihood pθ is given by

pθ(a1:n, z1:n, Y1:n) := π(a1)φµ1,Σ1
(z1)gθ(a1, z1;Y1)

n∏

i=2

Q(ai−1, ai)mθ (ai, zi−1; zi) gθ(ai, , zi;Yi) .

Denote by Eθ [·|Y1:n] the conditional expectation given Y1:n when the parameter value is set to θ.
The EM algorithm iteratively builds a sequence {θp}p≥0 of parameter estimates following the two
steps:

1. E-step: compute θ 7→ Q(θ, θp) := Eθp [log pθ(a1:n, Z1:n, Y1:n)|Y1:n] ;

2. M-step: choose θp+1 as a maximizer of θ 7→ Q(θ, θp).

All the conditional expectations involved in Q(θ, θp) are approximated using our two-filter algorithm
with rejuvenation to define the SMC approximation θ 7→ QN(θ, θp) of θ 7→ Q(θ, θp). As the
function θ 7→ QN (θ, θp) cannot be maximized analytically, the M-step is performed numerically
using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) introduced in [HO01]. This
derivative-free optimization procedure is known to perform well in complex multimodal optimization
settings, see e.g. [HK04].

4.2 Numerical results

The initial transition probability in CMA-ES is chosen as Q(1, 1) = 0.98, Q(2, 2) = 0.97 and
π1 = π2 = 0.5 where the number 1 represents the backwardation regime and 2 represents the
contango regime. The other parameters are initialized as shown in Table 1. The number of particles

κ α1 α2 σ1 σ2 η1 η2 ρ1 ρ2 g1 g2 g3 g4
5.0 0.1 -0.05 0.4 0.4 0.5 0.5 0.75 0.65 0.1 0.1 0.1 0.1

Table 1: Initial values for the EM algorithm.

is set to N = 100, τ = 1/52. The interest rate is r = 0.0296 as in [Alm16]. The initial guess for the
mean and variance of the initial state are

µ1 =

(

lnF
(market)
1,4 r −

lnF
(market)
1,16 − lnF

(market)
1,4

(16− 4)τ

)
and Σ1 =

(
0.05 0
0 0.05

)
.

The CMA-ES algorithm is used with an initial standard deviation for the parameters σcmaes =
0.005, a number of selected search points µcmaes = 20 and a population size λcmaes = 100. The
algorithm is stopped after 10000 iterations.
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In Gibson-Schwartz model [GE90], a stronger backwardation effect implies a greater value for α
for the same values of the other parameters. For the CME WTI Crude Oil, backwardation effect is
more frequent than contango effect so that α1 should be greater than α2. Therefore, this condition
is imposed for all simulations in the CMA-ES algorithm. The results after 2500 iterations of the
EM algorithm are given in Table 2. The estimated values and standard deviations are obtained
with 50 independent runs of the algorithm. As expected, we obtain σ1 ≥ σ2, α1 ≥ α2, η1 ≥ η2

Parameter κ σ1 σ2 η1 η2 ρ1 ρ2
Value 2.6378 0.3733 0.3485 0.5892 0.3814 0.8709 0.6761

Std. Dev 0.1999 0.005438 0.002884 0.0483 0.0349 0.0064 0.0052

Parameter α1 α2 g1 g2 g3 g4 Q(1, 1) Q(2, 2)
Value 0.0889 -0.0281 2.3e-2 1.0e-4 3.0e-4 2.3e-2 0.9917 0.9880

Std. Dev 0.004248 0.00149 1.9e-4 2.6e-4 2.3e-4 2.1e-04 6.7e-4 9.6e-4

Table 2: Final estimates after 2500 iterations.

and ρ1 ≥ ρ2 at convergence of the EM algorithm. Moreover, Q(1, 1) > Q(2, 2) corresponds to the
prediction that we did from the data description. The fact that σ1 ≥ σ2 and α1 ≥ α2 indicates
the first regime (backwardation) characterized by a higher value in both volatility and equilibrium
level of convenience yield, and the second regime (contango) characterized by a lower value in both
volatility and equilibrium convenience yield level. This in accordance with the theory of storage that
the volatility of the commodity spot price is high when the inventory is low, and the convenience
yield is all the higher as inventory is low.

Figure 3 compares the evolution of future 1M (the nearest contracts) to the term structure
observed from CME WTI crude oil, defined as the difference of future 13M and future 1M (to
avoid seasonality). The figure shows that it is not necessary to have an inverse relationship between
the price of the nearest contract and the term structure. But when a significant drop in the price
of the nearest contract occurs, the term structure increases (i.e. in contango).

The correlation between the spot price and the convenience yield is positive and high in both two
regimes. This is an accordance to what as been observed in most commodity market, see [GE90].
The slope of future curve decreases in function of maturity.

Figure 4 and 5 display the the estimated posterior probabilities of the regimes and the observed
future slope. When the future curve is in backwardation (resp. contango), the model is expected
to be in the first regime (resp. second regime), except for the period where the slope of the future
curve is too small and in the period from December 2008 to April 2009 (beginning of the crisis).

5 Conclusions

This paper presents Rao-Blackwellized Sequential Monte Carlo methods to approximate smoothing
distributions in conditionally linear and Gaussian state spaces in a common unifying framework.
It also provides different techniques that could be used in the forward filtering pass to improve
significantly the usual mixture Kalman filter. The filtering distributions are approximated at each
time step by considering all possible offsprings of all ancestral trajectories before discarding degen-
erated paths instead of resampling the ancestral paths before propagating them at the next time
step. The paper investigates the benefit of additional Rao-Blackwellization steps to sample new
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Figure 3: Log-price (red line) and slope of future curves (blue line).

regimes at each time step conditional on the forward and backward particles. This rejuvenation
step uses explicit integration of the hidden linear states before merging the forward and backward
filters for two-filter based algorithms or before sampling new states backward in time for FFBS
based methods. The paper displays some Monte Carlo experiments with simulated data to illus-
trate that this additional rejuvenation step improves the performance of the smoothing algorithms
with no substantial additional computational costs. They are also applied to commodity markets
using WTI crude oil data.

A Technical lemmas

Lemmas 1, 2 and 3 are close to [BDM10, Proposition 5, Proposition 6]. The proofs are detailed in
this appendix for completeness.
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Proof of Lemma 1. For all 1 ≤ i ≤ n− 1,

p(yi:n|ai, zi) =
∑

ai+1:n

∫
p(yi:n, ai+1:n, zi+1:n|ai, zi)dzi+1:n ,

=
∑

ai+1:n

∫
p(ai+1:n, zi+1:n|ai, zi)p(yi:n|ai:n, zi:n)dzi+1:n ,

=
p̃i(yi:n)

γi(ai, zi)

∑

ai+1:n

∫
γi(ai, zi)

p̃i(yi:n)
p(ai+1:n, zi+1:n|ai, zi)p(yi:n|ai:n, zi:n)dzi+1:n ,

=
p̃i(yi:n)

γi(ai, zi)

∑

ai+1:n

∫
p̃i(ai:n, zi:n|yi:n)dzi+1:n ,

=
p̃i(yi:n)

γi(ai, zi)
p̃i(ai, zi|yi:n) ,

which concludes the proof of (15). To prove (16) write,

p̃i(ai:n, zi|yi:n) =
γi(ai, zi)

p̃i(yi:n)

∫
p(yi:n|ai:n, zi:n)p(ai+1:n, zi+1:n|ai, zi)dzi+1:n ,

=
γi(ai, zi)

p̃i(yi:n)

∫
p(yi:n|ai:n, zi)p(zi+1:n|yi:n, ai:n, zi)

p(zi+1:n|ai:n, zi)
p(ai+1:n, zi+1:n|ai, zi)dzi+1:n ,

=
γi(ai, zi)

p̃i(yi:n)
p(yi:n|ai:n, zi)p(ai+1:n|ai) .

Therefore,

p̃i(ai, zi|yi:n) =
γi(ai, zi)

p̃i(yi:n)

∑

ai+1:n

p(yi:n|ai:n, zi)p(ai+1:n|ai)

and the proof is completed upon noting that

p̃i(ai:n|yi:n) =
p(ai+1:n|ai)

p̃i(yi:n)

∫
γi(ai, z)p(yi:n|ai:n, z)dz .

Lemma 2. For all 1 ≤ i ≤ n,

p(yi:n|ai:n, zi) = exp

{
−
1

2
c̃i(ai:n)−

1

2
‖zi‖

2
P̃i(ai:n)

+ z′iν̃i(ai:n)

}
, (23)

where

c̃n(an) = p log(2π) + log
∣∣Gan

∣∣+ ‖yn − can
‖
2
Gan

, (24)

P̃−1
n (an) = B′

an
G

−1

an
Ban

, (25)

ν̃n(an) = B′
an
G

−1

an
(yn − can

) (26)
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and, for all 1 ≤ i ≤ n− 1,

c̃i(ai:n) = c̃i|i+1(ai+1:n) + p log(2π) + log |Gai
|+ ‖yi − cai

‖2Gai
, (27)

P̃−1
i (ai:n) = P̃−1

i|i+1(ai+1:n) + B′
ai
G

−1

ai
Bai

, (28)

ν̃i(ai:n) = ν̃i|i+1(ai+1:n) +B′
ai
G

−1

ai
(yi − cai

) , (29)

with

∆i+1(ai+1:n) =
(
Im +H ′

ai+1
P̃−1
i+1(ai+1:n)Hai+1

)−1

,

r̃i|i+1(ai+1:n) = ν̃i+1(ai+1:n) +H
−1

ai+1
dai+1

,

c̃i|i+1(ai+1:n) = c̃i+1(ai+1:n) + log |Hai+1
|+ d′ai+1

H
−1

ai+1
dai+1

− log |Hai+1
∆i(ai+1:n)H

′
ai+1

|

− r̃′i|i+1(ai+1:n)Hai+1
∆i(ai+1:n)H

′
ai+1

r̃i|i+1(ai+1:n) ,

P̃−1
i|i+1(ai+1:n) = T ′

ai+1

(
Im −H

−1

ai+1
Hai+1

∆i(ai+1:n)H
′
ai+1

)
H

−1

ai+1
Tai+1

,

ν̃i|i+1(ai+1:n) = T ′
ai+1

H
−1

ai+1

[
−dai+1

+Hai+1
∆i(ai+1:n)H

′
ai+1

(
ν̃i+1(ai+1:n) +H

−1

ai+1
dai+1

)]
.

Proof. The result is proved by backward induction. (24), (25) and (26) follow directly from (2).
Assume that for a given 1 ≤ i ≤ n− 1, p(yi+1:n|ai+1:n, zi+1) is given by (23). Write

p(yi:n|ai:n, zi) =

∫
m(ai+1, zi; zi+1)g(ai, zi; yi)p(yi+1:n|ai+1:n, zi+1)dzi+1 ,

with

m(ai+1, zi; zi+1) = exp

{
−
m

2
log(2π)−

1

2
log |Hai+1

| −
1

2

∥∥zi+1 − dai+1
− Tai+1

zi
∥∥2
Hai+1

}
,

g(ai, zi; yi) = exp

{
−
p

2
log(2π)−

1

2
log |Gai

| −
1

2
‖yi − cai

−Bai
zi‖

2
Gai

}
,

p(yi+1:n|ai+1:n, zi+1) = exp

{
−
1

2
ci+1(ai+1:n)−

1

2
‖zi+1‖

2
P̃i+1(ai+1:n)

+ z′i+1ν̃i+1(ai+1:n)

}
.

Let ∆i+1 and δi+1 be given by:

∆i+1(ai+1:n) :=
(
Im +H ′

ai+1
P̃−1
i+1(ai+1:n)Hai+1

)−1

,

δi+1(ai+1:n) := νi+1(ai+1:n) +H
−1

ai+1
(dai+1

+ Tai+1
zi) .

Then, H
−1

ai+1
+ P̃−1

i+1(ai+1:n) =
(
Hai+1

∆i+1(ai+1:n)H
′
ai+1

)−1

and (27), (28) and (29) follows from

∫
exp

{
−
1

2
‖zi+1‖

2
Hai+1

∆i+1(ai+1:n)H′
ai+1

+ z′i+1δi+1(ai+1:n)

}
dzi+1

= exp

{
1

2
log(2π) +

1

2
log |Hai+1

∆i+1(ai+1:n)H
′
ai+1

|

}

× exp

{
1

2
δ′i+1(ai+1:n)

′Hai+1
∆i+1(ai+1:n)H

′
ai+1

δi+1(ai+1:n)

}
.
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Lemma 3. For all 1 ≤ i ≤ n,
∫
φµi,Σi

(zi)p(yi:n|ai:n, zi)dzi = exp

{
−
1

2
log |Σi| −

1

2
µ′
iΣ

−1
i µi

}

× exp

{
−
1

2
c̃i(ai:n) +

1

2
log |Ω̃i(ai:n)|+

1

2
z̃′i(ai:n)Ω̃i(ai:n)z̃i(ai:n)

}
,

where φµ,Σ is the probability density function of a m dimensional Gaussian random variable with
mean µ and variance matrix Σ and

Ω̃i(ai:n) :=
(
Σ−1

i + P̃−1
i (ai:n)

)−1

and z̃i(ai:n) := Σ−1
i µi + ν̃i(ai:n)

and where ci, P̃i and νi are given in Lemma 2.

Proof. By Lemma 2,

φµi,Σi
(zi)p(yi:n|ai:n, zi) = exp

{
−
m

2
log(2π)−

1

2
log |Σi| −

1

2
‖zi − µi‖

2
Σi

}

× exp

{
−
1

2
ci(ai:n)−

1

2
‖zi‖

2
P̃i(ai:n)

+ z′iνi(ai:n)

}
.

The proof is completed noting that
∫

exp

{
−
1

2
z′iΩ̃

−1
i (ai:n)zi + z′i(Σ

−1
i µi + νi(ai:n))

}
dzi

= exp

{
m

2
log(2π) +

1

2
log |Ω̃i(ai:n)|+

1

2

[
Σ−1

i µi + νi(ai:n)
]′
Ω̃i(ai:n)

[
Σ−1

i µi + νi(ai:n)
]}

.

Lemma 4. Let (Xt, δt)t≥0 be solutions to the following SDE:

dXt =
(
µ− δt − σ2/2

)
dt+ σdW 1

t ,

dδt = κ (α− δt) dt+ ηdW 2
t ,

(W 1
t )t≥0 and (W 2

t )t≥0 are standard Brownian motions such that d〈W 1
t ,W

2
t 〉 = ρdt. Then, for all

t ≥ 0 and h > 0, (
Xt+h

δt+h

)
= dh + Th

(
Xt

δt

)
+Hhε ,

where ε is a standard 2-dimensional Gaussian random variable and (with Hh := H ′
hHh),

d :=

([
µ− α− σ2/2

]
h+ α[1− e−κh]/κ

α[1− e−κh]

)
, Th :=

(
1 −[1− e−κh]/κ
0 e−κh

)
,

Hh(1, 1) := σ2h+ η2
{
h+ (1− e−2κh)/(2κ)− 2(1− e−κh)/κ

}
/κ2

− 2ρησ
{
h− (1− e−κh)/κ

}
/κ ,

Hh(1, 2) :=
(
ρησ − η2/κ

) (
1− e−κh

)
/κ+ η2

(
1− e−2κh

)
/(2κ2) ,

Hh(2, 1) := Hh(1, 2) ,

Hh(2, 2) := η2
(
1− e−2κh

)
/(2κ) .
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Proof. For all t ≥ 0,

Xt = X0 + (µ− σ2/2)t−

∫ t

0

δsds+ σW 1
t

and, as (δt)0≤t≤T is an Ornstein-Uhlenbeck process,

δt = δ0e
−κt + α(1− e−κt) +

∫ t

0

ηeκ(s−t)dW 2
s .

Then,

∫ t

0

δsds = (δ0 − α)(1 − e−κt)/κ+ αt+ η

∫ t

0

∫ s

0

eκ(u−s)dW 2
uds ,

= (δ0 − α)(1 − e−κt)/κ+ αt+ (η/κ)

∫ t

0

(1− e−κ(t−s))dW 2
s .

Defining W̃ 1
t := −(η/κ)

∫ t

0 (1− e−κ(t−s))dW 2
s + σW 1

t and W̃ 2
t :=

∫ t

0 ηe
κ(s−t)dW 2

s , this yields:

Xt = X0 + (µ− σ2/2)t+ (α− δ0)(1− e−κt)/κ− αt+ W̃ 1
t ,

δt = δ0e
−κt + α(1 − e−κt) + W̃ 2

t .

The proof is concluded upon noting that W̃ 1
t and W̃ 2

t are centered Gaussian random variables such
that:

-Var
[
W̃ 1

t

]
= σ2t+ η2

{
t+ (1 − e−2κt)/(2κ)− 2(1− e−κt)/κ

}
/κ2 − 2ρησ {t− (1− e−κt)/κ} /κ ,

-Var
[
W̃ 2

t

]
= η2(1 − e−2κt)/(2κ) ,

- Cov
[
W̃ 1

t , W̃
2
t

]
=
(
ρησ − η2/κ

)
(1− e−κt) /κ+ η2

(
1− e−2κt

)
/(2κ2) .
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