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Graphical abstract: Phagocytes produce ROS via the NADPH oxidase to kill pathogens in the 

phagosome. The activation of the NADPH oxidase depends on the translocation of cytosolic 

subunits (p40
phox

, p47
phox

, p67
phox

) and Rac2 to the membrane subunits (gp91
phox

 and p22
phox

). 

Our data indicate that p47
phox

 and Rac2 only briefly translocate to the phagosome while ROS 

production continues for a longer period. Furthermore, phosphatidylserine appears as a modulator 

of subunit recruitment and ROS production.  
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Abstract 
Background information: During phagocytosis, neutrophils internalize pathogens in a phagosome 

and produce reactive oxygen species (ROS) by the NADPH oxidase to kill the pathogen. The 

cytosolic NADPH oxidase subunits p40
phox

, p47
phox

, p67
phox

 and Rac2 translocate to the 

phagosomal membrane to participate in enzyme activation. The kinetics of this recruitment and 

the underlying signalling pathways are only partially understood. Anionic phospholipids, 

phosphatidylserine (PS) and phosphoinositides (PPI) provide important attachment site for 

numerous proteins, including several oxidase subunits. 

Results: We investigated the kinetics of p47
phox

 and Rac2 phagosomal membrane recruitment. 

Both subunits are known to interact with anionic phospholipids; we therefore addressed the role 

of PS in this recruitment. Phagosomal accumulation of p47
phox

 and Rac2 tagged with fluorescent 

proteins was analyzed by videomicroscopy. We used the C2 domain of lactadherin (lactC2) that 

interacts strongly and specifically with PS to monitor intracellular PS localization and to decrease 

PS accessibility. During phagocytosis of opsonized zymosan, p47
phox

 and constitutively active 

Rac2G12V briefly translocated to the phagosomal membrane while ROS production continued 

for a longer period. However, in the presence of lactC2, Rac2G12V recruitment was inhibited 

and the kinetics of p47
phox

 recruitment and detachment were delayed. A reduced phagosomal 

ROS production was also observed during the first seven minutes following the phagosome 

closure.  

Conclusions: These results suggest that p47
phox

 and Rac2 accumulate only transiently at the 

phagosome at the onset of NADPH activity and detach from the phagosome before the end of 

ROS production. Furthermore, lactC2, by masking PS, interfered with the phagosomal 

recruitment of p47
phox

 and Rac2 and disturbed NADPH oxidase activity. Thus, PS appears as a 

modulator of NADPH oxidase activation. 
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Introduction 
During bacterial and fungal infections, phagocytes play a major role in host defence. Neutrophils 

are the first cells that arrive at the site of infection, ingest the pathogen into a compartment called 

phagosome and kill it inside this phagosome. Phagocytes express the enzyme NADPH oxidase 

that generates superoxide anion (O2
●-

) by transferring electrons from NADPH to molecular 

oxygen. O2
●-

 and the other derivative reactive oxygen species (ROS) produced in the phagosome, 

participate in the killing of the pathogenic agent. Genetic deficits in NADPH oxidase lead to 

chronic granulomatous disease (CGD) characterized by severe recurrent infections (Stasia and Li, 

2008). NADPH oxidase is a multicomponent enzyme composed of membrane associated 

proteins, gp91
phox

 and p22
phox

, cytosolic proteins, p67
phox

, p47
phox

, p40
phox

 and the small G protein 

Rac. Upon stimulation via soluble or particulate stimuli, the cytosolic subunits translocate to the 

plasma or phagosomal membrane and assemble with the membrane subunits to form an active 

enzyme (Nauseef, 2004). This translocation induces the activation of the NADPH oxidase. In the 

resting state, the three cytosolic subunits, p67
phox

, p47
phox

, p40
phox

 form a heterotrimeric complex 

in the cytosol (Groemping and Rittinger, 2005). It is unclear, whether these subunits translocate 

together or sequentially and whether they remain together to form the active enzyme for the 

entire time of ROS production.  

Upon stimulation, p47
phox 

attaches to the membrane via its PX domain and to p22
phox

 via its SH3 

domains and thereby translocates the complex to the membrane (Kanai et al., 2001; Ago et al., 

2003; Groemping and Rittinger, 2005). Rac1 and Rac2 are involved in phagocytosis and O2
●-

 

generation (Quinn et al., 1993; Caron and Hall, 1998; Mizrahi et al., 2010) . However they may 

have different roles and it has been proposed that Rac2 is more specific for ROS production 

(Filippi et al., 2004). It has been shown in vitro that phospholipids and especially 

phosphatidylserine (PS) are essential for oxidase activation (Tamura et al., 1988; Shpungin et al., 

1989) . The translocation of Rac, p47
phox

 and p40
phox

 to the membrane involve direct interaction 

with anionic lipids mainly PPI, phosphatidic acid (PA) and PS. In fact, p47
phox

 and p40
phox

 bear a 

lipid binding domain: the phox homology (PX) domain. The PX domain of p47
phox 

has two 

binding pockets: one preferentially binds to phosphatidylinositol-(3,4)-bisphosphate (PI(3,4)P2) 

and the other binds to PA and PS whereas the PX domain of p40
phox

 binds to 

phosphatidylinositol-3-phosphate (PI(3)P) (Kanai et al., 2001; Karathanassis et al., 2002). The 

role of the PX domain in p47
phox 

may depend on the type of stimulation. The disruption of 

PI(3,4)P2 binding in this domain does not prevent phagosomal translocation (Li et al., 2010). Rac 

proteins, like many other small GTPases, contain a polybasic domain (Williams, 2003) that has 

been shown to act as a targeting signal to localize proteins to membranes (McLaughlin and 

Aderem, 1995; Yeung et al., 2006; Yeung et al., 2008). The negative charge of the cytosolic 

leaflet of cellular membranes depends on their anionic phospholipid content. It creates an 

electrostatic field that attracts proteins with cationic residues such as the small GTPases (Yeung 

and Grinstein, 2007). Using cationic probes (Roy et al., 2000), Yeung et al. showed that the 

surface charge of the cytosolic leaflet of the phagosome decreased during phagocytosis ( Yeung 

et al., 2006; Yeung et al., 2009). This decrease was attributed mainly to the drop in 

phosphatidylinositol-(4,5)-bisphosphate that occurred upon closure of the phagosome (Botelho et 

al., 2000; Steinberg and Grinstein, 2008) . PS, which represents about 15% of the lipids in the 

inner leaflet of the plasma membrane (Yeung and Grinstein, 2007), persists on the phagosome 

after sealing and contributes to the phagosomal surface charge ( Yeung et al., 2009; Magalhaes 

and Glogauer, 2010; Minakami et al., 2010) . In the previous studies, the phagosomal PS content 
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was monitored using the C2 domain of the lactadherin fused to a fluorescent protein as a probe. 

The lactadherin and its C2 domain (lactC2) were shown to bind phosphatidylserine specifically 

and with a high affinity (Kd around 2 nM for both), in a calcium independent manner (Andersen 

et al., 2000; Shi et al., 2004). By contributing to the phagosomal surface charge as well as 

binding to specific protein domains, PS could play a role in NADPH oxidase activation. Rac and 

p47
phox

 are good candidates for a PS dependent recruitment to the membrane as explained above.  

In this study, we investigated the kinetics of Rac and p47
phox

 recruitment at the phagosome and 

the role of PS in their recruitment. To examine this latter point we used the lactC2 probe. Indeed, 

in vitro studies demonstrated that lactadherin inhibits enzyme complexes of blood coagulation by 

blocking PS binding sites (Shi and Gilbert, 2003). We then reasoned that lactC2 may have a dual 

role in the cell serving as a probe to monitor PS but also masking PS.  We observed that p47
phox

 

and a dominant positive form of GFP-Rac2 (GFP-Rac2G12V) were transiently recruited at the 

phagosomal membrane, at the beginning of phagocytosis and left the phagosome far before the 

termination of ROS production. In the presence of mCherry-lactC2 the phagosomal recruitment 

of GFP-Rac2G12V was blocked and p47-GFP translocation slowed down. We then looked at 

NADPH oxidase activity in cells expressing mcherry-lactC2. The phagosomal ROS production 

was reduced at the commencement of phagocytosis. These results advocate that lactC2, by 

masking PS, interfered with the phagosomal recruitment of p47
phox

 and Rac2 and disturbed 

NADPH oxidase activity. 

 
 

Results 

 
Generation of stable PLB-985 cell lines expressing p47-GFP and CFP-Rac2 

To examine the accumulation of p47phox and Rac2 at the phagososome we generated neutrophil-

like cells (differenciated myeloid leukemia cell line, PLB-985 cells) with stable expression of 

p47-GFP and CFP-Rac2. The level of transgenic protein expression was assessed by flow 

cytometry (data not shown) and by immunoblot analysis (Fig. 1A). The immunot blot with anti-

GFP reveals that only the tagged proteins are expressed in the cells and not the GFP alone. The 

immunoblot with anti-p47
phox

 shows that the level of endogenous p47
phox

 was 5 fold higher than 

the p47-GFP level in the p47-GFP transgenic cell line (Fig. 1B). In the CFP-Rac2 transgenic cell 

line similar level of CFP-Rac2 and endogenous Rac2 were observed (Fig. 1C). We further 

measured the ROS production in the two transgenic cells lines in response to phorbol 12-

myristate acetate (PMA) by using a luminol assay. ROS production of both lines was similar to 

non-transfected differentiated cells (data not shown). Immunoprecipitation experiments were then 

performed to check the interactions of p47-GFP and CFP-Rac2 with the other endogenous 

NADPH oxidase subunits. Both transgenic PLB-985 cell lines were stimulated by PMA for 10 

min and the oxidase membrane subunit gp91
phox

 was immunoprecipitated from the membrane 

fraction. As shown in Figure 1D, gp91
phox

 co-immunoprecipitated with p47-GFP as well as 

endogenous p47
phox

 and p67
phox

 in the p47-GFP transgenic PLB-985 cell line. The same result 

was obtained with CFP-Rac2 in the transgenic CFP-Rac2 PLB-985 cell line (Fig. 1E). In the 

control, agarose beads alone without gp91
phox

 antibodies collected tenfold less gp91
phox

 than with 

the specific gp91
phox

 antibodies. 
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P47
phox

 is transiently recruited to the phagosome 

The recruitment of p47-GFP was then followed during phagocytosis of opsonized zymosan by 

wide field videomicroscopy. The cytosolic marker calcein blue was measured in the same cells in 

order to quantify p47-GFP fluorescence by ratio analysis. The mean time from phagosomal cup 

formation to phagosome closure, was 48 +/- 5 s (n=12). Accumulation of P47-GFP was first 

visible at the phagosomal cup on average 14 +/- 5 s (n=14) before sealing (Fig. 2B). Then p47-

GFP fluorescence increased rapidly at the phagosome, with a maximal fluorescence 20s after the 

phagosome closure, and then decreased (Fig. 2A, C and video S1). Quantification of p47-GFP 

phagosomal recruitment was performed by measuring the ratio of phagosomal to cytosolic 

fluorescence. P47-GFP was present at the phagosomal membrane for only 2 min after the 

phagosome closure (Fig. 2C). To confirm that p47-GFP reflected the properties of endogenous 

p47
phox

, we performed immunofluorescence experiments using a protocol of synchronized 

phagocytosis (Quinn et al., 2007). Cells were incubated with opsonized texas-red zymosan (time 

0); then the number of phagosomes and the presence of phagosomal p47
phox

 were determined at 

different time points after incubation. Most of the phagocytosis occurred during the first five 

minutes (Fig. 2E). In these conditions, we observed a decrease in p47
phox

 positive phagosomes 

from 50% to 25% during the first five minutes and then p47
phox

 presence diminished to 11% after 

10 minutes (Fig. 2D, E). The remaining p47
phox

 positive phagosomes at 10 min were most likely 

formed during the preceding 5 min. This result confirms that endogenous p47
phox

, like p47-GFP, 

is transiently recruited at the phagosome and leaves the phagosome within a few minutes. 

 

The accumulation of Rac2G12V at the phagosome is also transient 

We next investigated the CFP-Rac2 translocation at the phagosome during zymosan phagocytosis 

by videomicroscopy. However, we could not observe any consistent accumulation of CFP-Rac2 

at the phagosome (data not shown). The same result was obtained with PLB-985 cells stably 

expressing GFP-Rac2 (data not shown). This may be due to abundant endogenous Rac2 which 

might compete with CFP-Rac2 (or GFP-Rac2) for activation and phagosomal membrane 

targeting. Therefore, we used the constitutively active form Rac2G12V which displaced the 

equilibrium Rac2GDP/Rac2GTP in favor of the GTP bound Rac2G12V form. Differentiated 

PLB-985 cells were transiently transfected with GFP-Rac2G12V and the fusion protein was 

followed during phagocytosis of zymosan by spinning-disk confocal videomicroscopy (Fig. 3A, 

video S2). In these cells expressing GFP-Rac2G12V, the formation of the phagosome, from the 

visible cup until phagosome sealing, lasted 48 s +/- 5 s (mean +/-SD, n=9) and GFP-Rac2G12V 

was first visible at the cup 15 s +/- 6 s (mean +/-SD, n=11) prior to phagosome closure (Fig. 3B). 

As for p47-GFP, the GFP-Rac2G12V fluorescence increased rapidly at the phagosome, with a 

maximal fluorescence 20 s after the phagosome closure, and then decreased (Fig. 3A, C and 

video S2). The fluorescence ratio between phagosome and cytosol was calculated to evaluate the 

protein accumulation at the phagosome. The mean time of GFP-Rac2G12V accumulation at the 

phagosomal membrane was 3 min (Fig. 3C). 

 
Phosphatidylserine is localized at the phagosomal membrane and its presence decreases 

slowly after the phagosomal closure 

As the accumulation of p47 and Rac2G12V at the phagosome may require attachment to anionic 

phospholipids, we wanted to investigate the role of PS in this process. We first monitored PS 

accumulation at the phagosome of PLB-985 cells during phagocytosis with the C2 domain of 

lactadherin that binds specifically to PS (lactC2). The lactC2 domain was fused to the fluorescent 

protein mCherry, this fusion protein was transiently transfected into differentiated PLB-985 cells, 
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and the distribution of the mCherry-lactC2 probe was visualized during yeast phagocytosis by 3D 

deconvolution microscopy. At time 0, when the phagosome closed, the lactC2 probe marked the 

inner leaflet of the plasma membrane as well as the cytosolic leaflet of the phagosomal 

membrane (Fig.4A), as observed by Minakami et al. in human neutrophils (Minakami et al., 

2010). We also witnessed a cytosolic fluorescence due to the presence of free probe in the 

cytosol. Following yeast internalization, the lactC2 fluorescence at the phagosome decreased 

slowly. Quantification of mcherry-lactC2 phagosomal accumulation was performed by measuring 

the ratio of phagosomal to cytosolic fluorescence. As shown in Figure 4B, the fluorescence ratio 

decreased from 1.61 at time 0 to 1.26 within 20 min. Statistical analysis shows that this ratio was 

significantly reduced 15 and 20 min after the phagosome closure, revealing a slow decrease of 

the phosphatidylserine content in the cytosolic leaflet of the phagosomal membrane. These results 

indicate that, in PLB-985 cells, the phagosomal accumulation of PS was slowly reduced to reach 

nearly 50% reduction 20 min after the phagosome closure.  

 

LactC2 expression disturbs p47-GFP accumulation at the phagosome  
As the phagosome was enriched in the lactC2 probe especially during the first 20 min after 

closure, lactC2 could mask phagosomal PS similar to the effects seen with whole lactadherin 

(Hanayama et al., 2002; Shi and Gilbert, 2003; Asano et al., 2004). Therefore lactC2 may 

interfere with p47
phox

 and Rac2 phagosomal membrane targeting. The effect of the lactC2 probe 

on p47
phox

 phagosomal recruitment was assessed by transiently transfecting the stable cell line 

p47-GFP with mCherry-lactC2. Then the accumulation of p47-GFP at the phagosome during 

phagocytosis of opsonized zymosan was monitored by wide field videomicroscopy as before. 

P47-GFP was still recruited in the cells that expressed mCherry-lactC2 as revealed by the p47-

GFP fluorescent ring around the phagosome (Fig. 5A). However the kinetics of p47-GFP 

accumulation was modified in these cells compared to control cells. In mCherry-lactC2 co-

expressing cells p47
phox

 -GFP was still present at the phagosomal membrane 240 s after the 

phagosome closure whereas it had already disappeared at 120 s in cells that did not express the 

mCherry-lactC2 probe (Fig. 5B). To highlight the impact of lactC2 on p47-GFP translocation, the 

phagosomal recruitment of p47-GFP was modeled after a monocompartmental pharmacokinetics 

equation (see materials and methods section for detailed explanation of the method). Comparison 

of the constant of recruitment k2 between the two cell populations indicates that the recruitment 

of p47-GFP was significantly decelerated in cells expressing the lactC2 probe compared to 

control cells: k2 = 2.1 min
-1

 for control cells and 1.0 min
-1

 for lactC2 expressing cells (statistical 

Wald test, p = 0.029). Interestingly, the detachment of p47-GFP was also hindered in lactC2 

expressing cells, as revealed by the diminution of the constant of detachment k1: 0.4 min
-1

 for 

control cells and 0.2 min
-1

 in lactC2 cells (statistical Wald test, p = 0.004). Thus, the lactC2 probe 

interfered with p47-GFP phagosomal accumulation. This is further illustrated by the increase in 

time needed to reach the maximal phagosomal recruitment of p47-GFP, Tmax, which was 0.6 

min in control cells and 1.4 min in lactC2 expressing cells. However the maximal quantity of 

p47-GFP recruited at the phagosome (Rmax) appeared unaffected. Actually Rmax was 1.15 in 

control cells and 1.13 in lactC2 cells. These results indicate that the presence of the lactC2 probe 

results in a delay of p47-GFP dynamics. 

 

LactC2 expression prevents Rac2 but not Rac1 accumulation at the phagosome 
As the surface charge of membrane cytosolic leaflet is important of Rac recruitment (McLaughlin 

and Aderem, 1995; Yeung et al., 2006; Yeung et al., 2008), the presence of lactC2 at the 

phagosomal membrane may disturb its recruitment. To investigate the effect of lactC2 expression 
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on GFP-Rac2G12V translocation to the phagosomal membrane, mCherry-lactC2 and GFP-

Rac2G12V were transiently co-expressed in the cells. GFP-Rac2G12V accumulation at the 

phagosome was then monitored during phagocytosis of opsonized zymosan by spinning disk 

confocal microscopy. In the presence of mCherry-lactC2, GFP-Rac2G12V was no more recruited 

at the phagosomal membrane (Fig. 5C and video S3). The fluorescence ratio of phagosome 

against cytosol was lower than one, emphasizing the absence of GFP-Rac2G12V recruitment in 

mCherry-lactC2 expressing cells (Figure 5D). As Rac 2 is no more recruited at the phagosome in 

the presence of the lactC2 probe we wondered whether this was also the case for Rac1. We 

repeated the same experiment with GFP-Rac1G12V. As previously described (Magalhaes and 

Glogauer, 2010), GFP-Rac1G12V was present at the plasma membrane and decreased from the 

phagosome after sealing (Fig. 6A, C). In some videos, however, we could observe a very brief 

increase of the phagosomal fluorescence after the phagosome closure (Fig. 6A). A similar 

phenomenon was observed in the cells expressing mcherry-lactC2 (Fig. 6B, C and video S4). In 

both cases, Rac1G12V was present at the phagosome for at least 10 min (Fig. 6C). Thus 

Rac1G12V is present on the phagosome from the beginning and its presence is not affected by 

lactC2.   

 

Binding of the lactC2 probe on phosphatidylserine induces a delay in the ROS production 

As the recruitment of p47-GFP and GFP-Rac2G12V was modified, we wondered if the lactC2 

probe could have an effect in ROS production. We have previously shown that DCFH2-yeast is a 

valuable tool to measure ROS production inside the phagosome by video-microscopy until 30 

minutes (Tlili et al., 2012) with no photooxydation (Tlili et al., 2011). We could not use DCFH2-

zymosan because due to its small size less DCFH2 is attached to the zymosan as compared to 

yeast and the saturation of the probe in the phagosome is reached after five minutes of ROS 

production (unpublished observations). Thus the effect of the lactC2 probe on the amplitude and 

kinetics of the ROS production was assessed with DCFH2-yeast by videomicroscopy. 

Phagocytosis of DCFH2-yeasts was filmed and the measure of the yeast fluorescence allowed 

quantifying cellular ROS production inside the phagosome (Fig. 7A,B). During the first minutes 

after the phagosome closure, the oxidative burst was reduced in mCherry-lactC2 expressing cells 

compared to mCherry control cells. This initial delay that occurred during the first 7 min 

following the phagosome closure was compensated at 10 min (Fig 7C). To analyze more 

precisely the kinetics of the ROS production in the two cell populations, expressing or not the 

mCherry-lactC2 probe, we took advantage of the Monolix software that is widely used for 

pharmacokinetics studies (Lavielle and Mentre, 2007). This approach is based on the non linear 

mixed effects modeling of data (see materials and methods section for detailed explanation of the 

method). Because we measured an enzymatic activity, we selected a sigmoid model to describe 

the kinetics of ROS production. The time course of the median DCFH2-yeast fluorescence is well 

correlated between the experimental data and the values predicted by the model (Fig. S5). The 

time needed to reach half of the maximal fluorescence (Tc) for the control mCherry expressing 

cells and for the mCherry-lactC2 cells is significantly increased in cells that express the lactC2 

probe : 6.3 min for mCherry expressing cells and 10.7 min for mCherry-lactC2 cells (statistical 

Wald test, p = 0.008). The initial reaction rate is also decreased more than 2 fold for the mCherry-

lactC2 cells expressing cells (31 units/min) as compared to mcherry cells( 68 units/min) . These 

results indicate that the initial ROS production is significantly reduced in lactC2 expressing cells, 

probably by masking PS on the phagosomal membrane.  
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Discussion  
Our results show that p47

phox 
and a tagged version of the dominant positive form of Rac2 are 

recruited to the phagosome for only 2-3 min after phagosome sealing. The presence of lactC2 at 

the phagosome disturbs p47-GFP accumulation and prevents GFP-Rac2G12V recruitment at the 

phagosome. In PLB-985 cells expressing lactC2 the ROS production is also reduced during the 

first seven minutes following phagosome sealing. 

As previously observed (Ueyama et al., 2008; Li et al., 2010), p47-GFP was recruited at the 

phagosomal membrane just before phagosome closure and then accumulated at the phagosome. 

However, we observed that p47-GFP remained accumulated for only 2 min. This was unexpected 

since we had previously observed a stable association of p67-GFP at the phagosome for 45min 

under similar conditions of phagocytosis (Tlili et al., 2012). Immunofluorescence experiments 

confirmed the transient translocation of endogenous p47
phox

 to phagosomes containing opsonized 

zymosan. Other immunofluorescence studies do not agree with this transient translocation of 

p47
phox

 however this may depend on the amount of zymosan in the experiment which is a key 

element for the synchronization of phagocytosis (Allen et al., 1999). We could not detect any 

reproducible accumulation of wild type CFP-Rac2 or GFP-Rac2 at the phagosomal membrane. A 

discrete and brief enrichment of tagged Rac2 on the phagosome has been observed in Raw 264.7 

cells (Hoppe and Swanson, 2004). The visualisation of a phagosomal localisation of a tagged 

Rac2 depends on the amount of protein that is recruited and on its time of presence at the 

phagosome. Our fractionation experiments indicate that less than 5% of the CFP protein is 

translocated to the plasma membrane upon PMA stimulation (data not shown). The recruitment 

and the time of presence of Rac2 at the phagosome depend on the regulation of this small GTPase 

by RhoGDI, GEFs and GAPs and others factors such as the surface charge of the membrane. Rac 

proteins have a polybasic domain: the Rac2 polybasic domain is moderately charged (+3) 

whereas the Rac1 domain carries more positive charges (+6). We have shown here that a 

dominant positive mutant of Rac2, Rac2G12V, is recruited at the phagosomal cup just before 

sealing whereas the corresponding mutant of Rac1 accumulated at the plasma membrane and 

started to detach upon phagosome sealing. Similar results were obtained for the other dominant 

positive mutants Rac1Q61L and Rac2Q61L ( Yeung et al., 2006; Magalhaes and Glogauer, 

2010). The accumulation of constitutively active Rac2 and the detachment of constitutively active 

Rac1 correlated with the decrease of the surface charge of the phagosome ( Yeung and Grinstein, 

2007; Magalhaes and Glogauer, 2010). Thus, the charges in the polybasic domain appeared to be 

important for the phagosomal accumulation of GTP bound Rac. We showed that Rac2G12V is 

only accumulated at the phagosome for 3 min after phagosome closure and leaves the phagosome 

well before termination of ROS production that lasted more than 10 min (Fig. 7C). Magalhaes et 

al. observed that Rac2Q61L was still at the phagosomal membrane 30 min after particle 

internalization (Magalhaes and Glogauer, 2010). This difference may be explained by the 

differential regulation of the two dominant positive mutant proteins. Both mutations inhibit the 

intrinsic and GAP-stimulated GTP hydrolysis (Xu et al., 1994). However RacG12V, like wild 

type Rac and contrary to RacQ61L, can interact with GEF and with RhoGDI ( Xu et al., 1997; 

Ugolev et al., 2006). Accordingly, the regulation of Rac2G12V would be closer to that of wild 

type Rac2. We were unable to identify an anti-Rac2 antibody suitable for immunostaining to 

examine the translocation of endogenous Rac2. 

To monitor PS localization and decrease its accessibility, we used the lactC2 probe that interacts 

specifically with PS (Yeung et al., 2008). As previously observed (Yeung et al., 2009; Magalhaes 

and Glogauer, 2010; Minakami et al., 2010), the lactC2 probe marked the cytosolic leaflet of the 
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phagosome. In the neutrophil-like PLB-985 cells, we observed that lactC2 remained accumulated 

at the phagosome after particle internalization and that the ratio phagosome/cytosol slowly 

decreased over 20min. The PS content of the phagosome is probably modulated by PS 

metabolism and vesicular traffic. The removal of membrane material enriched in PS, from 

macrophage phagosomes has been described (Yeung et al., 2009). Lactadherin and its C2 domain 

bind PS with high affinity and selectivity (Andersen et al., 2000; Shi et al., 2004; Shao et al., 

2008) and an extracellular mutant of lactadherin could mask PS on the outer leaflet of the plasma 

membrane (Hanayama et al., 2002; Shi and Gilbert, 2003). Therefore, lactC2 inside the cell could 

have a dual role serving as a probe to monitor PS but also masking PS. LactC2 masks probably a 

few percent of the PS, which has an estimated cellular concentration of 100µM (Kay et al., 

2012), however a substantial part of the PS may be associated with protein complexes (Kay et al., 

2012) and consequently not be accessible to the lactC2 probe and other endogenous proteins. So, 

the presence of the lactC2 probe decreases the fraction of “accessible PS”. Indeed, we could show 

that the lactC2 probe interferes with cellular functions, it modifies Rac2G12V and p47-GFP 

recruitment and reduces ROS production during the first seven minutes after the phagosome 

closure. The reduced PS accessibility could explain these defects.  

Our results suggest that lactC2 prevents Rac2 recruitment at the phagosome. Absence of 

phagosomal Rac2 may explain the reduced initial ROS production. One might expect that the 

absence of Rac2 leads to a stronger defect. However it has been shown that neutrophils 

expressing a dominant negative form of Rac2 have only a modest defect in O2
.-
 production in 

response to opsonized zymosan (Ambruso et al., 2000; Williams et al., 2000). Furthermore, Rac1 

is present in our cells. We observed that, in cells expressing or not mcherry-lactC2, GFP-

Rac1G12V is present at the phagosome during its formation and then starts to detach from the 

phagosome after sealing. Thus Rac1 can probably partly support Rac2 function, when Rac2 is 

absent. Rac1 localization at the plasma membrane is not affected by lactC2 since Rac1 has been 

shown to interact preferentially with PS (Finkielstein et al., 2006) and may have a better affinity 

than lactC2 probe for the negative cytosolic leaflet of the plasma membrane due to its larger 

polybasic domain. . 

P47
phox

, via its PX domain, binds PS (Karathanassis et al., 2002; Stahelin et al., 2003). The 

specific role of PS in the phagosomal translocation of p47
phox

 has not been established. In the 

presence of mCherry-lactC2 at the phagosome, the recruitment of p47-GFP is slowed down and 

its time of presence at the phagosome is increased two fold. The mathematical model suggests 

that attachment as well as removal of p47
phox

 from the phagosome is slowed down. The PX 

domain alone does not accumulate at the phagosomal membrane ((Johnson et al., 2006) and 

unpublished data). However, our data suggest that this domain is important for the kinetics of 

p47
phox

 accumulation at the phagosome: by reducing the accessibility to PS, we slowed down 

p47
phox

 recruitment. Masking PS with lactC2 may also have indirect effects on the accumulation 

of p47-GFP at the phagosomal membrane by interfering with other proteins. For example, the 

phosphorylation of p47
phox

 by PKC may be reduced because the PS binding domain (C2 domain) 

of PKC isoforms is important for its localization and activation (Conesa-Zamora et al., 2001). 

The mutant p47R90A, which has a reduced affinity for PI(3,4)P2 but binds to PA and PS, 

translocated to the phagosomal membrane and restored ROS production of p47
phox

 KO mouse 

neutrophils (Li et al., 2010). The translocation of this mutant presumably relies on a direct 

interaction with PA, PS and p22
phox

. Taken together, these observations confirm the concept that 

membrane translocation of p47
phox

 is based on a multicomponent interaction system (Steinberg 

and Grinstein, 2008) to insure maximal flexibility. PS would be one of the targeting motifs of this 

system. 
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To summarize, we propose the following model (Fig. 8): Rac2 and p47
phox

 would be recruited at 

the same time at the phagosomal cup just before phagosome sealing (Fig.8A). The surface charge 

of the phagosome conferred by PPI, PA and PS is important for Rac2 recruitment. The Rac2 

protein would serve as an adapter to correctly position p67
phox

 toward gp91
phox

; (Fig.8B) then it 

detaches from the phagosome a few minutes after sealing (Fig.8C). P47
phox

, via its PX domain 

binding to PS and PI(3,4)P2 and its SH3 domain binding to p22
phox

, would act as a carrier protein, 

targeting p67
phox

 and p40
phox

 to the NADPH oxidase complex (Fig.8A,B). Once the complex is 

assembled p47
phox 

detaches a few minutes after phagosomal closure (Fig.8C). PI(3,4)P2 

accumulates at the phagosome during its formation and remains present during the first minute 

after closure, whereas PI(3)P starts to accumulate 1 min after phagosome sealing (Fig8. B, C).. 

P67
phox

 would remain assembled with the membrane subunits via its interaction with gp91
phox

 and 

p40
phox

 that binds to PI(3)P (Fig.8C). 

A reduced PS level on the phagosomal membrane should affect the ROS production inside the 

phagosome and may contribute to intraphagosomal survival of pathogens. Indeed, certain 

pathogens such as Listeria pneumophilia are able to decrease the PS content of the phagosome 

within a few hours (Yeung et al., 2009).  

 

 

Materials and methods 

 
Cell culture  

The human myeloid leukemia cell line PLB-985 was a generous gift from Marie-José Stasia 

(Grenoble, France). Cells were cultured as previously described (Tlili et al., 2011). The 

differentiation towards neutrophil-like cells was induced by addition of 1.25% dimethylsulfoxide 

(DMSO) to exponentially growing cells for 5 or 6 days. For all experiments, differentiated PLB-

985 cells were centrifuged 3 min at 2000 rpm and resuspended in Hepes buffer containing 140 

mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM Hepes (pH 7.4), 1,8 mg/ml glucose 

and heat inactivated FBS (1% for microscopy experiments, otherwise 5%). 

 

Plasmid constructs  

The human p47
phox

 gene (kind gift from Marie-Claire Dagher, Grenoble, France) was amplified 

by PCR by using primers designed to discard the stop codon of this gene and to introduce HindIII 

and AgeI restriction sites. By using the Quickchange II Site Directed Mutagenesis kit (Agilent 

technologies, Santa Clara, CA), the start codon of the pEGFP-N1 vector (Clontech, Palo Alto, 

CA) was deleted in order to avoid expression of the GFP alone. The p47-GFP vector was then 

constructed by cloning the p47
phox

 fragment into the mutated pEGFP-N1 plasmid. The cDNA 

encoding human Rac2 was amplified from pGEX2T-Rac2 (gift from Marie-Claire Dagher, 

Grenoble, France) by PCR and the PCR fragment was then cloned in the pECFP-C1 vector using 

the restriction sites HindIII-SacII. The GFP-Rac2G12V and GFP-Rac1G12V vectors were 

obtained by cloning Rac2G12V or Rac1G12V into the pEGFP-C1 vector (Clontech). The human 

lactadherin C2 domain (475bp) was amplified by PCR from a vector pBluescript II KS+BA46 

(kind gift from C. Théry, Paris, France). The primers used contained restriction sites (Hind III 

and Sac II) to allow the cloning into the pECFP-C1 vector (Clontech). MCherry was amplified 

from p413GPDmCherry (kind gift from R. Tsapis, Paris, France) by PCR and the pmCherryC1 

vector was obtained by replacing EGFP in the pEGFP-C1 vector by mCherry, using the 

restriction site AgeI-HindII. The mCherry-lactC2 vector was constructed by inserting the lactC2 
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domain from pECFP-C1lactC2 into the pmCherryC1 vector at the restriction site Hind III, Sac II. 

All constructs were controlled by sequencing.  

 

Transient and stable transfection  
Differentiated PLB-985 cells were transiently transfected using the Nucleofector device or the 

4D-Nucleofector (Lonza, Basel, Switzerland) according to the manufacturer’s protocol. For each 

condition, using the Nucleofector kit for human dendritic cells and the U-015 program or the SF 

Cell Line Kit and the EH-100 program, 2.10
6
 cells were nucleofected with 1 to 4 µg of vector and 

incubated in culture medium without antibiotics. Four hours post-transfection, cells were 

processed for experiments. CFP-Rac2 and p47-GFP expressing PLB-985 cell lines were 

generated as previously described (Tlili et al., 2012). These cell lines were cultured continuously 

in the presence of 0.5 mg/ml of G418 to maintain the selection.  

 

Preparation and opsonization of yeasts, DCFH2-yeasts and zymosan 

Yeasts (Saccharomyces cerevisiae) and zymosan particles from Saccharomyces cerevisiae 

(Sigma, Saint Louis, MO) were prepared as described previously (Tlili et al., 2011). To measure 

the intraphagosomal ROS production, yeasts and zymosan were covalently labeled with 2’, 7’-

dichlorodihydrofluorescein diacetate, succinimidyl ester (OxyBURST Green H2DCFDA, 

succinimidyl ester from Life Technologies, Saint Aubin, France) as described (Tlili et al., 2011). 

Yeasts (10
8
 /ml), DCFH2-yeasts were washed and resuspended in PBS (same concentration) 

before opsonization by incubation with polyclonal rabbit anti-yeast serum (50% diluted, 1 hour, 

37°C). Opsonized yeasts were washed twice with PBS, resuspended in Hepes buffer (5x10
7
/ml). 

Zymosan or DCFH2-zymosan were opsonized with total human serum following the same 

protocol as for yeasts and resuspended in Hepes buffer (20 mg/ml).  

 

 

Cell preparation for microscopy  

For some experiments, cells (2x10
6
 /ml) were loaded with 2 µM of the cytoplasmic cell tracer 

calcein blue-AM (Life Technologies) during 10 min at room temperature and then washed once. 

For in vivo imaging, 50 µl of cells (4x10
6
 /ml in saline media) were allowed to adhere on glass 

coverslips for 5 min at 37°C and 450 µl of warm Hepes buffer were added.  

 

Live cell imaging 

The localization of the mCherry-lactC2 probe was assessed at 37°C by using a DM IRE2 

microscope (Leica, Nanterres, France) with a 100x plan Apo 1.4 oil immersion objective, a stage 

incubator and a Cool SNAP HQ2 camera (Photometrics, Huntington Beach, CA) driven by the 

Metamorph 7 software (Universal imaging,Westchester, PA). Stacks of 9 frames with a z-optical 

spacing of 1 µm were collected every minute for 20 min. Images were deconvoluted with 

Metamorph 7 software and single z planes were extracted. To monitor the intraphagosomal ROS 

production and p47-GFP phagosomal recruitment in cells co-expressing or not mCherry-lactC2, 

images were acquired by using a wide field fluorescence microscope described elsewhere (Tlili et 

al., 2011). Serial images were recorded every 5 s for about 20 min, except for the DCF 

fluorescence which was recorded every 2 s with binning 2 for up to 40 min. Phagocytosis of 

opsonized zymosan by GFP-Rac2G12V or GFP Rac1G12V cells cotransfected or not with 

mCherry-lactC2, was filmed at 37°C by using a spinning disk confocal system (Yokogawa CSU-

X1-A1, Yokogawa Electrics, Japan) mounted on a Nikon Eclipse Ti E inverted microscope 

equipped with a 100x plan Apo 1,4 oil immersion objective and an EM-CCD eVolve camera 
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(Photometrics) driven by the Metamorph 7 software (Universal imaging). The temperature was 

maintained at 37°C using a stage incubator. GFP and mCherry were excited at 491 nm and 561 

nm respectively by using a laser illumination for 0.3 and 0.2 s and the fluorescence was detected 

with a quad band beamsplitter, a 525 nm emission filter for GFP and a 607 nm emission filter for 

mCherry. Sequential stacks of images were collected for several minutes with a time lapse of 10 s 

or 30s and an optical spacing of 1 µm.  

 

Fluorescence quantification: intraphagosomal ROS production and recruitment of p47
phox

 

and Rac2G12V 

All images were analyzed with the ImageJ software. To measure DCF fluorescence, ROIs that 

cover the whole yeast were manually drawn and the mean fluorescence intensity of these ROIs 

was calculated for each time point. The accumulation of lactC2 at the phagosomal membrane was 

measured by calculating a fluorescence ratio between the mean fluorescence intensity of the 

phagosomal ring and the mean cytoplasmic fluorescence intensity. The fluorescence intensity of 

non phagocyting cells remained stable indicating that there was no photobleaching during the 

experiments. To quantify p47-GFP fluorescence without artifacts due to volume variations when 

using wide field microscopy, ratiometric films were obtained with the cytosolic marker calcein 

blue. The ratio between the GFP and the calcein blue fluorescence was determined after 

background subtraction. These ratiometric films were then used to analyze p47
phox

 translocation 

to the phagosome. P47–GFP, GFP-Rac2G12V or GFP-Rac1G12V phagosomal membrane 

recruitment were determined by evaluating the accumulation of the fusion proteins at the 

phagosomal membrane relative to the cytoplasm, as described above for the lactC2 probe. A 

fluorescence ratio higher than 1 indicates that the protein is accumulated at the phagosomal 

membrane. 

  

Immunofluorescence 

The immunofluorescence experiments were performed as described before (Tlili et al., 2012). 

Briefly, the cells were mixed with opzonised Texas Red zymosan, spun down at 13°C to 

synchronize phagocytosis and then incubated at 37°C for 0 to 10 min. The cells were fixed with 

4% paraformaldehyde, permeabilized with 0,1% tritonX100 in PBS and blocked with 10% 

decomplemented human serum for 1h at 37°C. The cells were then immunostained with anti-

p47
phox

 antibody (BD Bioscience, diluted 1:100) followed by Alexa 488 goat anti-mouse (Life 

Technologies). Cells were imaged on a spinning disk microscope described above. 

 

Subcellular fractionation, immunoprecipitation and western blotting 

To analyze the expression of the fusion protein in the stable p47-GFP or CFP-Rac2 expressing 

cell line, cells were disrupted in lysis buffer (40000 cells/µl) containing Hepes-Na 25 mM, NaCl 

150 mM, MgCl2 5 mM, EGTA 0.5 mM, TritonX100 0.5%, NaF 10 mM and supplemented with a 

protease inhibitor cocktail (Roche, Basel, Switzerland). Protein concentration was determined 

using the BioRad Protein assay (BioRad) and 25 µg of the samples were diluted in 6x Laemmli 

buffer and boiled for 5 min. The proteins were separated on a 12% SDS-PAGE gel and 

transferred onto nitrocellulose membrane (BioRad, Marnes La Coquette, France). The 

membranes were blotted with anti-GFP monoclonal antibody (Roche, diluted 1:500) or anti-

p47
phox

 monoclonal antibody (BD Bioscience, diluted 1:1000) or anti-Rac2 rabbit polyclonal 

antibody (diluted 1:1000, Millipore) followed by incubation with horseradish peroxidase 

conjugated secondary antibodies (GE Healthcare). Proteins were detected by using the ECL 

reagent (GE Healthcare Europe, Orsay, France) and the image acquisition system Fusion Fx7 
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(Fisher Scientific, Illkirch, France). Relative protein quantification on western blot was done 

using BioD1 software (Fisher Scientific). 

Subcellular fractionation was adapted from Dang et al. (Dang et al., 1999). The two differentiated 

cells lines CFP-Rac2 and p47-GFP were incubated at 37°C first with 5 µM of cytochalasinB for 

10 min and then stimulated with 200 nM PMA for 10 min. The stimulation was stopped on ice by 

addition of ice cold PBS and cells were resuspended in relaxation buffer (100 mM KCl, 3 mM 

NaCl, 3.5 mM MgCl2, 10 mM Pipes KOH pH7.3, and 1mM EGTA) supplemented with protease 

inhibitors and NaF(10mM). Cells were disrupted by sonication for 3 x 10 s on ice, and the 

unbroken cells and nuclei were removed by a 400 g centrifugation for 8 min. The supernatants 

were transferred to a sucrose gradient (16%-32%) and ultracentrifuged at 200000 g for 30 min 

(Centrikon T-2050, Kontron Medical, S
t
 Germain en Laye, France). The plasma membrane 

fraction was collected and ultracentrifuged at 200000g for 30 min. The membrane pellet was 

resuspended in relaxation buffer with 1% triton and incubated 30 min at 4°C to solubilize the 

proteins. Then 5 µg of mouse monoclonal anti- gp91
phox

 (Abcam, Cambrige, UK) were added and 

the mixture was incubated at 4°C for 1 h. For negative controls, antibodies were omitted. Protein 

G-agarose beads were added and the mixture was again incubated for 1 h at 4°C. The beads were 

collected, washed with relaxation buffer with 1% triton, then resuspended in 50 µl of 2x Laemmli 

sample buffer, boiled and centrifuged at 14 000 g for 5 min. The supernatants were subjected to 

SDS-PAGE followed by immunoblotting with anti-gp91
phox 

(diluted 1:1000), anti-p47
phox

, anti-

GFP, anti-p67
phox

 (Millipore, Bedford, MA) and anti-Rac2.  

 

Statistical analysis and mathematical models 

All data are presented as mean  SEM. Statistical analysis of the quantification of the LactC2 

probe at the phagosomal membrane was performed using a Mann Whitney test with GraphPad 

Prism 5 software. Values of p < 0.05 were considered statistically significant. 

The ROS production kinetics over 30 min measured by videomicroscopy was analyzed using 

nonlinear mixed effects models. We assumed that the production of ROS by NADPH oxidase 

corresponds to an enzymatic kinetics. Thus we have tested several sigmoid models to describe the 

ROS production and selected the function: 

 F(t) = Fmin + (Fmax-Fmin)/(1+e
-α(t-Tc)

), where F(t) is the fluorescence at time t, Fmin is the 

fluorescence base line, Fmax is the maximal fluorescence, Tc is the time when 50% of the 

maximal fluorescence increase is reached, and α is proportional to the slope of the tangent at Tc. 

A lactC2 effect was assumed to occur on parameters α and Tc, and this effect was modelled as 

αlactC2 = αcontrol exp(βα), and TclactC2 = Tccontrol exp(βTc). 

Statistical analysis was performed using the Monolix software (http://www.monolix.org/, user 

guide) that is mainly dedicated to pharmacokinetics-pharmacodynamics applications in a 

population approach. The parameters of the structural model (i.e. Fmin, Fmax, α and Tc) are 

assumed to be random variables in the population. We assumed that Fmin is constant in each 

condition, and Fmax, α and Tc are random variables that have a log-normal distribution. The 

Wald nullity test was used to test if βα=0 or βTc=0, i.e. to compare the logTc and logα values in 

the two conditions and to statistically determine whether the kinetics of the two cell populations 

is different or not. Here, p-values < 0.05 indicate that the observed differences for Tc were 

statistically significantThen we have simulated data (N=100000) and calculated the two 

simulated cell population parameters that are representative of experimental data, by using 

Monte-Carlo methods. In order to illustrate the statistical difference observed between the two 

cell populations, the initial reaction rate at the time of phagosome closure was calculated in each 

cell population by deriving the function F(t) at time 0 min.  

http://www.monolix.org/
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To analyze the effect of the lactC2 probe on p47
phox

 phagosomal recruitment, the same strategy 

described above was applied. The statistical model used to describe p47
phox

 recruitment derives 

from a monocompartmental pharmacokinetics model: 

 R(t) = Rinf + A*e
(-k

1
t)
 – (Rinf + A – R0)*e

(-k
2

t)
 , where Rinf is the fluorescence ratio base line, A is a 

factor that determines the amplitudes of the two exponentials, R0 is the ratio at time of 

phagosome closure, k1 is a constant of detachment of p47
phox

 and k2 is a constant of its 

recruitment. We assumed that a lactC2 effect occurred on parameters k1 and k2. The parameters 

Rinf, A, R0, k1 and k2 are random variables that have a log-normal distribution. By using the 

Monolix software, the parameters were estimated. Data simulation was performed by Monte 

Carlo method to calculate the time when maximal fluorescence ratio (Rmax) was reached (Tmax). 

This time can be defined as the point when the derivative of the function is null.  
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Figure legends 

 
Figure 1 Generation of stable PLB-985 cell lines expressing p47-GFP and CFP-Rac2 

(A, B, C) Generation of p47–GFP and CFP-Rac2 expressing stable cell lines: (A) Western blot 

analysis of p47-GFP (left panel) and CFP-Rac2 (right panel) using an anti-GFP antibody. (B) 

Western blot analysis of p47–GFP using an anti-p47
phox

 antibody. (C) Western blot analysis of 

CFP-Rac2 using an anti-Rac2 antibody. (D, E): Differentiated PLB-985 cells expressing p47-

GFP (D) or CFP-Rac2 (E) were stimulated for 10 min with PMA and then lysed by sonication. 

Membrane and cytosol were separated by ultracentrifugation on sucrose gradient. Membrane 

fractions were immunoprecipitated (IP) with antibodies specific for gp91
phox

. The negative 

control contained no antibody during precipitation. Immunoprecipitates were resolved by SDS-

PAGE followed by immunoblotting with anti-gp91
phox

, anti-p47
phox

, anti-Rac2, anti-GFP and 

anti-p67
phox

 antibodies. The star marks the heavy chain of Immunoglobulin G anti-gp91
phox 

 
Figure 2. Recruitment of p47 during phagocytosis of opsonized zymosan 

(A, B, C) Wide-field videomicroscopy was used to monitor phagocytosis of zymosan (*) by p47-

GFP expressing cells. (A) Representative micrographs of ratiometric films between p47-GFP and 

the cytosolic marker calcein blue. Scale bar, 5 µm. (B) The time of the first appearance of p47-

GFP on the phagosome membrane was analyzed for 13 positive phagosomes. The time of 

phagosome closure is defined as time zero. The mean is represented by a black line. (C) P47-GFP 

accumulation at the phagosomal membrane was quantified by calculating the relative 

fluorescence intensity at the phagosomal membrane compared to the cytosol on the ratiometric 

films. At least ten phagosomes per condition were analyzed and are shown as mean ± SEM. Time 

0 (black arrow) corresponds to the phagosome closure.  

(D, E) Immunofluorescence experiments were performed to detect endogenous p47
phox

-positive 

phagosomes at 0, 2, 5 and 10 min after incubation of the cells with texas red opsonized zymosan 

at 37°C. (D) Representative micrographs at time 2 and 10 min are shown. The phagosomes are 

indicated by arrows. The arrow in the left micrograph shows a p47
phox

-positive phagosome. (E, 

left panel) Percentage of phagosomes ((number of phagosomes/number of cells)*100) at the 

different time points. For each condition, in each experiment, at least 150 cells have been 

observed. (E, right panel) Percentage of p47
phox

-positive phagosomes at the different time points. 

The results represent the mean of at least three independent experiments. 

 
Figure 3. Recruitment of GFP-Rac2G12V during phagocytosis of opsonized zymosan 

Cells were transiently transfected with GFP-Rac2G12V. (A) Representative micrographs of 

zymosan (*) phagocytosis by transfected cells acquired by spinning-disk confocal 

videomicroscopy. Time 0 was set when the phagosome closure was observed. Scale bar, 5 µm. 

(B) The time of the first appearance of GFP-Rac2G12V on phagosome membrane was analyzed 

for 11 positive phagosomes. The time of phagosome closure is defined at time zero. The mean is 

represented by a black line. (C) GFP-Rac2G12V accumulation at the phagosomal membrane was 

quantified by calculating the relative fluorescence intensity at the phagosomal membrane 

compared to the cytosol. Data are mean ± SEM from at least seven phagosomes per condition. 

Time 0 (black arrow) corresponds to the phagosome closure.  

 

 

 



19 

Figure 4. Localization of lactC2 decorated phosphatidylserine during phagocytosis. 

(A) Differentiated PLB-985 cells were transiently transfected with mCherry-lactC2, and 

phagocytosis of yeasts (*) by the transfected cells was imaged by wide field videomicroscopy, 

followed by a 3D-deconvolution analysis. Time 0 was set when the phagosome closure was 

observed. Scale bar, 5 µm. (B) Quantification of lactC2 accumulation at the phagosomal 

membrane was evaluated by measuring the phagosomal fluorescence relative to the cytosolic 

fluorescence. Data are mean ± SEM from at least seven phagosomes for each time point, * p < 

0.05. 

 

Figure 5. Recruitment of p47-GFP and CFP-Rac2 in the presence of mcherry-lactC2 

(A, B) The p47-GFP transgenic cell line was transiently transfected with mCherry-lactC2. Wide-

field videomicroscopy was used to monitor phagocytosis of zymosan (*). (A) Representative 

micrographs of ratiometric films between p47-GFP and the cytosolic marker calcein blue. Scale 

bar, 5 µm. (B) Quantification of p47 accumulation at the phagosome in the absence (black line) 

or presence of mcherry-lactC2 (red line). At least ten phagosomes per condition were analyzed 

and are shown as mean ± SEM. Time 0 (black arrow) corresponds to the phagosome closure.  

(C, D) Cells were transfected with GFP-Rac2G12V alone and mCherry-lactC2. (C) 

Representative micrographs of zymosan (*) phagocytosis by transfected cells were acquired by 

spinning-disk confocal videomicroscopy. Time 0 was set when the phagosome closure was 

observed. Scale bar, 5 µm. (C) Quantification of GFP-Rac1G12V at the phagosomal membrane 

in the absence (black line) or presence of mcherry-lactC2 (red line). Data are mean ± SEM from 

8 phagosomes per condition. Time 0 corresponds to the phagosome closure. 

 

Figure 6. Transient accumulation of GFP-Rac1G12V at the phagosome in the absence or 

presence of mCherry-lactC2  

(A, B) Cells were transfected with GFP-Rac1G12V alone (A) or together with mCherry-lactC2 

(B). Representative micrographs of zymosan (*) phagocytosis by transfected cells were acquired 

by spinning-disk confocal videomicroscopy. Time 0 was set when the phagosome closure was 

observed. Scale bar, 5 µm. (C) Quantification of GFP-Rac1G12V at the phagosomal membrane. 

Data are mean ± SEM from eight phagosomes per condition. Time 0 corresponds to the 

phagosome closure. 

 
Figure 7. Effect of lactC2 expression on kinetics of ROS production. 

(A) Cells were transfected with mcherry (upper panel) or mcherry-lactC2 (lower panel). Images 

of phagocytosis by transfected cells at 0 to 10 min after phagosome closure showing mcherry or 

mcherry-lactC2 (red) and DCFH2 yeast (green). In the lower panel some DCFH2-yeasts outside 

the mcherry positive cell present a strong fluorescence since they have been phagocytosed by 

neighboring cells that are negative for mcherry-lactC2. The phagosomes are indicated by an 

arrow. Time 0 was set when the phagosome closure was observed. Scale bar, 5 µm. (C) The 

kinetics of the ROS production was assessed by videomicroscopy by quantifying DCFH2-labelled 

yeast fluorescence in cells with mcherry-lactC2 or mcherry. Time course of the average 

phagosomal fluorescence (± SEM) during the first 12 min from at least ten DCFH2 labeled yeasts 

for each time point of both conditions.  

 

 

 



20 

Figure 8. Model of NADPH oxidase assembly and phosphatidylserine involvement during 

phagocytosis 

A model for NADPH oxidase activation on the phagosomal membrane based on the literature and 

the data in this article is shown in 3 steps from left to right: The distribution of NADPH oxidase 

subunits prior to activation (A), at the beginning of NADPH oxidase activity (B) and during 

continuous activity beyond 3 to 5 min after phagosome closure (C). The presence of 3 different 

anionic phospholipids is shown by colored head groups. 

 

Online Supplementary Material 

 
Video S1 : P47-GFP is transiently recruited to the phagosome 

Ratiometric film between p47-GFP and the cytosolic marker calcein blue during zymosan (*) 

uptake. Scale bar 5µm. 

 

Video S2 : GFP-Rac2G12V is transiently recruited to the phagosome 

Time lapse video of GFP-Rac2G12V during zymosan (*) uptake. Scale bar 5µm. 

 

Video S3 : GFP-Rac2G12V is no more recruited to the phagosome in the presence of 

mcherry-lactC2.  Time lapse video of GFP-Rac2G12V in the presence of mcherry-lactC2 during 

phagocytosis of zymosan (*). Scale bar 5µm. 

 

Video S4 : GFP-Rac1G12V starts to detach from the phagosome after sealing 
Time lapse video of GFP-Rac1G12V in the presence of mcherry-lactC2 during zymosan (*) 

uptake. Scale bar 5µm. 

 

Figure S5 : Comparison of the kinetics of the ROS production between the experimental 

values and the mathematical model 

The kinetics of the ROS production was assessed by videomicroscopy by quantifying DCFH2-

labelled yeast fluorescence in cells with mcherry-lactC2 or mcherry. Time course of the median 

of the DCFH2-yeast fluorescence values:  the red and pale blue curves represent the median of 

experimental values, whereas the pink and dark blue curves represent the median of the values 

predicted by the model. 
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