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Abstract We consider the problem of change-point detec-
tion in multivariate time-series. The multivariate distribution
of the observations is supposed to follow a graphical model,
whose graph and parameters are affected by abrupt changes
throughout time.Wedemonstrate that it is possible to perform
exact Bayesian inference whenever one considers a simple
class of undirected graphs called spanning trees as possible
structures. We are then able to integrate on the graph and
segmentation spaces at the same time by combining classi-
cal dynamic programming with algebraic results pertaining
to spanning trees. In particular, we show that quantities such
as posterior distributions for change-points or posterior edge
probabilities over time can efficiently be obtained. We illus-
trate our results on both synthetic and experimental data
arising from biology and neuroscience.

Keywords Change-point detection · Exact Bayesian
inference · Graphical model · Multivariate time-series ·
Spanning tree

1 Introduction

We are interested in time-series data where several variables
are observed throughout time. An assumption often made
in multivariate settings is that there exists an underlying
network describing the dependences between the different
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variables.Whenmodelling time-series data, one is facedwith
a choice: shall this network be considered stationary or not?
Taking the example of genomic data, it might for instance be
unrealistic to consider that the network describing how a pool
of genes regulate each other remains identical throughout
time. This network might slowly evolve, or undergo abrupt
changes leading to the initialisation of new morphological
development stages in the organism of interest. Here, we
focus our interest on the second scenario.

The inference of the dependence structure ruling a multi-
variate time-series was first performed under the assumption
that this structure was stationary (e.g. Friedman et al. 1998;
Murphy and Mian 1999). Non-stationarity has then been
addressed in a variety of ways. Classical Dynamic Bayesian
Networks (DBNs) can for instance be adapted to allow the
directed graph (or Bayesian Network) describing the interac-
tions between two consecutive time-points to change, leading
to so-called switching DBNs (Robinson and Hartemink
2010; Lèbre et al. 2010; Grzegorczyk and Husmeier 2011).
Some models alternatively suppose that the heterogeneity is
the result of parameters changing smoothly with time (Zhou
et al. 2010; Kolar et al. 2010). This is especially appropriate
for Gaussian graphical models where the graph structure can
directly be read in the non-zero terms of the precision (or
inverse-covariance) matrix, therefore enabling smooth tran-
sitions within the otherwise discrete space of graphs. Hidden
Markov Models (HMM) have also been used to account for
heterogeneity in multivariate time-series (Fox et al. 2009;
Barber and Cemgil 2010). In the aforementioned models, the
inference can rarely be performed exactly, and often relies
on sampling techniques such as Markov Chain Monte Carlo
(MCMC).

The model that we consider here belongs to the class of
product partition models (PPM) (Barry and Hartigan 1992).
We assume that the observed data {yt }t=1,...,N are a realisa-
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Fig. 1 Illustration of the
change-point detection problem
in the tree structure of a
graphical model

tion of a process {Y t }t=1,...,N where, for 1 � t � T , Y t is
a random vector with dimension p � 2. If m is a segmenta-
tion of {1, . . . , T } with change-points 1 = τ0 < τ1 < · · · <

τK−1 < τK = N , the model has the general form

Yt ∼ π(Gr , θr ), if t ∈ r and r = �τi ; τi+1�,

where Gr and θr respectively stand for the graph describ-
ing the dependence structure and the distribution parameters
on segment r . The parameters (Gr , θr ) are assumed to be
independent between segments. This model is illustrated in
Fig. 1.

We are interested in retrieving all change-points at the
same time, therefore performing off-line detection. It has
been shown that both off-line (Fearnhead 2006; Rigaill et al.
2012) and on-line detection (Fearnhead and Liu 2007; Caron
et al. 2012) of change-points can be performed exactly and
efficiently in this model thanks to dynamic programming.
Xuan and Murphy (2007) explicitly consider this framework
in a multivariate Gaussian setting. They estimate a set of pos-
sible structures for their model by performing regularized
estimation of the precision matrix on arbitrary overlapping
time segments. This graph family is then taken as a start-
ing point in an iterative procedure where the segmentation
and the graph family are sequentially updated to get the best
segmentation and graph series.

Our contribution From a Bayesian point of view, the prob-
lem at hand raises an interesting and quite typical problem as
both continuous and discrete parameter are involved in the
model. Indeed, the location and scale parameters or, more
specifically, the means and (conditional) covariances associ-
ated with each segments are continuous but the location of
the change-points and the structure of the graphical model
within each segments are not. Denoting θ the set of con-
tinuous parameters, Q the set of discrete parameters and y
the observed data, Bayesian inference will typically rely on
integrals such as the marginal likelihood of the data, that is

p(y) =
∑

Q∈Q
p(Q)

∫

θ∈Θ

p(y|θ, Q)p(θ |Q)dθ.

In many situations, the use of conjugate priors allows us
to compute the integral with respect to θ in an exact manner.
Still, the summation over all possible values for the discrete
parameter Q is often intractable due to combinatorial com-
plexity. One aim of this article is to remind that the algebraic
properties of the space Q can sometimes help to actually
achieve this summation in an exact manner, so that a fully
exact Bayesian inference can be carried out.

We show that exact and efficient Bayesian inference can
be performed in amultivariate product partitionmodelwithin
the class of undirected graphs called spanning trees. These
structures are connected graphs,with no cycles (see Fig. 1 for
examples). When p nodes are considered, we are left with
pp−2 possible spanning trees, but exact inference remains
tractable by using algebraic properties pertaining to this set
of graphs. On each independent temporal segment, we place
ourselves in the framework developed by Schwaller et al.
(2015), in which the likelihood of a segment �s; t�, defined
by

p(y�s;t�) ..=
∑

T∈T

∫
p(y�s;t�|θ, T )p(θ |T )dθ,

where T stands for the set of spanning trees, can be com-
puted efficiently. We provide explicit and exact formulas
for quantities of interest such as the posterior distribution
of change-points or posterior edge probabilities over time.
We also provide a way to assess whether the status of an
edge (or of the whole graph) remains identical throughout
the time-series or not when the partition is given.

Outline In Sect. 2, we provide some background on graph-
ical models and product partition models. In particular, we
give a more detailed presentation of the results of Rigaill
et al. (2012) on dynamic programming used for change-point
detection problems.We also introduce tree-structured graph-
ical models. The model and its properties are presented in
Sect. 3. Section 4 enumerates a list of quantities of inter-
est that can be computed in this model, while Sect. 5 deals
with edge and graph status comparison, when the segmen-
tation is known. Sections 6 and 7 respectively present the
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simulation study and the applications to both biological and
neuroscience data.

2 Background

In this section we introduce two models involving a discrete
parameter, for which exact integration over this parameter is
possible.

2.1 Product partition models

Let Y = {Y t }t=1,...,N be an independent random process and
let y be a realisation of this process. For any time interval
r , we let Yr ..= {Y t }t∈r denote the observations for t ∈
r . PPMs as described in (Barry and Hartigan 1992) work
under the assumption that the observations can be divided in
independent adjacent segments. Thus, if m is a partition of
�1; N�, the likelihood of y conditioned on m can be written
as

p(y|m) =
∏

r∈m
p(yr |r),

p(yr |r) =
∫ (

∏

t∈r
p(yt |θr )

)
p(θr )dθr ,

where θr is a set of parameters giving the distribution of Y t

for t ∈ r . For the sake of clarity, we let p(yr ) denote p(yr |r)
in the following.

For K � 1, we let MK denote the set made of the parti-
tions of �1; N� into K segments. The cardinality of this set
is

(N−1
K−1

)
. More generally, we letMK (�s; t�) denote the par-

titions of any interval �s; t� into K segments. In order to get
the marginal likelihood of y conditionally on K , one has to
integrate out both m and θ = {θr }r∈m :

p(y|K ) =
∑

m∈MK

p(m)
∏

r∈m
p(yr )

=
∑

m∈MK

p(m)
∏

r∈m

∫ (
∏

t∈r
p(yt |θr )

)
p(θr )dθr .

If the distribution ofm, conditional on K , factorises over the
segments with an expression of the form

p(m|K ) = 1

CK (a)

∏

r∈m
ar , (1)

where ar are non-negative weights assigned to all segments
and CK (a) = ∑

m∈MK

∏
r∈m ar is a normalising constant,

these integrations can be performed separately. Rigaill et al.
(2012) introduced a matrix containing the weighted likeli-
hood of all possible segments, whose general term is given
by

As,t =
{
a�s;t� · p(y�s;t�) if 1 � s < t � N + 1,
0 otherwise.

(2)

Thismatrix can be used in an algorithmdesigned according to
a dynamic programming principle to perform the integration
onMK efficiently.

Proposition 1 (Rigaill et al. 2012)

[AK ]s,t =
∑

m∈MK (�s;t�)

∏

r∈m
ar · p(yr )

where Ak denotes the k-th power of matrix A and
[
Ak

]
s,t its

general term. Moreover,

AK
..=

{
[Ak]1,t , [Ak]t,n+1

}
1 � k � K
2 � t � N

can be computed in O(K N 2) time.

In particular, [AK ]1,n+1 = CK (a)· p(y|K ). Several quan-
tities of interest share the same form: from AK , Rigaill
et al. (2012) also derived exact formulas for the posterior
probability of a change-point to occur at time t or for the
posterior probability that a given segment r belongs to m
(see Sect. 4.1). Classical Bayesian selection criteria for K
are also given. One can notice that CK (a) can be recovered
by applying Proposition 1 not to matrix A but to a matrix
defined similarly from a. For the uniform distribution on
MK , i.e. ar ≡ 1, we get CK (a) = (N−1

K−1

)
.

Fearnhead (2006) worked under a slightly different model
where m is not chosen conditionally on K but is instead
drawn sequentially by specifying the probability mass func-
tion for the time between two successive change-points.
They presented a filtering recursion to compute the mar-
ginal likelihood of the observations under their model where
the integrations over parameters and segmentations are also
uncoupled. Fearnhead and Liu (2007) showed that on-line
and exact inference is also tractable in this model.

2.2 Tree-structured graphical models

In a multivariate setting, graphical models are used to
describe complex dependence structures between the invol-
ved variables. A graphical model is given by a graph, either
directed or not, and a family of distributions satisfying
some Markov property with respect to this graph. We con-
centrate our attention on undirected graphical models, also
called Markov random fields. We refer the reader to (Lau-
ritzen 1996) for a complete overview on the subject. Let
V = {1, . . . , p} and Y = (Y1, . . . ,Yp) be a random vector
taking values in a product spaceX = ⊗p

i=1 Xi . We consider
the set T of connected undirected graphs with no cycles.
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These graphs are called spanning trees. For T ∈ T , we let
ET denote the edges of T .

We consider a hierarchical model where one successively
draws a tree T in T , the parameters θ of a distribution that
factorises according to T , and finally a random vector Y
according to this distribution. The marginal likelihood of the
observations under this model, where both θ and T are inte-
grated out, is given by

p(y) =
∑

T∈T
p(T )

∫
p(y|T, θ)p(θ |T )dθ.

These integrations can be performed exactly and efficiently
by choosing the right priors on T and θ (Meilă and Jaakkola
2006; Schwaller et al. 2015). The distribution on trees is taken
to be factorised on the edges,

p(T ) = 1

Z(b)

∏

{i, j}∈ET

bi j , (3)

where bi j are non-negative edge weights and

Z(b) ..=
∑

T∈T

∏

{i, j}∈ET

bi j (4)

is a normalizing constant. The prior on θ has to be speci-
fied for all trees in T . The idea is to require each of these
priors to factorise on the edges and to specify a prior on θi j
once and for all trees, θi j designating the parameters govern-
ing the marginal distribution of (Yi ,Y j ). These priors must
be chosen coherently, in the sense that, for all i, j, k ∈ V ,
the priors on θik and θ jk should induce the same prior on
θk . Some local Markov property is also needed. Schwaller
et al. (2015) especially detailed three frameworks in which
this can be achieved, namely multinomial distributions with
Dirichlet priors, Gaussian distributions with normal-Wishart
priors and copulas.Weelaborate a littlemore on the particular
case of Gaussian graphical models (GGMs). In amultivariate
Gaussian setting, θ = (μ,Λ) where μ and Λ respectively
stand for the mean vector and precision matrix of the distri-
bution. A classical result on GGMs states that if the (i, j)-th
term of the precision matrix is equal to zero, there is no edge
between nodes i and j . Thus, the support of p(θ |T ) is the
set of sparse positive definite matrices whose non-zero terms
are given by the adjacency matrix of T . The distribution of
θ |T can be defined for all trees at once by using a general
normal-Wishart distribution defined on all positive-definite
matrices (Schwaller et al. 2015, Sec. 4.1.3). Marginal distri-
butions of this normal-Wishart distributions are used to build
distributions for {θ |T }T∈T .

When p(θ |T ) is carefully chosen, the integration on θ can
be performed independently from the integration on T and
p(y|T ) factorises on the edges of T :

p(y|T ) =
∏

i∈V
p(yi )

∏

{i, j}∈ET

p(yi , y j )

p(yi )p(y j )

where

p(yi , y j ) =
∫

p(yi , y j |θi j )dθi j ,

p(yi ) =
∫

p(yi |θi j )dθi . (5)

Computing {p(y|T )}T∈T only requires p(p+1)/2 computa-
tions of low-dimensional integrals, where p is the dimension
of the model. As both p(T ) and p(y|T ) factorise on the
edges, integrating the likelihood over T can be performed in
O(p3) time.

Proposition 2 The marginal likelihood is given by

p(y) = Z(ω)

Z(b)
·
∏

i∈V
p(yi )

where Z(·) is defined as in (4) and ω is the posterior edge
weight matrix whose general term is given by

ωi j
..= bi j

p(yi , y j )

p(yi )p(y j )
. (6)

Moreover, p(y) is obtained in O(p3) time from b and ω.

Proof

p(y) =
∑

T∈T
p(y|T )p(T )

= 1

Z(b)

(
∏

i∈V
p(yi )

)
∑

T∈T

∏

{i, j}∈ET

bi j
p(yi , y j )

p(yi )p(y j )

= Z(ω)

Z(b)
·
∏

i∈V
p(yi ),

with ω as defined above. As Z(·) can be computed in O(p3)
time using the Matrix-Tree theorem, we get the announced
complexity. ��

The posterior probability for an edge to belong to T ,
P({i, j} ∈ ET |y), can also be obtained for all edges at once
in O(p3) time (Schwaller et al. 2015, Th. 3).

3 Model and properties

Sections 2.1 and 2.2 presented twomodels inwhichBayesian
inference requires us to integrate out a fundamentally dis-
crete parameter (either the segmentation m or the spanning
tree T ) and other (usually continuous) parameters θ . In both
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Fig. 2 Global graphical model

θ

Y

m

K

T

situations, these integrations can be performed exactly and
efficiently by uncoupling the problems. The integration over
θ is performed “locally” and the results are stored to be used
in an algorithm that heavily relies on algebra to integrate
over the discrete parameter. This is made possible by a care-
ful choice of priors for both parameters. Our aim is to show
that these algebraic tricks can be combined to perform exact
Bayesian inference of multiple change-points in the depen-
dence structure of multivariate time-series.

3.1 Model

It is assumed that the observed data y = {yt }Nt=1 are a real-
isation of a multivariate random process Y = {Y t }Nt=1 of
dimension p � 2. For 1 � t � N , Y t = (Y t

1, . . . ,Y
t
p) is a

multivariate random variable of dimension p taking values in
a product spaceX = ⊗p

i=1 Xi .WemodelY by aPPMwhere,
at each time-point, observations Y t are modelled by a tree-
structured graphical model. If m is a segmentation with K
segments, we let T = {Tk}Kk=1 and θ = {θr }r∈m respectively
denote the tree structures and parameters for each segment.
For r ∈ m, we also let κ(r |m) denote the position of r in m.
Our model can then be written as follows:

p(m|K ) = 1

CK (a)

∏

r∈m
ar ,

p(T|K ) =
K∏

k=1

p(Tk) = 1

Z(b)K

K∏

k=1

∏

{i, j}∈ETk

bi j ,

p(θ |m,T) =
∏

r∈m
p(θr |Tκ(r |m)),

p(y|m, θ,T) =
∏

r∈m

∏

t∈r
p

(
yt |Tκ(r |m), θr

)
.

For r ∈ m, {Y t }t∈r are independent and identically dis-
tributed with structure Tκ(r |m) and parameters θr . The priors
on m and each of Tk are respectively taken of the form given
in (1) and (3) through segment weights a and edge weights b.
The distribution of θr |{Tκ(r |m) = T } is assumed to factorise
over the edges of T , coherently between all spanning trees
T ∈ T , as described in Sect. 2.2. A graphical representation
of this model is given in Fig. 2.

3.2 Factorisation properties

In the model that we have described, the marginal likelihood
of the observation, conditional on K , is given by

p(y|K ) =
∑

m∈MK

∑

T∈T K

∫
p(y,m, θ,T|K )dθ. (7)

Integrating out the discrete parameters (m,T) requires to sum
over a set of cardinality

|MK | · |T K | =
(
N − 1

K − 1

)
· pK (p−2)≈

(
Npp−2

K

)K

.

Nonetheless, the joint distribution of (m, θ,T), conditionally
on K , factorises at different levels and integration can there-
fore be performed by combining the results given in Sect. 2.

Proposition 3 The marginal likelihood p(y|K ) can be com-
puted in O(max(K , p3)N 2) time, where p and N respec-
tively stand for the dimension of the model and the length of
the series, from the posterior edge weight matrices computed
on all possible segments r , whose general terms are given by

ω
(r)
i j

..= bi j
p(yri , y

r
j )

p(yri )p(y
r
j )

. (8)

p(yri , y
r
j ) and p(yri ) are local integrals on θ computed on

edges and vertices as defined in (5).

Proof For any segmentationm ∈ MK of �1; N� into K seg-
ments, {(Tκ(r |m), θr )}r∈m are independent, so that p(y,m|K )

can be written as

p(y,m|K ) = 1

CK (a)

∏

r∈m
ar p(y

r ),

where p(yr ) stands for the locally integrated likelihood of
yr on segment r ,

p(yr ) =
∑

T∈T
p(T )

∫ (
∏

t∈r
p(yt |T, θ)

)
p(θ |T )dθ. (9)

Thus, p(y,m|K ) satisfies the factorability assumption requi-
red by Rigaill et al. (2012) and once the weighted segment
likelihood matrix A, defined by

As,t =
{
a�s;t� · p(y�s;t�) if 1 � s < t � n + 1,
0 otherwise,

is computed, Proposition 1 can be used to gain access to
p(y|K ) in O(K N 2) time.
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Computing matrix A requires to integrate the likelihood
over tree structure T and parameters θ for all possible seg-
ments r ⊆ �1; N�. On each segment, we fall back to the
tree-structured model described in Sect. 2.2 and the inte-
grated likelihood can be expressed using the local terms
computed on vertices and edges that were defined in (5).
Indeed, for r ⊂ �1; N�, p(yr ) is obtained through Proposi-
tion 2 applied to ω(r) (defined in (8)):

p(yr ) = Z(ω(r))

Z(b)
·
∏

i∈V
p(yri ).

where we remind that Z(·) is the function giving the normal-
ising constant of a tree distribution. As a consequence, A is
computed in O(p3N 2) time from the posterior edge weight
matrices {ω(r)}r⊆�1;N�, hence the total complexity. ��

The components of matrices ω(r) result from the integra-
tion over θ , which can be made separately and locally thanks
to the assumptions made on its prior distribution in Sect. 3.1.
This integration comes down to remove node θ in the global
graphical model displayed in Fig. 2.

Marginal likelihood is only one of many quantities
than might be of concern in this model. Yet, once matrix
A has been calculated, other quantities of interest with
respect to our model can be obtained at low cost. The
next section provides a non-exhaustive list of such quanti-
ties.

4 Quantities of interest

4.1 Change-point location

For m ∈ MK , we let 1 = τ0 < τ1 < · · · < τK = N
denote the change-points of m and, for 1 � k � K , we let
rk = �τk−1; τk� denote its k-th segment. In this section we
are interested in computing the posterior probabilities of the
following subsets of MK ,

BK ,k(t) ..= {m ∈ MK |τk = t},

BK (t) ..=
K⋃

k=1

BK ,k(t),

SK ,k
(
�s; t�) ..= {m ∈ MK |rk = �s; t�}

SK
(
�s; t�) ..=

K⋃

k=1

SK ,k
(
�s; t�) .

Subsets BK (t) and SK (�s; t�) are respectively the set of seg-
mentations having a change-point at time t and the set of
segmentations containing segment �s; t�. We let BK ,k(t),

BK (t), SK ,k(�s; t�) and SK (�s; t�) denote the respective pos-
terior probabilities of these subsets.

Rigaill et al. (2012) showed that, with the convention that[
A0

]
t1,t2 = 1 for all 1 � t1 < t2 � N+1, these probabilities

could be expressed as

BK ,k(t) =
[
Ak

]
1,t

[
AK−k

]
t,N+1[

Ak
]
1,N+1

,

BK (t) =
K−1∑

k=1

BK ,k(t),

SK ,k(�s; t�) =
[
Ak−1

]
1,s As,t

[
AK−k

]
t,N+1[

Ak
]
1,N+1

,

SK (�s; t�) =
K∑

k=1

SK ,k
(
�s; t�) .

{BK ,k(t)}Nt=1 provides the exact posterior distribution of the
k-th change-point when m has K segments. Posterior seg-
ment probabilities {SK (�s; t�)}1�s<t�N+1 will be useful in
the following.

Once {BK (t)}K�2 is computed, the posterior probability
B(t) of a change-point occurring at time t integrated on K
is obtained as

B(t) = P(∪K�2BK (t)|y) =
∑

K�2

p(K |y)BK (t).

The computation of the posterior distribution on K is
addressed below.

4.2 Number of segments

The posterior distribution on K can also be derived from
Proposition 1.

Proposition 4

p(K |y) ∝ p(K )[AK ]1,N+1

CK (a)
.

Proof Bayes’ rule states that p(K |y) ∝ p(K )p(y|K ) and
by Proposition 1, p(y|K ) = [AK ]1,N+1/CK (a). ��

The best segmentation a posteriori can also be recovered
efficiently by using matrix A in the Segment Neighbourhood
Search algorithm (Auger and Lawrence 1989). Thus, if one’s
interest lies in retrieving the number of segments K , two
estimators can be considered

K̂1 = arg max
K

p(K |y),

K̂2 = K (arg max
m

p(m|y)).

where K (m) stands for the number of segments in m.
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4.3 Posterior edge probability

For any segment r ⊆ �1; N�, it is possible to compute the
posterior edge probabilities corresponding to segment r :

P({i, j} ∈ ET |yr ), ∀{i, j} ∈ P2(V ),

where T is a random tree distributed as T1, . . . , TK . When-
ever m is unknown, the segmentation can be integrated out
to obtain instant posterior edge probabilities at any given
time t . Conditionally on K , the instant posterior appearance
probability of edge {i, j} at time t can be written as

pK
i j (t)

..=
∑

m∈MK

p(m|y, K )P({i, j} ∈ ETκ(t |m)
|y,m),

where κ(t |m) gives the position of the segment containing t
in m.

Proposition 5 The instant posterior probability of edge
{i, j} at time t is given by

pK
i j (t) =

∑

rt
SK (r)P({i, j} ∈ ET |yr ). (10)

{pKi j (t)} 1 � i, j � p
1 � t � N

can be computed in O
(
max(K , p3)N 2

)

time from A and {ω(r)}r⊆�1;N�.

Proof This formula is similar to the one giving the posterior
mean of the signal in (Rigaill et al. 2012). If r ∈ m and
t ∈ r , then P({i, j} ∈ ETκ(t |m)

|y,m) = P({i, j} ∈ ET |yr ),
hence the result. {SK (r)}r∈�1;N� is obtained with complexity

O(K N 2) and {P({i, j} ∈ ET |yr )}r∈�1;N� with complexity

O(p3N 2), and that gives an upper bound on total complexity.
��

One could be interested in computing the posterior prob-
ability for an edge to keep the same status throughout time
when m is integrated out, given K . Nonetheless, it would
require to integrate on subsets of MK ⊗ T K that are in
direct contradiction with the factorability assumption, mak-
ing the results that we have presented so far useless. Indeed,
we would effectively be introducing dependency between
segments, thus breaking up the factorability of p(y,m) with
respect to r ∈ m. In this situation, Proposition 1 can no longer
be used. A drastic workaround is to work under a fixed seg-
mentation instead of integrating out m, and this is what we
do in the following section.

5 Edge status and structure comparisons

Wenow turn to the specific case wherem is known and has K
segments (r1, . . . , rK ). This situation is far less general than

the framework we considered until now. Still, it corresponds
to some practical situations where segment comparison is
interesting and for which further exact inference can be car-
ried out.

5.1 Edge status comparison

Let i, j be two distinct nodes in V . We are interested in
computing the posterior probability of the subsets of T K

defined by

E+
i j = {T = (T1, . . . , TK )|∀k ∈ �1; K �, {i, j} ∈ ETk },

E−
i j = {T = (T1, . . . , TK )|∀k ∈ �1; K �, {i, j} /∈ ETk },
Ei j = E+

i j ∪ E−
i j ,

that respectively correspond to the situations where edge
{i, j} is always present, always absent, or has the same sta-
tus in all trees. If T belongs to Ei j = T K \ Ei j , it means
that there exists two segments in which {i, j} does not have
the same status. We let (q−

0 , q0, q
+
0 ) respectively denote the

prior probabilities of E−
i j , Ei j and E

+
i j . These probabilities can

be written as

q−
0 =

K∏

k=1

P({i, j} /∈ ETk ) = P({i, j} /∈ ET )K ,

q+
0 = P({i, j} ∈ ET )K , q0 = 1 − q−

0 − q+
0 ,

where T is a tree distributed as T1, . . . , TK , and are obtained
for all edges at once in O(p3) time by computing the prior
edge probability matrix (P({i, j} /∈ ET ))1�i� j�p.

Posterior probabilities (q−, q, q+) for E−
i j , Ei j and E+

i j
can be computed similarly but one posterior edge probability
matrix has to be calculated per segment:

q− =
K∏

k=1

P({i, j} /∈ ETk |yrk ),

q+ =
K∏

k=1

P({i, j} ∈ ETk |yrk ), q = 1 − q− − q+,

However, if the prior distribution on trees is not strongly
peaked, as events E+

i j and E−
i j only account for a relatively

small number of tree series in T K , q−
0 and q+

0 (as well
as q− and q+) will always be very small. To allow some
control on the prior probabilities of these events, we use a
random variable εi j taking values {−1; 0; 1} with probabili-
ties (λ−, λ, λ+) and explicitly controlling the status of edge
{i, j} in all trees:
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Fig. 3 Model for edge status comparison

p(T|εi j ) =
⎧
⎨

⎩

p(T|E+
i j ) if εi j = 1,

p(T|Ei j ) if εi j = 0,
p(T|E−

i j ) if εi j = −1.

We obtain the model described in Fig. 3, in which

p(y) = λ+ p(y|E+
i j ) + λ− p(y|E−

i j ) + λp(y|Ei j ).

Proposition 6 The vector of posterior probabilities for εi j

is proportional to

(
λ− q−

q−
0

, λ
q
q0

, λ+ q+
q+
0

)
.

Proof We have that

p(εi j = 1|y) = λ+ p(y|E+
i j )

p(y)

= λ+ p(y|E+
i j )

λ+ p(y|E+
i j ) + λ− p(y|E−

i j ) + λp(y|Ei j )

=
λ+ q+

q+
0

λ+ q+
q+
0

+ λ− q−
q−
0

+ λ
q
q0

.

We reason similarly with p(εi j = −1|y) to get the result. ��

5.2 Structure comparison

The same reasoning can be applied for the global event

E = {T = (T1, . . . , TK )|∃T ∈ T , ∀k ∈ �1; K �, Tk = T },

which corresponds to a constant dependency structure across
all segments (we remind that, in this section, the segments are
known a priori), with possible changes for the parameters.
The prior probability of E is given by

q0 ..= P(E) = 1

Z(b)K
∑

T∈T

∏

{i, j}∈ET

bKi j = Z(b�K )

Z(b)K
,

where b�K stands for the element-wise K -th power ofmatrix
b. On each segment rk , the posterior distribution on trees
factorises as

p(Tk |yrk ) = 1

Z(ω(k))

∏

{i, j}∈Tk
ω

(k)
i j ,

and the posterior probability of E is therefore given by

q ..=
∑

T∈T

K∏

k=1

p(T |yrk ) = Z
(⊙

k ω(k)
)

∏
k Z(ω(k))

where
⊙

denotes the element-wise matrix product.
Just as in the edge status comparison, we let a binary

variable ε ∼ B(π) control the prior probability of E , with
p(T|ε = 1) = p(T|E), and derive a similar formula for the
posterior distribution of ε.

Proposition 7 ε|y ∼ B(π∗) with π∗ ..= π
q
q0

π
q
q0

+(1−π)
1−q
1−q0

.

Proof Similar to Proposition 6. ��

6 Simulations

Our approach was especially concerned with explicitly mod-
elling the structure of the graphical model within each
segment, but a simpler model could be considered in which
the structure remains implicit. In a Gaussian setting, that
would mean that the precision matrix governing the dis-
tribution on a given segment would be drawn without any
zero-term constraints. One goal of this simulation study is
to show how both models (with and without structure con-
straints) comparatively behave when one is interested in
retrieving the number of segments or the location of the
change-points.

Another concern addressed by these simulations is the
cost of the tree assumption when the true model is not
tree-structured. How well can the number of segments, the
change-points or even the structures be recovered when the
true networks are not trees?

6.1 Simulation scheme

For this study, we generated time-series of size N = 70, 140
and 210. We choose segmentations with four segments of
lengths 3

7N , 1
7N , 2

7N and 1
7N such that the relative length

of each segment is kept identical through all sample sizes.
The number of variables was fixed to p = 10. To give an
idea of the sizes of the discrete sets we are working with,
for N = 210, the cardinalities of the segmentation and tree
sets are respectively |M4| ≈ 1.5 · 106 and |T | = 108, so
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the size of the space to be explored is ≈ 1.5 · 1038. We
built three structure scenarios by sampling structures from
the uniform distribution on spanning trees, or from an Erdös-
Rényi random graph distributionwith connection probability
pC = 2/p or 4/p. Thus, for each scenario, we got a series
{Δr }r∈MN of adjacency matrices describing the structure of
the graphical model on all segments. The observations on
a segment r were then drawn according to a multivariate
Gaussian distribution with mean vector zero and precision
matrix Λr equal to the Laplacian matrix of Δr augmented of
1 on the diagonal, rescaled so that each variable as unit vari-
ance. For each sample size and structure series, 100 datasets
were generated.

As described in the introduction of this section, the infer-
ence was then performed in the two following models. The
first one is the full precisionmatrix model, without any struc-
ture constraint, and is given by

{Λr }r∈m i.i.d., Λr ∼ W(α, φ),

{Yt }Nt=1 independent, Y t ∼ N (0p,Λr ), ∀t ∈ r. (11)

where W(α, φ) stands for the Wishart distribution with α

degrees of freedom and scale matrix φ. The second one is
the corresponding model with tree-structure assumption, as
described in Sect. 3.1, and given by

{Tk}Kk=1 i.i.d., Tk ∼ U(T ),

{Λr }r∈m independent, Λr ∼ hW(α, φ, Tκ(r |m))

{Yt }Nt=1 independent, Y t ∼ N (0p,Λr ), ∀t ∈ r, (12)

where we let hW(α, φ, T ) denote the hyper-Wishart distri-
bution based on W(α, φ) and with structure T (Schwaller
et al. 2015). In both cases, we set α = p + 10 and φ =
(α − p − 1) · Ip, where Ip stands for the identity matrix of
size p. The distribution of m|K is set to the uniform onMK

and K follows a Poisson distribution with parameter γ = 4,
truncated to �1; 10�. Results for other prior distributions on
K are presented in the supplementary material.

We emphasize the fact that, when the tree-structured
model is considered, the series of precisionmatrices {Λr }r∈m
used to generate the data only belongs to the support of the
law in the first structure scenario. The graphs drawn from the
Erdös-Rényi distributions are not trees and therefore cannot
induce precision matrices in the support of a tree-structured
hyper-Wishart distribution. On the contrary, the full model
obviously allows such precision matrices.

Finally, for the sake of clarity, we limited our study to
centered data and null mean models, but one could allow the
mean to vary between segments by using a (hyper) normal-
Wishart distribution for (μr ,Λr ), where μr stands for the
mean on segment r .

6.2 Results

Change-point location We plotted the posterior probability
of a change-point intervening at time t , integrated over K , as
a function of t in the tree-structured and full models (Fig. 4).
In both cases, change-points are hardly retrieved in the
high-density Erdös-Rényi scenario, the inference performing
better in the other two low-density scenarios. The standard
deviations across samples are lower for the tree-structured
model than for the fullmodel.Wecan also observe a smoother
behaviour with respect to time in the tree-structured model.
Results on simulations with a greater number of segments
(K = 10, displayed in the supplementary material) con-
firmed these observations.As expected, the shortest segments
are hardly detected when the length of the series is small.
These results seem to show that, when one is interested in
retrieved change-point locations, the tree-structured model
that we have presented can be considered in non-tree scenar-
ios without any meaningful drop in performances.

Number of segments For each sample, we computed K̂ =
arg max

K
p(K |y) and K (m̂) = K (arg max

m
p(m|y)). The

results are given in Fig. 5. In the full model, the number
of segments selected by K̂ and K (m̂) varies a lot across
samples and is usually higher than in the tree model. In the
tree-structured model, both K̂ and K (m̂) tend to slightly
underestimate the number of segments, especially in the
highly-connected Erdös-Rényi scenario. They also display
a more stable behaviour in the tree model. On small samples,
K (m̂) seems to achieve better stability.

Posterior edge probability For t ∈ �1; N�, we computed the
posterior edge probability matrix defined in (10) for K = 4.
Figure 6 shows the area under the ROC curve of this matrix
against the true adjacencymatrix at time t . In all scenarios, the
structure is better retrieved on long segments. A drop in the
accuracy is systematically observed near true change-points.
While presenting lower accuracy compared to the other two
scenarios, the structure inference in the highly connected sce-
nario still provides meaningful results.

Edge status comparison The posterior probability for an
edge to keep the same status throughout time was com-
puted for all edges as explained in Sect. 5. We set the prior
probability to change status at λ = 0.5 and the prior proba-
bilities to be always present or absent to λ+ = λ− = 0.25.
We expected edges changing status during the time-series
to be given low posterior probabilities. For small samples
and across all scenarios, the posterior probability to have the
same status remains close to the prior probability 0.5 for all
edges. When samples grow bigger, a small contrast sets up
according to the edges effectively changing status or not. We
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Tree Erdös-Rényi, pC = 2/p Erdös-Rényi, pC = 4/p

Tree Erdös-Rényi, pC = 2/p Erdös-Rényi, pC = 4/p

Fig. 4 Posterior probability of observing a change-point for the tree-structured model (blue) and for the full model (red). The curve represents the
mean value obtained from the 100 samples and the ribbon gives the standard deviation. (Color figure online)

Tree Erdös-Rényi, pC = 2/p Erdös-Rényi, pC = 4/p

Fig. 5 Boxplot of K̂ = arg max
K

p(K |y) and K (m̂) = K (arg max
m

p(m|y)) against sample size N for the full model (full) and the tree-structured

model (tree)

nonetheless observe a large variability across samples and
edges, that could be explained by the fact that some configu-
rations are harder to detect than others. An edge only present
on a small segment might for instance be considered absent
through the whole series (Fig. 7).

7 Applications

7.1 Drosophila life cycle microarray data

The life-cycle of Drosophila melanogaster is punctuated by
four main stages of morphological development: embryo,

larva, pupa and adult. The expression levels of 4028 genes
of wild-type Drosophila were measured by Arbeitman et al.
(2002) at 67 time-points throughout their life-cycle. We have
here restricted our attention to eleven genes involved in wing
muscle development and previously studied by Zhao et al.
(2006) and Dondelinger et al. (2013). The expectation was
that our approach would find change-points corresponding
to the four different stages of development observed for
Drosophila melanogaster.

We used the normal-Wishart version of the model
described in the simulation study. When using the naive
prior parameters given in Sect. 6, we obtained poor results
(Fig. 8a), probably because of the small number of time-
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Fig. 6 Area under the ROC curve computed for the posterior edge probability matrix
[
pK
i j (t)

]p
i, j=1

with respect to the true adjacency matrix at

time t . We set K to the true number of segments (K = 4). The curve represents the mean value obtained from the 100 samples and the ribbon gives
the standard deviation

Tree Erdös-Rényi, pC = 2/p Erdös-Rényi, pC = 4/p

Fig. 7 Boxplot of the posterior probability for an edge to have the same status throughout the time-series. Edges were separated according to their
true status (either identical in all graphs or not). Each boxplot aggregates the results for all edges with a given status and all datasets. (Color figure
online)

(a)

(b)

Fig. 8 Posterior probability of a change-point occurring at time t as a function of time integrated on K (left) and posterior distribution for K (right)
for the full (full) and tree-structured (tree) models. a Naive prior. b Data-driven prior
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Fig. 9 Graphical representation of posterior edge probability matrix
for each segment of the best segmentation with 5 segments. The width
of an edge is proportional to its posterior probability. Edges with proba-

bility higher than 0.5 are coloured in blue. Edges with probability lower
than 0.2 were not represented. (Color figure online)

points. We noticed that the results could be improved by
using data-driven prior specification. We centered the data
and set the prior scale matrix φ of the normal-Wishart dis-
tribution with α = p + 10 degrees of freedom to φ =
(α − p − 1) · Σy where Σy stands for the sample covari-
ance matrix. By doing this, the normal-Wishart distribution
that we get has expectancy (0p,Σy). We then obtained the
results given in Fig. 8b. For this prior, we looked closer to
the results for K̂ = argmaxK p(K |y) = 5 segments, i.e.
one more than the number of development stages. The best
segmentation m̂5 with 5 segments has change-points at posi-
tions (19, 32, 41, 53). The posterior probability of observing
a change-point at these locations is quite high (Fig. 8b). The
larva stage is almost exactly recovered, with a shift of one
position for the end of the segment. The embryo stage is
divided into two segments and the separation between pupa
and adult states is missed, the last segment including both
adulthood and part of the pulpa stage. These results are
nonetheless encouraging. For each segment r of m̂5, we
computed the posterior edge probability matrix given by
(P({i, j} ∈ ET |yr ))1�i, j�p. On each segment, the prior
probability for an edge to appear was set to 0.5 with an
approach similar towhatwas done inSect. 5.Wegive agraph-
ical representation of the results in Fig. 9. In the first segment,
fewer edges have large posterior probabilities. However, this
higher contrast in probabilities might just be a consequence
of this segment being larger than the others.

Finally we compared our results with those obtained by
Dondelinger et al. (2013) on the same dataset. As for the
probability of change-point along time, the results we give
in Fig. 8b are very similar to those displayed in Figure 12 of
this reference. The comparison in terms of inferred networks
is more complex as the networks they displayed correspond
to the expected stages (embryo, larva, pupa and adult) and
not to the one they actually inferred. We found good con-
cordances between the network they inferred for the embryo
stage and those that we obtained on segments [1-18] and
[19-31] (both in the embryo stage). We also found similari-
ties at the larva stage (which is close to our inferred [32-40]
segment).

7.2 Functional MRI data

Functionalmagnetic resonance imaging (fMRI) is commonly
used in neuroscience to study the neural basis of perception,
cognition, and emotion by detecting changes associated with
blood flow. This second application focuses on fMRI data
collected by Cribben et al. (2012). We give a brief descrip-
tion of the experiment but we refer the reader to their article
for a more detailed description. Twenty participants were
submitted to an anxiety-inducing experiment. Before scan-
ning, participants were told that theywould have twominutes
to prepare a speech on a subject given to them during scan-
ning. Afterwards, they would have to give their speech in
front of expert judges, but they had a “small chance” not
to be selected. The subject of the speech was given after
two minutes of recording. After two minutes of preparation,
participants were told that they would not have to give the
speech. The recording continued for twominutes afterwards.
A series of 215 images at two-second intervals were acquired
during the experiment. Cribben et al. (2012) preprocessed
the data and determined five regions of interest (ROIs) in
the brain on which the signals were averaged. Thus, we have
p = 5 and N = 215, for U = 20 participants. We standard-
ised the data across all participants.

Each participant can be analysed individually by using
the same approach as in the previous application. To analyse
all participants together, we make the assumption that the
dependence structure between the different ROIs of the brain
is the same across participants, while being allowed to vary
throughout time. Nonetheless, on a given temporal segment,
therefore for a given structure, parameters are independently
drawn for each participant, so that the likelihoodon a segment
r can be written as

p(yr ) =
∑

T∈T

U∏

u=1

[∫ ∏

t∈r
p(yt,u |θu)p(θu |T )dθu

]
(13)

where yt,u stands for the vector of observations at time t
for participant u. The distribution p(θu |T ) and p(yt,u |θu)
are respectively taken to be normal-Wishart and Gaussian
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Fig. 10 Change-point location for the fMRI data. During the dark red
interval, the subject of the speech was revealed to participants, who
prepared their speech during the light red interval. This preparation
is ended by a statement saying that they would not have to give the
speech. a Posterior change-point probability for five participants with
the tree-structured model. b Mean and standard deviation of posterior

change-point probability across participants with the tree-structured
model. c Posterior change-points probability (left) and posterior dis-
tribution on K (right) when participants are jointly considered, with
likelihood tempered at a level α for the full (full) and tree-structured
(tree) models. (Color figure online)

distributions, as in the individual model. In practice, when
we tried to perform the inference of the joint model, we were
facedwith numerical issues, occurring at different levels. The
summation over trees was problematic for some segments,
especially the largest one. Indeed,we are summingvery small
quantities and the product over participants in p(y|T ) brings
us to deal with quantities of the order of machine preci-
sion. Moreover, while searching for the best segmentation
can be achieved through log(A) = [log(As,t )]1�s,t�N+1,
integrating over segmentations requires the actual computa-
tion of matrix A. Thus, the exponentiation of the segment
log-likelihood matrix leads to other numerical issues.

Our pragmatic answer to these issues was to considered a
tempered version of the likelihood given in (13):

p∗
α(yr ) =

∑

T∈T

U∏

u=1

[∫ ∏

t∈r
p(yt,u |θu)p(θu |T )dθu

]1/α

,

with α > 1. Tempering the likelihood does not change the
mode of the posterior distribution onm, if thematrix a giving
prior segment weights is tempered similarly. By doing this,
we are actually reducing the effective sample size: a very big
α would yield a posterior distribution onm close to the prior.

Figure 10a, b sum up the results obtained participant per
participant for change-point location. They vary a lot across
participants, as shown by the five given examples, as well
as the mean and standard deviation curves. The left panel
of Fig. 10c shows the posterior probability of observing a
change-point when participants are jointly considered with a
tree-structured model or with a non-structured model, with
likelihood tempered at α = U/2 = 10 and α = U = 20.
For both values of α, the profiles are quite similar, with an
expected more peaked behaviour for α = 10. The strongest
peak is observed during the announcement of the speech
topic. The right panel of Fig. 10c gives the posterior distrib-
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Fig. 11 Graphical representation of posterior edge probability matrix
for each segment of the best segmentation with K = 9 segments on
fMRI data with non-tempered likelihood. The width of an edge is pro-

portional to its posterior probability. Edges with probability higher than
0.5 are coloured in blue. (Color figure online)

ution of K for both models and for different values of α. We
observe flatter distributions for the full model, with a mode
at 11 segments. In the tree-structured model, 9 segments are
selected. For this value of K , we looked at the best segmen-
tation and computed the posterior edge probability matrices
for its segments. A graphical representation of the results is
given in Fig. 11. Cribben et al. (2012) retrieved 8 segments
from these data. There is no clear correspondence between
our segmentation and theirs. A remark that can nonetheless
be made is that, in our case, each change-point is associated
with a clear change in the topology of the network. These
structure changes are less obvious in (Cribben et al. 2012).
This might be a consequence of our model explicitly mod-
elling the structure, thus encouraging change-points to mark
out abrupt changes in structure rather than in parameters.

8 Discussion

In this paper, we showed how exact Bayesian inference
could be achieved for change-points in the structure of a
multivariate time-series with careful specification of prior
distributions. Essentially, prior distributions have to factorise
over both segments and edges. For the sake of clarity, we
assumed that, within a segment r , observations Y t were inde-
pendent conditionally on T and θ . While convenient and
leading to comfortable formulas, this independence assump-
tion is hardly realistic in many applied situations, including
those that we have considered here. Yet, time dependency
could be considered within segments, as long as p(yr |T )

still factorises over the edges of T . One could for instance
consider using the work of Siracusa (2009) to achieve this.
Trees would then be used to model the dependences between
two consecutive times instead of instantaneous dependences.

The framework that we have described is also convenient
for Bayesian model comparison. When one is faced with an
alternative in modelling, Bayes factors between two models
are easily obtained, as fully marginal likelihood can be com-
puted exactly and efficiently. For instance, the question of
whether changes should be allowed in themean of aGaussian
distribution or not can be addressed by computing p(y) in
both cases and by looking at their ratio. This is by no mean
specific to our approach, but exact computationmakes it com-
pletely straightforward.

The exactness of the inference also creates a comfortable
framework to precisely study the effect of the prior distribu-
tion on segmentations. Once again, as the inference does not
rely on stochastic integration, the impact of prior specifica-
tion could be evaluated at low cost and in an exact manner.

We finish this discussion by mentioning numerical issues.
As explained in Sect. 7, when the number of observations
increases, we have to deal with elementary probabilities that
differ from several order ofmagnitudes. Because the summa-
tions over the huge spaces of both segmentations and trees
are carried out in an exact manner, these quantities have to
be added to each other, resulting in numerical errors. Obvi-
ously, no naive implementation would work and some of
these errors can be avoided with careful and skilful program-
ming.At this stage, this is still not sufficient and the likelihood
tempering approach that we propose is not satisfying. Further
numerical improvements could be considered such as the sys-
tematic ordering of the terms when computing a determinant
in a recursive way.

TheR code used in the simulations and the applications is
available from the authors upon request. A package will soon
be available from the Comprehensive R Archive Network.
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