
HAL Id: hal-01555247
https://hal.science/hal-01555247

Submitted on 3 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deviation Modeling and Shape transformation in Design
for Additive Manufacturing

Zuowei Zhu, Nabil Anwer, Luc Mathieu

To cite this version:
Zuowei Zhu, Nabil Anwer, Luc Mathieu. Deviation Modeling and Shape transformation in Design
for Additive Manufacturing. 27th CIRP Design Conference, May 2017, Cranfield, United Kingdom.
�10.1016/j.procir.2017.01.023�. �hal-01555247�

https://hal.science/hal-01555247
https://hal.archives-ouvertes.fr


 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia CIRP 00 (2017) 000–000 
  

     www.elsevier.com/locate/procedia 

   

 

 

 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference. 

27th CIRP Design 2017 

Deviation Modeling and Shape transformation in Design for Additive 

Manufacturing 

 Zuowei Zhua,*, Nabil Anwera, Luc Mathieua  

aLURPA, ENS Cachan, Univ. Paris-Sud, Université Paris-Saclay, 94235 Cachan, France  

* Corresponding author. Tel.: +33-(0)147402765; fax: +33-(0)147402220. E-mail address: zzhu@ens-cachan.fr 

Abstract 

Additive Manufacturing (AM) technologies have gained extensive applications due to their capability to manufacture parts with complex shape, 

architected materials and multiple structure. However, the dimensional and geometrical accuracy of the resulting product remain a bottleneck for 

AM regarding quality assurance and control. Design for Additive Manufacturing (DfAM) aims at using different methodologies to help designer 

take into account the technological or geometrical specificities of AM, to maximize product performance during the design stage. As a main 

concern in DfAM, the consistency between the digital product and the final outcome should be effectively assessed. Therefore, the geometric 

deviations between designed model and real product should be modeled, in order to derive correction and compensation plans to increase 

geometrical accuracy, or to predict product performance more precisely. In this paper, a new deviation modeling method based on the STL file 

is proposed. A new shape transformation method is developed based on contour point displacement. In each slice, systematic deviations are 

represented by polar and radial functions and random deviations are modeled by translating the contour points with a given distance derived from 

the random field theory. The proposed method makes a good prediction of both repeatable and unexpected deviations of product shape, thus 

providing the designer with meaningful information for design improvement. 

© 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference. 
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1. Introduction 

Additive Manufacturing (AM), also known as 3D printing, 

has gained extraordinary popularity and research interest in the 

past decades, due to its capability to manufacture parts with 

complex shape, multiple structures and a wide variety of 

materials. New AM processes and machines have continuously 

being developed and refined to extend their application to a 

wider spectrum such as automotive, aerospace, engineering, 

medicine and biological systems [1]. 

The layer-wise additive characteristics distinguish AM from 

traditional manufacturing processes, therefore, the design 

issues regarding to design knowledge, tools, rules, processes 

and methodologies, are substantially different [1]. In this 

context, the concept of Design for Additive Manufacturing 

(DfAM) is proposed aiming at using different methodologies to 

help designer take into account the technological or geometrical 

specificities of AM, to maximize product performance during 

the design stage [2]. As one of the main aspects of DfAM, the 

geometrical validation is to effectively assess the consistency 

between the digital product and the final outcome [3]. Therefore, 

the modeling of geometric deviations between designed model 

and manufactured product becomes more important, based on 

which corresponding correction and compensation plans can be 

made on the deigned model to increase geometrical accuracy, 

or to predict product performance more precisely. 

As indicated in [4], the AM process consists of a digital 

dataflow and a subsequent physical workflow. In the former 

dataflow, first the digital volume or facet models are created 

based on input 2D images, CAD models, or point clouds 

obtained from reverse engineering. The models are then 

repaired to remove errors, and sliced to provide layer 

information that instructs the machine in the building process. 

Support structures are also generated if necessary, to ensure the 

quality and stability of the final product. In the physical 

workflow, the AM machine fabricates the product from raw 
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material according to the instructions, after which post-

processing procedures like support removal, cleaning, heat 

treatment and NC machining are executed to ensure the final 

product quality. 

Geometric deviations may arise in both of the 

abovementioned stages. The facet model, which is commonly 

represented by the Stereolithography (STL) file, is transformed 

from the CAD model through triangular approximation, thus 

chordal deviations are introduced as the Euclidean distance 

between the STL facet and the CAD surface. In the layer-by-

layer building process, additional deviations are introduced due 

to the “staircase effect”. Moreover, machine errors, process 

parameter settings and material shrinkage will also bring about 

deviations that affect the geometric consistency between 

nominal model and final product. Effective modeling and 

control of these deviations is obviously critical for an optimal 

design for AM. 

In this paper, a new deviation modeling method based on the 

STL file is proposed. A shape transformation method is 

developed based on contour point displacement. The proposed 

method makes a good prediction of both repeatable and 

unexpected deviations of product shape, thus providing the 

designer with meaningful information for design improvement. 

The paper is structured as follows: in Section 2, existing 

literature regarding DfAM and shape deviation modeling are 

reviewed. Different deviation models for AM are explained and 

compared; in Section 3, the new deviation modeling and shape 

transformation method is proposed and a case study is given in 

Section 4; conclusion and future research focus are drawn in 

Section 5.  

2. Literature review 

In this section, existing researches on DfAM and shape 

deviation modeling will be reviewed. A comprehensive 

overview of current shape deviation modeling approaches for 

AM will be presented. 

2.1. Design for Additive Manufacturing 

In spite of the short history of AM technologies, DfAM has 

gained much research attention and methodological maturity. 

An early definition of DfAM can be found in [5], based on the 

concept of Design for Manufacturing and the specificities of 

AM, DfAM is defined as “Synthesis of shapes, sizes, geometric 

mesostructures, and material compositions and microstructures 

to best utilize manufacturing process capabilities to achieve 

desired performance and other lifecycle objectives”. 

In both [2] and [3], a taxonomy is proposed that classifies 

the current DfAM methods into DfAM for design marketing 

and DfAM for design assessment. DfAM for design marketing 

is aimed at guiding designers in the design process by 

developing intermediate representations (IRs) that consist in 

guidelines or design features. While DfAM for design 

assessment focuses on employing acceptability criteria, such as 

cost, time and manufacturability, to evaluate IRs in the design 

stage. DfAM for design assessment is further classified into 

opportunistic DfAM, restrictive DfAM and dual DfAM 

according to their different ways to assist designers [2], among 

which restrictive DfAM methods aim to reach a consistency 

between the nominal geometric model and the skin model [6] 

that includes geometric deviations introduced in manufacturing 

processes, by taking into account the limitations of AM. The 

focus of this paper right belongs to the restrictive DfAM, since 

deviation modeling can effectively assist design optimization 

to ensure the geometric consistency. 

2.2. Shape deviation modeling 

The modeling of geometric deviations in traditional 

manufacturing processes has been extensively investigated in 

researches on geometric dimensioning and tolerancing 

(GD&T), and especially Computer Aided Tolerancing (CAT).  

Multiple models have been proposed and some of them are 

already adopted in commercial CAT tools. However, these 

models tend to represent deviations as rotational and 

translational feature defects of the nominal model, while 

ignoring the predictable and observable form deviations of the 

product shape that may reflect the influence of actual working 

condition and environment. With this regard, the concept of 

Skin Model Shapes (SMS) has emerged as a computational 

model for geometrical variations management [7]. It considers 

geometric deviations that are expected, predicted or already 

observed in real manufacturing processes, and incorporates the 

deviations directly in the shape model based on a discrete 

geometry framework. The main contributions of the SMS have 

been highlighted recently in different applications, such as 

assembly, contact modeling, tolerance analysis, and motion 

tolerancing [8]. The promising application of SMS in shape 

deviation modeling of the AM has also been envisioned [9]. 

While in the context of AM, deviation models have been 

proposed mainly to discover the effects of process parameters, 

input file quality or thermal shrinkage on the geometrical 

accuracy of the final product, thus correction or compensation 

plans can be made to ensure the surface quality. Main 

approaches can be classified into two categories. One category 

focuses on the modification of input files for AM machines. In 

[10] and [11], Vertex Translation Algorithm and Surface-based 

Modification Algorithm are proposed to modify the STL facets 

locally based on criteria like chordal error, cusp height and 

form error, so as to decrease the approximation deviation 

introduced in translation from CAD model to STL file. A 

variety of adaptive slicing approaches are proposed to 

minimize the deviation induced by staircase effect, and at the 

same time to reduce build time [12,13]. These approaches are 

applicable in the early design stage when the AM process hasn't 

been executed yet and only digital models are available. Later, 

Sushmit et al. [14] propose an Artificial Neural Network based 

method that learns from the deviations in measured surface data 

and uses the trained network to modify STL file to compensate 

for the deviations. However, these methods cannot provide a 

quantitative formulation of geometric deviations and an 

adaptive criterion for modification can hardly be reached. The 

other category aims at deriving closed-form parametric 

expression of deviations caused by shape shrinkage in certain 

AM processes and accordingly making optimal compensation 

of the design model to neutralize the deviations. Since AM is a 

layer-wise building process, the shrinkage deviations occur 
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both in each 2D layer and also the build direction. So it is 

reasonable to consider both the in-plane and out-of-plane 

deviations respectively. In a series of works [15,16,17], Huang 

et al. develop a predictive model of shrinkage deviations that is 

able to learn from the deviation information obtained from a 

certain number of tested product shapes and to derive 

compensation plans for new and untested products. The model 

is represented as a parametric function based on the Polar 

Coordinate System (PCS), in which the parameters can be 

estimated by statistical learning of the deviations. The model 

has been refined to represent both in-plane and out-of-plane 

deviations in Stereolithography (SLA) and Fused Deposition 

Modeling (FDM) processes. The repeatable in-plane shrinkage 

deviations of cylindrical, regular polygon and freeform shapes 

have been effectively predicted by this model. To improve 

model generality, in a recent study, they develop a new 

approach based on effect equivalence and modular deformation 

features to incorporate all available data for deviation model 

construction, so that the model can be extended across different 

process conditions and shapes [18]. Similarly, Kai Xu et al. [19] 

propose another reverse compensation framework, which 

models deviations in 3D space with multi-order polynomials. 

To conclude, existing studies consolidate the possibility in 

quantification of repeatable geometric deviations in AM and 

provide the context for the methodology in this paper. 

3. New Deviation modeling and shape transformation 

method for AM 

In this section, a new deviation modeling and shape 

transformation method will be proposed. This method aims at 

assisting the DfAM process in evaluation of geometric 

conformance between the design model and the actual product.  

 

 

Fig. 1. Principle of the proposed method. 

The design stage deals with the CAD product model, 

whereas the manufacturing process is normally based on the 

STL file, which is a tessellated representation of the design 

model. Starting with the nominal STL representation, this 

method derives a deviated representation of product shape by 

predicting the deviations brought in by the AM process. The 

deviations are provided to the designer as an important 

feedback for optimization of product design. Fig. 1 is provided 

to illustrate the principle of this method.  

As mentioned above, shape shrinkage occurs during the 

layer-wise printing process due to the thermal effect, and is 

closely related to the characteristics of the AM process. 

Therefore, deviations caused by shape shrinkage are repeatable, 

thus can be seen as systematic deviations, and be predicted 

through observation of the measurement data. Meanwhile, 

there are deviations caused by inevitable fluctuations of 

material and environmental conditions. Such deviations are 

unpredictable and can be seen as random deviations. In this 

method, the in-plane systematic and out-of-plane random 

geometric deviations in the SLA process are modeled. The out-

of-plane systematic deviations caused by “sink-in” of layers are 

not discussed in this paper, but remain an important issue to be 

addressed. A shape transformation method will be proposed to 

model these deviations by displacement of contour points 

based on the STL file. The methodology aims at a good 

prediction of both repeatable and unexpected deviations of 

manufactured product shape to facilitate DfAM. 

3.1. The framework 

The procedure of the method is stated as follows. First, the 

CAD product model is tessellated to obtain its discrete 

representation as stored in a STL file. The STL file is sliced and 

the contour points in each slice are clockwisely connected to 

form a nominal slice contour. Based on a parametric function 

of shape shrinkage, the in-plane systematic deviations can be 

derived and the nominal contour points are deviated according 

to the function to incorporate the systematic deviations. 

Thereafter, the deviated points in each slice are connected layer 

by layer in a geometric way to form a new triangular facet 

model. Then, the random deviations are generated based on the 

random field theory and incorporated in the triangular facet 

model by translating each triangle vertex in its normal direction. 

3.2. Modeling of systematic deviations 

The in-plane systematic deviations are the deviations 

between the actual printed shape and the nominal shape of a 2D 

layer. These deviations have been validated to be repeatable for 

tested shapes in SLA [15], thus can be predicted using a 

parametric function whose parameters are estimated based on 

measurement.  

 

 

Fig. 2. In-plane deviation represented in PCS. 

The nominal shape of a layer can be obtained by slicing the 

STL file at the layer height and connecting the points to form a 

nominal contour. The actual printed shape are obtained in a 

similar fashion, where the points are gathered from 

measurement to form an actual contour. In order to facilitate 

deviation representation, we propose to adopt the PCS, in 

which the deviations between the actual contour and nominal 
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contour can be distinguished as their radial difference at each 

polar angle, as shown in Fig. 2 and represented as Eq. (1).  

0( ) ( ) ( )r r r                                      (1) 

Since
0( )r  is known, the problem is how to parameterize 

( )r   to represent the actual contour. Here we make a truncated 

Fourier expansion of ( )r   as Eq. (2). 

0

1

( ) [ cos( ) sin ( )]
M

k k

k

r a a k b k  


                  (2) 

In Eq. (2),
0, ,{ , , 1,..., }k ka a b k M  are parameters that control 

the shape of the actual contour with deviations. With a 

reasonable value of M , the representation can reach an 

acceptable approximation accuracy. By combining Eq. (1) and 

Eq. (2), and using the polar form of Eq. (2), ( )r  can be 

represented as Eq. (3). 
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          (3) 

An extra component 
  is added in Eq. (3) as the noise term 

to represent unexpected randomness of the data. This function 

provides a continuous parameterization of the in-plane shape 

deviations in the PCS. The parameters can be obtained from 

empirical data or be estimated from measured contour points of 

the manufactured part, and used to predict the in-plane 

deviations of parts under the same or similar AM process. 

Based on this deviation function, we can displace each point 

iP on the nominal contour to a new point s

iP  accordingly and 

obtain a new contour with systematic deviations. 

3.3. Modeling of random deviations 

 

Fig. 3. Layer connection based on the span tour method. 

The next step is to connect the deviated points in each layer 

to form a new triangular facet model. This is done with a “span 

tour” based method as inspired by the work of Park et al. [20]. 

First the points in each layer are connected in a consecutive 

way as a close contour, each segment of the contour serves as 

an edge of a triangle. Then each pair of contours in adjacent 

layers are connected with “spans” that link two corresponding 

points in both contours, which is called a “span tour”. It should 

be ensured that the spans do not cross each other, thus non-

intersecting triangles can be constructed with two spans and 

one segment of either contour. In this way, multiple possible 

span tours are resulted, among which the one with the least total 

span length is defined as the best solution and adopted to 

connect the contours. Fig. 3 illustrates how the span tour based 

method works for two closed contours.  

After the new triangular facet model is established, the 

random deviations can be modelled. Based on our previous 

research on the Skin Model Shapes [7], we propose to use the 

random field method. The random field method offers a 

framework to express spatial random processes, and has shown 

effectiveness in modeling random deviations of spatially 

correlated variables. Since our purpose is to have the random 

deviations of 3D spatial points, a discretized form of random 

field using the series expansion method is adopted in this paper, 

which approximates the random field as a truncated series 

involving random variables and deterministic spatial functions. 

The random filed function is shown as Eq. (4). 

  ( ) ( )t t tf A                                   (4) 

In Eq.(4), ( )t  is the mean vector of the random field, 

which is usually set as a zero vector, since the mean deviation 

is zero for every point ; ( )t is the matrix of standard 

deviations;   is a vector of independent random variables with 

zero mean and unit variance; and A is the so-called 

transformation matrix 1/2A VD , where D is a diagonal matrix 

with the M largest eigenvalues of the correlation matrix  of the 

random variables on the principal diagonal,  1= ,..., Mdiag  D  , 

andV is a matrix with corresponding eigenvectors. 

 

 

Fig. 4. Modification of STL file to model random deviations. 

The coordinate of each point s

iP on the triangular facet 

model is seen as a random variable in the random field. Thus 

the generation of random deviations is done in the following 

procedures: 

 The vertex normal
in of each point s

iP  is calculated based on 

the average of the facet normal of its neighboring triangle 

facets. 

 A correlation matrix  is calculated using an assumed 

correlation function  ·  and correlation length l , which is 

a parameter that varies the impact one random variable has 

on the neighboring random variables. 

 Eigen values D and corresponding eigenvectors V of   

are calculated and thus A is obtained. 
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 The vector of random deviations at all points is then given 

by ( ) ( )t td A  . 

 The corresponding random deviation
id is added on each 

point of s

iP  in the triangular facet model in its vertex 

normal and new points r s

i i i id P P n  are obtained, as 

shown in Fig. 4. 

 The triangular facet model is reconstructed using the new 

point coordinates. 

Compared with the nominal triangular facet model in the 

STL file, the new triangular facet model comprises both 

systematic and random deviations. Note that the parameters in 

the random field method can also be estimated from 

measurement data of the manufactured parts. 

4. Case study 

In this section, a case study will be presented to validate the 

proposed method. The input is the CAD design of a cone model, 

with the height as 15mm , and the radius of bottom circle and 

upper circle as 10mm and 5mm  respectively. The CAD model 

is discretized to obtain its STL representation, based on which 

the proposed deviation modeling and shape transformation 

method is conducted to derive deviations of product surface for 

evaluation of geometric conformance. The CAD model and its 

STL representation are shown in Fig. 5.  

 

 

Fig. 5. CAD model and STL representation of the cone. 

The STL representation is sliced with a thickness of1mm , 

and the contour points in each slice are linked consecutively to 

form the nominal contour and transformed into PCS. For 

systematic deviations, empirical parameter values from our 

previous simulation results are used to establish the deviation 

function. Based on this deviation function, the in-plane 

systematic deviation of each nominal contour point is derived 

and the point is accordingly deviated to form a new contour. As 

an example, we demonstrate this process on the 6th slice 

(height = 5mm ). In the deviation function, 8 components of the 

Fourier Series are used, with 
0 8.833a   and other coefficients 

given in Table 1 and Table 2. The noise is independently 

considered at each angle   as 2~N(0, )   . An assumed value 

of   is given as 0.002mm . 

 Table 1.Coefficients of the Fourier Series – Part 1. 

k 1 2 3 4 

ka   -5.55e-5 0.0663 -5.47e-5 1.20e-4 

kb   2.20e-4 2.17e-5 -3.09e-4 3.54e-4 

Table 2.Coefficients of the Fourier Series – Part 2. 

k 5 6 7 8 

ka   -5.77e-4 7.48e-4 -7.87e-4 5.74e-4 

kb   -2.94e-4 2.93e-5 -5.95e-5 5.06e-4 

 

As a result, nominal contour and deviated contour of the 

slice are depicted in Fig. 6 in PCS, together with the 

corresponding contour points. Two zoom images are also 

provided to better visualize the deviations.  

 

 

Fig. 6.Comparison between the nominal contour and deviated contour. 

The deviated contour points in each slice are connected 

using the method as explained in Section 3.3 to form a new 

triangular facet model. Based on this model, the vertex normal 

of each point is calculated. Then the random filed method is 

used to calculate random deviations. Here we make an 

assumption of the random field parameters, and set the 

correlation function as   exp )· ( /ij l  , in which
ij  is the 

distance between two arbitrary points. Other parameters are set 

as 25l mm  , 0mm   and 0.01mm  for all points. The 

points are translated in their normal direction according to the 

random deviations and their new coordinates are updated in the 

triangular facet model. An illustration of systematic, random 

and total deviations modeled in the whole process is provided 

in Fig.7, in which deviations are visualized with varying colors 

to distinguish their values. The resulting model incorporates 

geometric deviations that are either repeatable or unexpected, 

and reflects the possible condition of manufactured part, thus 

can be used for validating the geometric conformance between 

designed model and manufactured product to assist DfAM.  

5. Conclusion and outlook 

Modeling of geometric deviations is an important concern 

in DfAM in order to evaluate the geometric consistency 

between designed model and final product. Current demand for 

AM parts in complex and dimensionally critical assemblies 

adds to the significance of deviation control of the AM process. 

In this paper, a new deviation modeling approach is proposed. 

With the CAD product model as input, this method models the 

possible deviations in AM processes based on its STL 

CAD model STL representation
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representation. The in-plane systematic deviations and spatial 

random deviations are considered, and as a result, a triangular 

facet model is obtained that comprises both repeatable and 

unexpected deviations on product surface. Through evaluation 

of this model and the CAD model, important information can 

be gained for optimization of product geometry in the DfAM 

process. Future work will be focused on calibration of the 

proposed model with measurement data of real printed product, 

and comparison with existing AM simulation tools will be 

made to validate. The out-of-plane systematic deviations that 

occur in the build direction will also be considered. 
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